
Financial markets as disordered

interacting systems: information,

risk and illiquidity

Fabio Caccioli
Supervisor: Prof. Matteo Marsili

SISSA-International School for Advanced Studies

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy

September 2010

mailto:caccioli@sissa.it
mailto:caccioli@sissa.it
http://www.sissa.it


2



Previously published work

1. F. Caccioli and M. Marsili

Information efficiency and financial stability

Economics 4,2010-20 (2010).

2. F. Caccioli, M. Marsili and P. Vivo

Eroding market stability by proliferation of financial instruments

Eur. Phys. J. B 71, 467 (2009).

3. F. Caccioli, S. Still, M. Marsili and I. Kondor

Optimal liquidation strategies regularize portfolio selection

submitted to EJF, online at http://arxiv.org/abs/1004.4169

(2010)

4. S. Bradde, F. Caccioli, L. Dall’Asta and G. Bianconi

Critical fluctuations in spatial complex networks

Phys. Rev. Lett. 104, 218701 (2010).

5. R. Potestio, F. Caccioli and P. Vivo

Random Matrix approach to collective behavior and bulk universality

in protein dynamics

Phys. Rev. Lett. 103, 268101 (2009).

6. F. Caccioli and L. Dall’Asta

Non-equilibrium mean-field theories on scale-free networks

J. Stat. Mech., P10004 (2009)

7. F. Caccioli, S. Franz and M. Marsili

Ising model with memory: coarsening and persistence properties

J. Stat. Mech., P07006 (2008).

Paper 1 covers the content of Chapter 2, paper 2 of Chapter 3 and

paper 3 of Chapter 4. The remaining papers have not been included in

the present thesis. Chapter 4 also includes results not yet published.



Contents

1 Introduction 1

2 Information efficiency and financial stability 7

2.1 Information Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Aggregation of Information in a Complex Market . . . . . . . . . 11

2.2.1 Definition of the model . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Information structures and information efficiency . . . . . 12

2.2.3 Competitive equilibria . . . . . . . . . . . . . . . . . . . . 14

2.2.4 Learning to trade . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.5 A Hamiltonian for the system . . . . . . . . . . . . . . . . 15

2.2.6 Transition to efficient market . . . . . . . . . . . . . . . . 17

2.3 Market Efficiency, Informed and Non-Informed Traders . . . . . . 19

2.3.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Efficiency and Stability . . . . . . . . . . . . . . . . . . . . 22

2.4 Summary and Perspectives . . . . . . . . . . . . . . . . . . . . . . 28

3 Proliferation of derivatives and market stability 29

3.1 Asset Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 The world of asset pricing . . . . . . . . . . . . . . . . . . 33

3.2 A picture of the market as an interacting system . . . . . . . . . . 35

3.2.1 A stylized model . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 A typical large complex market . . . . . . . . . . . . . . . 37

3.2.3 Market completeness and market stability . . . . . . . . . 40

3.2.4 Asset dependent risk premia . . . . . . . . . . . . . . . . . 45

3.3 Summary and perspectives . . . . . . . . . . . . . . . . . . . . . . 49

4



CONTENTS

4 Optimal liquidation strategies regularize portfolio selection 51

4.1 The Markovitz problem . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Instability of risk measures . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Expected Shortfall . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2 Instability of Expected Shortfall . . . . . . . . . . . . . . . 59

4.2.3 Coherent risk measures . . . . . . . . . . . . . . . . . . . . 63

4.3 Regularized portfolio selection . . . . . . . . . . . . . . . . . . . . 64

4.3.1 Regularization from market illiquidity . . . . . . . . . . . . 65

4.3.2 Stability of regularized Expected Shortfall . . . . . . . . . 67

4.3.3 Behavior of large random minimal risk portfolios under L2

regularized Expected Shortfall . . . . . . . . . . . . . . . . 68

4.3.4 Behavior of large random minimal risk portfolios under L1

regularized expected shortfall . . . . . . . . . . . . . . . . 74

4.4 Summary and perspectives . . . . . . . . . . . . . . . . . . . . . . 78

5 Conclusions 80

A Information efficiency and financial stability 83

A.1 The statistical mechanics analysis . . . . . . . . . . . . . . . . . . 83

B Proliferation of derivatives and market stability 87

B.1 The statistical mechanics analysis . . . . . . . . . . . . . . . . . . 87

B.2 Computation of the critical line . . . . . . . . . . . . . . . . . . . 91

C Optimal liquidation strategies regularize portfolio selection 93

C.1 The replica calculation for the L2 regularized Expected Shortfall . 93

C.2 The Maximal Loss problem . . . . . . . . . . . . . . . . . . . . . 99

C.3 The replica calculation for the L1 regularized Expected Shortfall . 100

References 109

5



List of Figures

2.1 Distance |p−R| =
√∑Ω

ω=1 (Rω − pω,k0)2 of prices from returns in competitive

equilibrium in absence of trend followers and zero information cost. . . . . 18

2.2 Top panel: distance |p−R| =
√∑Ω

ω=1Ek0 [Rω − pω,k0 ]2 of prices from returns

in competitive equilibrium. The full line represents the analytical solution for

the case s = R = 1 and ε = 0.1, points refer to numerical simulations of

systems with Ω = 32, s = R = 1 and ε = 0.1. Bottom panel: monetary

amount invested by the trend follower z0 for the same values of the parameters. 23

2.3 Measure of market efficiency as a function of information cost. . . . . . 24

2.4 Top panel: monetary amount invested by the trend follower. Bottom panel:

monetary amount invested by a fundamentalist in presence (blue points) or

absence (green diamonds) of the trend follower. Points refer to simulations

of systems with Ω = 32, n = 4 and s = R = 1. Full lines represent the

corresponding analytical solution. . . . . . . . . . . . . . . . . . . . . 25

2.5 Susceptibility as a function of market complexity for different information

costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Susceptibility as a function of information cost. . . . . . . . . . . . . . 26

3.1 Volatility Σ = Eπ [(r − Eπ[r])2] in competitive equilibria (full lines),

as a function of n = N/Ω, for different values of ε. Points refer to

the variance of r̄ω computed in numerical simulations of a system

with Ω = 64 (s0 = 1). . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Average supply s̄ in competitive equilibria (full lines) for different

values of ε. Points refer to the variance of r̄ω computed in numer-

ical simulations of a system with Ω = 64 (s0 = 1). . . . . . . . . . 43

6



LIST OF FIGURES

3.3 Dynamical contribution to the volatility V = Eπ[δr2] in numeri-

cal simulations of a system with Ω = 64 for different values of ε

(points). Lines refer to the theoretical prediction in the approxi-

mation of independent variables si(t). Inset: Total volatility Σ+V

in numerical simulations for n = 1 (+ for Ω = 128 and × for 256)

and n = 10 (∗ for Ω = 32 and • for Ω = 64) as a function of ε. . . 44

3.4 Volatility as a function of n for different values of σ2
ε and ε̄ = 0.1

(s0 = 1). From top to bottom σ2
ε = 20, 10, 1 and 0.01. . . . . . . . 46

3.5 Supply as a function of n for different values of ε, for σ2
ε = 0.01

and s0 = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Phase diagram for the case of unbounded supply. Left panel: the

plane is divided into two region. Above the blue line the supply

diverges, while bleow it remains finite. Right panel: critical line

for different values of σε (σ3 > σ2 > σ1). . . . . . . . . . . . . . . 48

3.7 Red curve: average supply of derivatives (left axes) as a function

of financial complexity (i.e. n). Green curve: volatility of the

underlying (right axis) as a function of financial complexity. . . . 49

4.1 Behavior of the estimation error as a function of T/N . The solid

line represents the result of equation (4.1.5). Red dots refer to

simulations with N = 100. . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Optimal weights computed from empirical covariance matrices for

N = 100, T = 101 (red dots) and T = 500 (blue dots). The

solid line refers to the optimal weights as computed from the true

covariance matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Behavior of the fluctuations of the optimal weights as a function

of T/N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Phase diagram for the optimization problem under Expected Shortfall. 61

4.5 Divergence of susceptibility and estimation error for the ES prob-

lem in the case β = 0.7. . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 q0 as a function of N/T for different values of η̃ and β = 0.7. . . . . . . . . 71

4.7 Susceptibility as a function of N/T for different values of η̃ and β = 0.7. . . 72

4.8 Susceptibility as a function of η̃ for the case t = 1.5 and β = 0.7 . . . . . . . 72

7



LIST OF FIGURES

4.9 Optimal weights for N = 32. Green dots: T = 72 and η = 0. Blue dots:

T = 72 and η = 0.1. Black dots: T = 500 and η = 0. Red dots: T = 500 and

η = 0.1. The solid line refers to the target optimal weights. . . . . . . . . . 73

4.10 Probability that the system is unstable as a function of η . . . . . . . . . . 75

4.11 Susceptibility as a function of T/N for different values of η for the L1 regularize

ES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.12 Estimation error as a function of T/N for different values of η for the L1

regularize ES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.13 Inverse of the minimum of the cost function for real data taken from the Dow

Jones (blue dots), i.i.d. gaussian variables (green dots) and random variables

with the same correlation of real data (red dots) . . . . . . . . . . . . . . 78

8



Chapter 1

Introduction

The last fifteen years have witnessed a growing interest for applications of statis-

tical physics to economic driven problems [Bouchaud et al., 2008; Bouchaud and

Potters, 2000; Challet et al., 2005; Mantegna and Stanley, 2000]. Notably, the

huge amount of electronically stored financial data that has become accessible

has led to the discovery of regularities in the statistical properties of economic

systems. For instance, in the context of financial markets, it has been shown

[Burda et al., 2003; Chakraborti et al., 2009; Mantegna and Stanley, 2000] that

the distribution of price changes, company sizes, individual wealth etc are char-

acterized by power law tails that are to a large extent universal. These findings

have triggered the interest of physicists used to see the emergence of such collec-

tive properties in systems close to criticality [Cardy, 1996].

In addition to the empirical approach devoted to discover, characterize and ver-

ify such regularities, statical physicists have started to introduce models trying

to explain the observed collective properties as emerging from the interactions

between ”elementary units” (agents) [Challet et al., 2005; Marsili and De Mar-

tino, 2006]. Certainly, economic systems are much more complex than physics

systems, the interacting units being individuals that follow complex behavioral

rules. Nevertheless, it may be reasonable to assume that a crowd of interacting

individuals may present aspects of statistical regularities that can be captured

by means stylized models. In this respect, on an abstract level, the nature of

the problems addressed in economics are not so different from that considered

in physics when, for instance, we try to figure out how a magnetic system can
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exhibit spontaneous magnetization. In both cases the problem is that of finding

how, out of individual interactions at the microscopic scale, collective proper-

ties may emerge. From this point of view statistical mechanics, allowing for a

characterization in terms of phases and phase transitions, may represent a useful

perspective to look at economic systems [Marsili and De Martino, 2006].

A very important aspect to consider when modeling an economic system, is the

fact that each individual is different in the way he/she interacts with the envi-

ronment. From the statistical mechanics point of view, this heterogeneity may be

accounted for by considering systems with random couplings. In view of the con-

siderable progress that has been achieved in the last decades by statistical physics

of disordered systems, this way of modeling economic systems has revealed very

fruitful since in many cases analytical solutions may be attained at least in the

limit of very large systems [Challet et al., 2005].

In this thesis, we will try to pursue this line of thought by discussing three specific

problems of economic interest through the prism of statistical mechanics. Inter-

estingly, we will see how three problems which are in principle very different, in

the statistical mechanics perspective may be shaped in such a way to represent

different instances of the same problem. Notably, all the systems we will consider

will be characterized by phase transitions which ultimately may be traced back

to the same root.

The first part of this thesis will be devoted to the analysis of some hypothesis

usually assumed in the modeling of financial markets. Mainstream economic the-

ories, like those used by financial institutions to price derivatives or to determine

optimal investment strategies [Bailey, 2005; Pliska, 1997], usually describe ide-

alized markets where rational agents instantaneously correct any mis-pricing, so

that prices correctly reflect the underlying reality and ensure optimal allocation

of resources. In this framework, responsibilities for extreme events like market

crashes are usually put on deviations of real markets from these ideal condi-

tions [Mishkin, 1996; Mishkin and Herbertsson, 2006], that, if satisfied, would

guarantee stable and properly functioning markets. A lot of discussion has been

recently made concerning the role of ”markets imperfections” in the recent eco-

nomic crisis [Shiller, 2008; Shiller and Akerlof, 2009; Turnbull et al., 2008]. Here
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we wish however to tackle the problem of market stability from a different point

of view, notably we want to understand whether the theories at the basis of fi-

nancial engineering also bear some responsibilities [Bouchaud, 2008]. We will try

to understand this point through the modeling of markets in terms of interacting

heterogenous agents [Challet et al., 2005; Marsili and De Martino, 2006], trying

to understand whether ideal markets are always synonymous of stable markets.

Notably we will consider the following topics:

Information efficiency and market stability: Markets are said to be effi-

cient if prices faithfully reflect the underlying reality, thus ensuring optimal

allocation of resources. By means of a simple model of a market where

agents trade on the basis of some private information structure and inter-

act through the process of price formation, it is possible to show how the

market can act as an information processing device that aggregates infor-

mation scattered across different investors into prices [Berg et al., 2001].

In this context, market efficiency appears as an emergent property when

the number of agents with different information structure is large enough.

Upon introducing non-informed agents, we show that the latter start con-

tributing significantly to the trading activity as the market becomes close

to being information-efficient and we will argue that information efficiency

might create the condition for bubble phenomena induced by the behavior

of non-informed traders to set in [Caccioli and Marsili, 2010].

Proliferation of financial instrumens and market stability Arbitrage Pric-

ing Theory is the theory that allows to compute prices of financial contracts

and is therefore at the basis of financial innovation [Pliska, 1997]. The pro-

liferation of financial instruments, introducing more ways for risk diversifi-

cation, is usually expected to drive the system closer to the limit of efficient,

arbitrage free complete market described by the APT [Merton and Bodie,

2005]. Despite this fact, we witnessed a tremendous crash in correspondence

to the historical period of greater expansion in the repertoire of financial

instruments. To shed some lights on this apparent paradox, we introduce

a model of a market where derivatives on an underlying are traded and a

feedback is introduced that accounts for the impact of trading derivatives
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on the underlying [Caccioli et al., 2009]. We show that, upon increasing the

number of derivatives, the market converges as expected towards the limit

of ideal market described by APT. At the same time, however, the same

region of phase space is characterized by the presence of a phase transition,

with large fluctuations and sharp discontinuities.

In both cases the bottom line will be that the conditions usually assumed to de-

scribe ideal markets may not be compatible with the stability of the market, in

particular we will give support the idea that in fact the more markets are close

to ideal conditions the more they are prone to instabilities [Brock et al., 2008;

Caccioli and Marsili, 2010; Caccioli et al., 2009; Marsili, 2009].

While the first part of the thesis is aimed at a theoretical discussion of the

concepts at the basis of financial engineering, the second part is related to a

problem of more immediate application, namely that of portfolio optimization.

This problem is related to the first question one usually asks when dealing with

financial markets: ”how do I need to invest my money?”. This is a very inter-

esting problem and the solution depends in general on investors’ characteristics.

On one hand one would like to maximize the expected profit of the investment,

on the other hand one is also interested in minimizing the risk associated to it

[Bailey, 2005; Markowitz, 1952, 1959]. The problem of finding the optimal in-

vestment strategy is then related to a compromise between these two aspects,

so that usually the solution depends on investors’ attitude toward risk. Despite

this potential heterogeneity of investors’ behavior, some general guidelines may

nevertheless be found. For instance, it is intuitively clear that if one has to choose

between portfolios with the same expected returns but different risk, one should

go for the portfolio bearing the minimum risk. Conversely, in presence of port-

folio bearing the same risk, one should choose that of greater expected returns.

This is, in a nutshell, also the basis of the celebrated Capital Asset Pricing Model

(CAPM) Bailey [2005] for the determination of the efficient portfolio frontier.

We will focus here on the part of the problem concerning the minimization of

risk, so that the relevant question we wish to address is ”given a set of N assets,

what is the optimal allocation of resources that minimizes a certain measure of
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risk?”. In fact, we will face a problem more complex than this, since we will

consider the realistic case where the estimation of risk is made on the basis of

historical data. Since such data are usually noisy [Laloux et al., 1999], a problem

of practical relevance is that of avoiding noise fitting. Statistical mechanics has

already given important contributions to this field [Ciliberti et al., 2007; Kondor

and Varga-Haszonits, 2008b; Pafka and Kondor, 2004], allowing for the determi-

nation of phase diagrams that discriminate in the phase space between a region

where the optimization problem may be safely solved and a region where the

presence of noise makes the optimization problem unfeasible. The main concern

for practitioners, is that problems of real relevance sit at the boundary between

the two regions, where large fluctuations set in. We will try to show that a simple

solution for this problem may be naturally found by accounting for the impact

of liquidation strategies when solving for the optimization problem. We will do

this by introducing a feedback between traders’ behavior and prices of securities

[Eisler et al., 2009], once again explicitly accounting for interactions in financial

markets. We will discuss in detail the problem of finding the optimal portfolio

under Expected Shortfall (ES) in the case of linear and instantaneous market

impact [Caccioli et al., 2010]. We will show that, once market impact is taken

into account, a regularized version of the usual optimization problem naturally

emerges. We characterize the typical behavior of the optimal liquidation strate-

gies, in the limit of large portfolio sizes, and show how the market impact reduces

the instability of ES in this context.

As we said the specific problems addressed in this thesis are in principle quite

different, and indeed the concepts and the theories from which we step are usually

treated separately in economics books (se for example Bailey [2005]). Neverthe-

less, we will show that statistical mechanics allows for a description of these

systems which is ultimately very similar. Notably, once expressed in terms of

systems with random couplings, all the problems under study will be related to

the characterization of the minima of quadratic disordered Hamiltonians, and

will be solved by means of replica calculations in the zero temperature limit.

This approach will allow us to derive, for each system, the free energy in the

limit of large markets. The link between the three specific problems under study
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will be further highlighted by the analysis of the free energies. Indeed we will

show that, for each system, the free energy is characterized by a minimum that

becomes more and more shallow upon increasing the degree of heterogeneity in

the system. Eventually, the free energy will develop flat directions in the phase

space and a corresponding degeneracy of minima. All the problems under study

will then be characterized in terms of phase transitions that are triggered by the

same mechanism, namely the emergence of flat directions in the phase space along

which fluctuations may grow unbounded.
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Chapter 2

Information efficiency and

financial stability

According to Shiller [2008] ”the subprime crisis [...] is, at its core, the result

of a speculative bubble in the housing market that begun to burst in the United

States in 2006 and has now caused ruptures across many other countries in the

form of financial failures and a global credit crunch”. A deep understanding of

the reasons that lead to financial bubbles may then be of primary importance in

order to develop measures for preventing market crashes. In the economic litera-

ture [Galbraith, 1954; Shiller, 2000, 2008; Shiller and Akerlof, 2009], speculative

bubbles are often described as the result of irrational euphoria among investors,

who believe that ”all will be better, that they are meant to be richer” [Galbraith,

1954]. This excessive optimism about the future, makes people to invest their

money into illiquid things like real estate until prices stop rising, the euphoria

turns into panic and the bubble bursts. Although this picture provides an inter-

esting description about the psychological patterns involved, no explanation is

provided for what might have triggered the speculative euphoria. In this chapter,

we address this point through the discussion, from a statistical mechanics point

of view, of the Efficient Market Hypothesis (EMH). Market efficiency refers to

the fact that prices of securities correctly reflect all the information available to

investors. After a short introduction to the EMH, we will review in section 2.2 a

simple model introduced by Berg et al. [2001]. This will allow us to set up a clear

framework to understand how markets correctly aggregate information scattered
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2.1 Information Efficiency

across different investors into prices. In the subsequent section, we present a gen-

eralization of such model that accounts for the interplay between informed and

non informed traders [Caccioli and Marsili, 2010]. In this context, we will show

that non-informed traders take over as the market becomes efficient. When com-

bined with the literature on heterogeneous agents models [Hommes, 2006; Lux

and Marchesi, 1999], where it is shown that non-informed traders are responsible

for speculative bubbles, our results suggests that market efficiency may indeed

create the conditions for bubbles to be triggered.

2.1 Information Efficiency

The concept of market efficiency goes back to one of the most natural questions

one can ask concerning financial markets, namely that of their predictability. A

possible definition of market efficiency is be given in the following terms [Malkiel,

1992]: ”A market is efficient with respect to an information set if the public reve-

lation of that information would not change the prices of the securities”. In brief,

traders who have some information on the performance of an asset will buy or sell

shares of the corresponding stock in order to make a profit. As a result, prices will

move in order to incorporate this information, thus reducing the profitability of

that piece of information. In equilibrium, when all informed traders are allowed

to invest, prices must be such that no profit can be extracted from the market.

To give a proper definition of market efficiency, one should also specify the set

of information he refers to. Different levels of efficiency, corresponding to differ-

ent information sets taken into account, have been introduced in the literature

according to the following classification (see for example [Bailey, 2005]):

• weak form: the set of information includes all current and past prices for

the assets in the market.

• semi-strong form: the set of information includes all public information

available to investors (e.g. news)

• strong form: the set of information comprises all information available to

investors, including private information.
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2.1 Information Efficiency

An important consequence of the Efficient Market Hypothesis is that the time

evolution of asset prices should be unpredictable, essentially indistinguishable

from a stochastic process like a random walk [Bailey, 2005; Mantegna and Stan-

ley, 2000]. Indeed, if it were possible to predict future price changes an arbitrage

opportunity, namely a safe way to make a profit, would appear. According to the

common belief, such arbitrage opportunities are destroyed as soon as they start

to be exploited, so that efficient arbitrage free markets should be a good approx-

imation of real markets at least for sufficiently long time scales (i.e. much longer

than the typical time scale needed for arbitrage opportunities to be eliminated).

The validity of the Efficient Market Hypothesis has been object of a long debate

since its formulation (for a review see [Bailey, 2005; Lo, 2007]), and no agree-

ment has been achieved in the community so far. However, despite the fact that

market can be inefficient, the efficient market hypothesis may always represent a

useful benchmark, and indeed standard economics models like the Black-Scholes

equation for option pricing are derived assuming market efficiency [Mantegna and

Stanley, 2000].

In the following, we will refer to the strong form of information efficiency, for

which is possible to introduce a clear and simple framework showing how mar-

kets act as information processing devices that aggregate information into prices.

The point we are going to make is related to the relation between information

efficiency and the behavior of investors. Investors can be classified in broad cat-

egories depending on the trading strategies they adopt, and their effect on the

market can be very different [Bailey, 2005; Hommes, 2006]. In this respect, it

is then quite important to understand under which conditions a specific kind of

investors dominate the market. We will consider in the following two classes of

investors:

• fundamentalists: traders who base their forecasts of future prices upon

economics fundamentals (e.g. dividends, interest rates, price to earning

ratio). Fundamentalists basically believe that markets may misprice a se-

curity in the short run, but that the fundamental price, i.e. the correct

price that reflects the underlying reality, will eventually be reached. Profits

can then be made by trading the mispriced security and waiting for the
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2.1 Information Efficiency

market to re-price the security towards its correct value. Fundamentalists

are usually associated with a stabilizing effects. Let us suppose for instance

that the current price of an asset is much lower than the fundamental one.

Fundamentalists will then start buying shares of that stock in order to make

profit, since they know that the correct value of the asset is higher than the

current price. In doing so fundamentalists are increasing the demand for the

asset, whose price will in turn increase becoming closer to the fundamental

one. On the other hand, if the current price of the asset were higher than

the fundamental one, fundamentalists would start selling causing the price

to decrease. The idea is that fundamentalists will keep on buying/selling

until the market price matches the fundamental one. Notice that if the

market is efficient in the strong sense, fundamentalists cannot make any

profit on the basis of their analysis, while in a weakly efficient market they

can still make profit since prices at each time only reflect information about

past prices.

• chartists: traders who base their forecasts upon extrapolation of pat-

terns in past prices, trying to recognize and exploits trends. In some sense

chartists believe past prices contain the relevant information they need to

predict future trends. A very simple trend following rule may be the that of

a linear extrapolation from past prices, so that one should buy if the price of

an asset has raised and sell otherwise. At odds with fundamentalists, trend

followers are usually associated with a destabilizing effect [Minsky, 1992].

Naively, in a market dominated by trend followers, a small up (down) trend

in a stock will cause investors to buy (sell) shares of that stock in such a

way to amplify the trend and eventually cause a bubble.

Research in Heterogeneous Agents Models [Hommes, 2006; Lux and Marchesi,

1999] has provided solid support to the thesis that when trading activity is dom-

inated by non-informed traders (e.g. trend followers), bubbles and instabilities

develop. In the following, we try to establish a connection between information ef-

ficiency and the trading activity of fundamentalists and trend followers, providing

support to the idea that non-informed traders dominate if and only if the market

is sufficiently close to information efficiency. In addition, as markets become
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2.2 Aggregation of Information in a Complex Market

informationally efficient, they develop a marked susceptibility to perturbations

and instabilities.

2.2 Aggregation of Information in a Complex

Market

Berg et al. [2001] introduced an elegant model of a market where agents with

different bits of information trade trying to exploit their private information. In-

teraction between agents is provided through the process of price formation, which

occurs according to the balance between demand and supply. This introduces a

feedback between agents behavior and price movements, that allows information

to be transfered by investors into prices. Under which conditions does the market

become informationally efficient, so that no profit can be extracted by agents on

the basis of their private information? This is the question we are going to answer

in this section, where we introduce the model by Berg et al. [2001] and review its

main features.

2.2.1 Definition of the model

We consider a market where a single asset is traded an infinite number of periods.

The return of the asset has some degree of uncertainty, that we model in the

following manner. We imagine that, at any time, the world can be in any of Ω

states, and the return of the asset Rωt is determined at each period by the draw

of a state of nature from the discrete set ωt ∈ {1 . . .Ω}, according to a probability

distribution πω which we take uniform across states in the following. Agents do

not observe directly the state of nature, in fact they observe a signal associated

to it. A signal is a function from the set of states {1 . . .Ω} to a signal space,

that for simplicity is assumed to be M = {±1}. We denote by kωi the signal

observed by agent i if state ω is realized. We focus on a random realization of

this setup, so that each agent is endowed with a binary vector whose entries are

drawn at random with uniform probability across states, such vector representing

the information structure available to the agent. Returns are taken of the form

Rω = R + R̃ω√
N

, where R̃ω are gaussian variables with zero mean and variance

11



2.2 Aggregation of Information in a Complex Market

s2. According to the signal kωti they receive at time t, agents decide to invest

a monetary amount z
k
ωt
i
i on the asset. Once agents have invested their money,

the price of the asset is computed balancing demand and supply. If we imagine

that at each time there are N available units for the asset, the price at time t is

determined as

Npωt =
N∑
i=1

∑
m=±1

zmi δkωti ,m. (2.2.1)

It is clear at this level that agents interact through the process of price formation

and that the interaction is of a mean field type, all agents interacting by means

of the average quantity pωt . At the end of each period, agents receive an amount

Rωt for each unit of asset they have. If agent i has invested the amount z
k
ωt
i
i , she

holds z
k
ωt
i
i /pωt units of asset, so that her expected payoff is given by

ui(zi) =
1

Ω

∑
ω

∑
m

δkωti ,mz
m
i

(
Rωt

pωt
− 1

)
. (2.2.2)

Agents aim at maximizing such expected utility, so that the problem to solve is

that of finding the optimal allocations {z±i } i = 1, . . . , N . Such problem can be

solved with tools borrowed from the statistical mechanics of disordered systems

in the limit of large markets, where the number of agents N as well as the num-

ber of states Ω is very large N,Ω→∞, while their ratio n = N/Ω is kept fixed.

In particular we are interested in understanding if the optimal allocations corre-

spond, in some regime, to an efficient market, where information about returns

in fully incorporated into prices, namely pω = Rω ∀ω.

2.2.2 Information structures and information efficiency

Before proceeding to the solution of the optimal allocation problem, we make

a little digression in order to discuss the relation between agents’ information

structure and information efficiency. This will be a way to clarify that we refer

here to the strong form of market efficiency. From the information theoretic

point of view, the information content of the signal kωi can be quantified in one

bit. Indeed, the entropy of the unconditional distribution over states, which is

log Ω, is reduced to log(Ω/2) by the knowledge of the signal kωi . Hence, the

12



2.2 Aggregation of Information in a Complex Market

information gain is log 2, i.e. one bit. This information gain allows agent i to

discriminate between two different conditional distributions of returns, whose

means Eπ[Rω|kωi = ±1] are separated by an amount of order 1/N . Indeed, for

any two states ω and ω′, by assumption Rω−Rω′ ∼ 1/
√
N . Now take the average

over the states ω and ω′ such that kωi = +1 and kω
′

i = −1 respectively. Given

that the expected value of Rω and Rω′ are the same, one finds that the average

of the difference is of the order of the standard deviation of Rω, times the square

root of the number Ω/2 of samples, i.e.

|Eπ[Rω|kωi = +1]− Eπ[Rω|kωi = −1]| ∼ s/
√
NΩ/2 ∼ 1/N.

This difference is of the same order of the contribution of agents to the price pω,

hence it allows to differentiate meaningfully their investments zmi , depending on

the signal they receive.

Let us now discuss market efficiency. A market is efficient with respect to an

information set if the public revelation of that information would not change the

prices of the securities Fama [1970]. This means that the best prediction of future

returns (or prices), conditional on the information set, are present prices. Strong

efficiency refers to the case where the information set includes the information

available to any of the participants in the market, including private information.

In our case, an agent who knew simultaneously the signals kωi of all agents

would be able to know the state ω, with probability one, for Ω ∝ N and N →∞.

Indeed let N= be the number of pair of states ω and ω′ which cannot be

distinguished on the basis of the knowledge of all signals. For such pair of states,

kωi = kω
′

i must hold for all i, because otherwise there would be a signal kωi 6= kω
′

i

which allows to distinguish ω from ω′. The probability P{N= > 0} that there are

at least two states ω and ω′ with different returns Rω 6= Rω′ , but which cannot be

distinguished given the signals, is upper bounded by the expected value of N=.

The latter can be easily evaluated, since for each pair of states the probability of

them not being distinguishable is P{kωi = kω
′

i ,∀i} = 2−N . The number of pairs

is Ω(Ω− 1)/2 so that

P{N= > 0} ≤ E[N=] = Ω(Ω− 1)2−(N+1),

13



2.2 Aggregation of Information in a Complex Market

and this vanishes for N →∞ in the case Ω ∝ N we consider here. We conclude

that, if all signals were revealed, agents would be able to know which state ω has

materialized. In this case, prices would not change only if pω = Rω for all states

ω, which would be equivalent to the strong form of information efficiency Malkiel

[1992].

2.2.3 Competitive equilibria

We now come back to the optimal allocation problem, namely the problem of

finding the set of {z±i } that maximizes investors’ utility. The solution can be

achieved both in a static and in a dynamic setting. First of all, it is important

to define the type of equilibria we are looking for. We define a competitive

equilibrium for the system described above as a set {z±i } such that

• for every agent i and signal m

zmi ∈ argmaxx≥0Eπ

[
xδkωi ,m

(
Rω

pω
− 1

)]
(2.2.3)

• the market clears (i.e. aggregate supply matches aggregate demand) Npω =∑N
i=1

∑
m=±1 z

m
i δkωi ,m.

A competitive equilibrium is then a solution of the optimal allocation problems,

optimal in the sense that each agents, in correspondence to each signal, invests

an amount of money that maximizes her utility, given the amount invested by

other agents. Notice that in the competitive equilibrium setting, agents ignore

the effect they have on the price, which they take as given. Notice also that if

the expected return for a given signal is positive, then agents invest an infinite

amount when receiving that signal. Conversely, they do not invest if the expected

return is negative.

2.2.4 Learning to trade

An alternative way to solve the optimal allocation problem, is through a learning

dynamics with boundedly rational agents. In particular, each agent i > 0 has

a propensity to invest Um
i (t) for each of the signals m = ±1. Her investment
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2.2 Aggregation of Information in a Complex Market

zmi = Φ(Um
i ) at time t is an increasing function of Um

i (t) (Φ : R → R+) with

Φ(x)→ 0 if x→ −∞ and Φ(x)→∞ if x→∞. After each period agents update

Um
i (t) according to the marginal success of the investment:

Um
i (t+ 1) = Um

i (t) + Γ
∂uωti
∂zmi

, i = 1, . . . , N (2.2.4)

where uωti =
∑

m δkωti ,mz
m
i

(
Rωt

pωt
− 1
)

, ωt is the state at time t and pωt is the

realized price at time t. The idea in Eq. (2.2.4) is that if for a given signal m

agent i observes returns Rω which are higher than prices, she will increase her

propensity Um
i to invest under that signal. Also in this case agents do not take

into account their impact on the price, so that the partial derivative is taken at

fixed pωt .

2.2.5 A Hamiltonian for the system

The stationary properties of the system can be also characterize in terms of the

minima of the following Hamiltonian function:

H =
1

2

Ω∑
ω=1

(Rω − pω)2 , (2.2.5)

where pω = 1
N

∑N
i=1

∑
m=±1 z

m
i δkωi ,m. In order to show that the minima of this

Hamiltonian correspond to the competitive equilibria of the market we can pro-

ceed in the following way. Let us call{zmi ∗} the set of variables that minimizes

(2.2.15).

• If zmi
∗ = 0 then it must hold

∂H

∂zmi

∣∣∣∣
zmi =0

= ΩEπ[(pω −Rω)δkωi ,m] > 0. (2.2.6)

If on average pω > Rω when signal m is observed then it is not convenient

for agents to buy shares of the stock, so zmi is set to zero.

• If zmi
∗ = s∗i then it must hold

∂H

∂zmi

∣∣∣∣
zmi =s∗

= 0, (2.2.7)
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2.2 Aggregation of Information in a Complex Market

which is consistent with the fact that if Eπ [Rω − pω] = 0 agents buy a finite

amount of the stock.

The minima of the Hamiltonian correspond then to the competitive equilibria

of the market, but what about the stationary solutions of the learning dynam-

ics? The following argument may help in understanding that indeed the learning

dynamics converges to the competitive equilibria. Taking the derivative of the

Hamiltonian with respect to zmi , we see that

∂H

∂zmi
= −ΩEπ [Um

i (t+ 1)− Um
i (t)] . (2.2.8)

If we now consider a continuous time limit for equation (2.2.4), and compute the

time derivative of the Hamiltonian we obtain that

Ḣ =
∑
i,m

∂H

∂zmi
żmi = −Ω

∑
i,m

Eω

[(
U̇m
i

)2

Φ′ (Um
i )

]
< 0, (2.2.9)

given that Φ(Um
i ) is an increasing function of its argument. This is telling us

that the Hamiltonian decreases along the trajectories generated by the learning

dynamics, so that in the long time regime such dynamics converges to the minima

of H, which in turn correspond to the equilibria of the competitive market.

Some comments are needed in order to clarify how we compute the minima

of H. The sought result can be achieved through the computation of the zero

temperature limit of the free energy of the system:

lim
β→∞

lim
N→∞

FN(β) = lim
β→∞

lim
N→∞

1

Nβ
logZN(β), (2.2.10)

where β is the inverse temperature and Z the partition function. However, given

the presence of randomness in the system (returns Rω and information vectors

{kωi } are quenched random variables), in principle each observable may depend

on the specific realizations of disorder, including the free energy of the system:

FN(β) → FN(β|{Rωkωi }), where we have denoted by FN(β|{Rωkωi }) the free

energy for a given realization of the disorder. In principle the above computation

should then be done given a realization of the disorder. Nevertheless, in the

thermodynamic limit, we expect that the value of quantities which are extensive
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2.2 Aggregation of Information in a Complex Market

like the energy or the free energy do not depend on the specific realization of the

quenched variables: 1

lim
N→∞

FN(β|{Rωkωi }) = F∞(β). (2.2.11)

Quantities for which this is true are called self-averaging. It is now clear that

the average over disorder of a self-averaging quantity will be equivalent to its

disorder-independent value [Castellani and Cavagna, 2005; Mezard et al., 1987]:

〈F (β|{Rωkωi })〉 = F∞(β), (2.2.12)

where we denoted by 〈· · · 〉 averages over the disorder. In order to compute the

typical properties of the system one needs then to compute

lim
β→∞

lim
N→∞

1

Nβ
〈logZN(β|{Rωkωi })〉. (2.2.13)

This can be done resorting to the so called replica trick, namely exploiting the

identity

logZ = lim
m→0

Zm − 1

m
(2.2.14)

and computing the partition function for a system made of m replicas of the orig-

inal system. A section in the appendix will be devoted to a detailed calculation

for the system under study. In the following we just focus on the results.

2.2.6 Transition to efficient market

As we have seen, both the study of competitive equilibria and the asymptotic

properties of the learning dynamics turn into the characterization of the minima

of the Hamiltonian function

H =
1

2

Ω∑
ω=1

(Rω − pω)2 , pω =
1

N

N∑
i=1

∑
m=±1

zmi δkωi ,m. (2.2.15)

1Indeed in the large N limit we can imagine to divide the system into a large number of
sub-systems much smaller than the original systems but still macroscopic. At this point we can
express the total energy of the system as the sum of the energies of the sub-systems. A law of
large numbers can then be invoked to show that the average properties of the system do not
depend on the realizations of disorder.
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Figure 2.1: Distance |p − R| =
√∑Ω

ω=1 (Rω − pω,k0)2 of prices from returns in competitive
equilibrium in absence of trend followers and zero information cost.

The function H represents the squared distance of prices from returns, and is

therefore a measure of market efficiency. The main result by Berg et al. [2001]

is that, as more and more different types of informed agents enter the market,

prices approach returns. In particular they show that there is a critical value nc

of informed traders beyond which H = 0, which implies that prices equal returns

(pω = Rω) for each state ω = 1, . . . ,Ω. Figure 2.1 shows the transition towards an

efficient market upon increasing the number of agents with different information.

The solid line refers to the analytical computation of the competitive equilibria

achieved through the minimization of the disordered Hamiltonian (3.2.15), while

dots refer to simulations made with the learning scheme. In passing, we can also

see from the figure that the two approaches indeed lead to the same solutions.

The region H = 0 is also characterized by a divergent susceptibility, which means

that allocations {zmi } have a marked dependence on structural parameters. The

susceptibility χ relates a small uncertainty in a structural parameter, such as e.g.

Rω, to the uncertainty in allocations δzmi ' χδRω. A divergent susceptibility

χ→∞ signals the fact that equilibria with different allocations are possible even

for the same structural parameters, i.e. that the minimum of Eq. (2.2.15) is not
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2.3 Market Efficiency, Informed and Non-Informed Traders

unique.

The model by Berg et al. [2001] is quite important, because it shows in a clear

framework how markets manage to aggregate information through the mechanism

of price formation. Moreover, it shows at same time that the attempt by traders to

exploit their information ends up in destroing the profitability of that information.

Indeed if we look at the expected payoff of agents

ui(zi) =
1

Ω

∑
ω

∑
m

δkωi ,mz
m
i

(
Rω

pω
− 1

)
we see that agents’ profits are reduced as market become efficient, i.e. as pω → Rω.

It is important to stress that information efficiency appears here as an emergent

property, namely as the result of the interaction between agents, rather than be-

ing postulated from the beginning as often done in economics modeling.

The setting outlined above is our starting point for the next section, where we

try to elucidate the relation between information efficiency and different trading

strategies based on private or public information. This is indeed a very interesting

topic, as it was realized long ago by Grossman and Stiglitz [1980]. Paradoxically,

when markets are really informationally efficient, traders have no incentive to

gather private information, because prices already convey all possible informa-

tion. Hence traders’ behavior doesn’t transfer anymore information into prices,

implying that efficient markets cannot be achieved in the long run. In the next

section, we basically provide a statistical mechanics framework for the Grossman-

Stiglitz paradox.

2.3 Market Efficiency, Informed and Non-Informed

Traders

In this section we are going to consider a generalization of the model by Berg

et al. [2001] presented above. In particular we will introduce non-informed traders

who invest according to public available information and we will introduce an

information cost for fundamentalists: traders that invest according to a private
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information structure have to pay a cost in order to gather their information. Non-

informed traders, on the other hand, will mimic in our framework the behavior

of chartists, e.g. trend followers.

2.3.1 The model

As before we consider a market where a single asset is being traded at discrete

times t = 0, 1, 2, . . .. Let there be N informed traders (fundamentalists) and

N ′ uninformed traders (chartists) operating in the market. For simplicity, we

assume that all uninformed traders adopt the same trading strategy, so that the

description of non-informed traders can be given in terms of a single representative

agent. We thus set N ′ = 1 and we shall refer to the chartist representative agent

as agent i = 01. In the market there are N units of asset available at each time

and at the end of each period the asset pays a return. The return depends only

on the state of nature in that period, ω = 1, . . . ,Ω, and is denoted by Rω. The

state of nature is determined, in each period, independently according to the

uniform distribution on the integers 1, . . . ,Ω. Traders do not observe the state

directly. Informed traders (i = 1, . . . , N) receive a signal on the state according to

some fixed private information structure, which is determined at the initial time

and remains fixed. As before, the signal space is assumed to be M = {−,+}
and we denote by kωi ∈ M the signal observed by trader i in state ω. Trader

i = 0, instead, does not receive any signal on the state ω, but she observes a

public variable k0 ∈ {−1,+1}, which is drawn independently at random in each

period2.

Like in the previous section, we focus on a random realization of this setup,

where the value of the return Rω in state ω is drawn at random before the first

period, and does not change afterwards. Returns thus only change because the

state of nature changes. We then take Rω Gaussian with mean R̄ and variance

s2/N . Likewise, the information structure is determined by setting kωi = +1 or

−1 with equal probability, independently across traders i and states ω. At the

1Similarly, each one of the informed agents labeled as i = 1, . . . , N is in fact a representative
agent for all the agents acting according to a specific information structure.

2The case where k0 depends on past market data (e.g. price differences) introduces no
qualitative difference.
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beginning of each period, a state ω and a public information k0 are drawn, and

private information kωi is revealed to informed agents (i > 0). All traders decide

to invest a monetary amount zmi in the asset: here m ∈ M , for i > 0, takes the

value of the signals kωi which agent i > 0 receives, whereas it equals k0 for i = 0.

The price of the asset pω,k0 is then derived from the market clearing condition

Npω,k0 =
N∑
i=1

∑
m=±1

zmi δkωi ,m +
∑
m=±1

zm0 δk0,m, (2.3.16)

which is the generalization of equation (2.2.1). Agents do not know the price at

which they will buy the asset when they decide their investment zmi . The price

depends on the state ω and on k0 because the amount invested by each agent

depends on the signal they receive, which depends on ω Pliska [1997]; Shapley

and Shubik [1977]. The expected payoff of agents is

uk0
i (zi) =

1

Ω

∑
ω

∑
m

δkωi ,mz
m
i

(
Rω

pω,k0
− 1

)
. (2.3.17)

How will agents choose their investments? As before, one can consider either

competitive equilibria or take a dynamical approach where agents are assumed

to learn over time how to invest optimally.

Competitive equilibria: agents aim at maximizing their expected utility, but

they consider the price of the stock as given, thus neglecting their impact

in the market. A competitive equilibrium for this model is given by a set

of variables {z±i } such that

• for every agent i and signal m

zmi ∈ argmaxx≥0Eπ

[
x

(
δkωi ,m

(
Rω

pω
− 1

)
− ε1− δi,0

N

)]
. (2.3.18)

At odds with Berg et al. [2001], we also take into account ,through the

term proportional to ε, that fundamentalists face a cost for the private

information they gather. More precisely, investment is considered at-

tractive only if the returns under signal m exceed prices by more than

ε/N . No cost is instead charged on agent i = 0 , since her trading only

relies on public available information.
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• the market clearing equation (2.3.16) holds.

Learning dynamics: As before, each informed agent i > 0 has a propensity to

invest Um
i (t) for each of the signalsm = ±1 and her investment zmi = Φ(Um

i )

at time t is an increasing function of Um
i (t) satisfying Φ(x)→ 0 if x→ −∞

and Φ(x)→∞ if x→∞. At the end of each period, agents update Um
i (t)

as

Um
i (t+ 1) = Um

i (t) +
(
Rωt − pωt,k0

t

)
δkωti ,m −

ε

N
δkωti ,m, i = 1, . . . , N.

(2.3.19)

Similarly, the non-informed agent updates her propensity to trade according

to

Um
0 (t+ 1) = Um

0 (t) +
(
Rωt − pωt,k0

t

)
δk0,m (2.3.20)

and invests an amount zm0 = Φ(Um
0 ), depending on the value m = k0 of

public information at time t.

Hamiltonian: These two different choices are going to bring to the same equi-

libria, that are again given by the minimization of a function, which takes

the form

Hε =
1

4Ω

Ω∑
ω=1

∑
k0=±1

[
Rω − pω,k0

]2
+

ε

2N2

N∑
i=1

∑
m=±1

zmi , (2.3.21)

where pω,k0 is given in Eq. (2.3.16) in terms of zmi , i = 0, . . . , N , m = ±1.

Exactly as before, it is possible to prove on one side that the condition for

the minimum of the Hamiltonian is equivalent to the condition that gives

competitive equilibria. On the other side, it is possible to show that the

learning dynamics converges in the stationary regime towards the minima

of Hε.

2.3.2 Efficiency and Stability

The model we just described is a generalization of the one introduced by Berg

et al. [2001], which can be recovered in the limit where no trend followers are

allowed to trade and ε = 0. What happens when we introduce chartists (z0 > 0)
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Figure 2.2: Top panel: distance |p−R| =
√∑Ω

ω=1Ek0 [Rω − pω,k0 ]2 of prices from returns in
competitive equilibrium. The full line represents the analytical solution for the case s = R = 1
and ε = 0.1, points refer to numerical simulations of systems with Ω = 32, s = R = 1 and
ε = 0.1. Bottom panel: monetary amount invested by the trend follower z0 for the same values
of the parameters.
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Figure 2.3: Measure of market efficiency as a function of information cost.

and information costs (ε > 0)? Some simple heuristic arguments can be useful

in order to understand the basic behaviour of the system. Let us consider the

Hamiltonian (2.3.21). In the case of small ε and small n = N/Ω, the first term in

Eq. (2.3.21) dominates the second and the minimum is expected to be close to

that without chartists. When n increases, however, the value of H (i.e. the first

term in equation (2.3.21)) decreases making the two terms comparable. When

this happens, i.e. when n ≈ nc and H ≈ 0, then it starts to become possible to

achieve a small value of Hε by decreasing the size of the second term increasing,

at the same time, zm0 in order to keep average prices of the same order of average

returns. Hence we expect zm0 to be large and of order N when the market becomes

close to being information-efficient. The results of numerical simulations as well

as the analytical solution for competitive market equilibrium (see Appendix A.1

for more details), shown in Fig. 2.2, confirm this picture. Upon increasing the

number of informed agents, the system approaches the limit of efficient market.

Correspondingly, the share of trades due to uninformed agent starts raising only

once information has been aggregated by informed traders. It has to be noticed

that the introduction of the information cost ε makes sure that a perfect efficiency

of the market is recovered only at ε = 0 (see Figure 2.3). It is then instructive
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Figure 2.4: Top panel: monetary amount invested by the trend follower. Bottom panel:
monetary amount invested by a fundamentalist in presence (blue points) or absence (green
diamonds) of the trend follower. Points refer to simulations of systems with Ω = 32, n = 4 and
s = R = 1. Full lines represent the corresponding analytical solution.
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Figure 2.5: Susceptibility as a function of market complexity for different information costs.
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Figure 2.6: Susceptibility as a function of information cost.
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2.3 Market Efficiency, Informed and Non-Informed Traders

to look at the behaviour of chartists as a function of ε1. Figure 2.4 shows sig-

natures of a phase transition occurring at ε = 0. Indeed, for ε < 0 chartists

barely operate in the market, while they start trading as soon as ε > 0. As we

mentioned in section (2.1), a market dominated by trend followers is a market

where bubble phenomena may occur. Our results, once combined with the in-

sights coming from Heterogeneous Agents Models [Hommes, 2006], suggest that

market efficiency, usually considered a necessary condition for an ideal market,

may in fact be a necessary condition for bubble phenomena to be triggered. In

order to further explore the relation between information efficiency and market

stability, it is instructive to look at the behavior of the susceptibility of informed

traders, that quantifies their response to small changes in the constitutive param-

eters of the model. As shown in Figure 2.5, the susceptibility as a function of n is

characterised by a peak in correspondence to the crossover towards an (almost)

efficient market. The information cost ε plays here a nontrivial role, as evidenced

by the behaviour of the susceptibility as the information cost ε is decreased. In

this situation the peak in the susceptibility becomes more pronounced. When

information costs vanish (ε→ 0) the susceptibility diverges in the whole efficient

phase, i.e. for n large enough (n ≥ nc). In Figure 2.6 we show the behavior

of the susceptibility as a function of the information cost in the efficient phase.

When there are no information costs (ε = 0) the susceptibility is strictly infinite

in all the region of phase space where the market is efficient (n ≥ nc). It is in-

teresting to make some considerations, in this respect, about possible extensions

of this framework where information costs are endogenous. It may be reasonable

to assume that information should be cheaper and cheaper the more the market

is close to information efficiency. Indeed, the more prices reflect private informa-

tion, the less incentives agents have to gather information. This suggests that,

with endogenous information costs, the market should approach the critical line

ε = 0+ with n ≥ nc, where the behavior of informed traders is characterized by

infinite susceptibility. In other words, the path towards an efficient market may

be a path towards an unstable market.

1Notice that the interpretation of ε as information cost is meaningful only for non negative
values of ε. However, since 2.3.21 is well defined for all real values of ε, we allow the parameter
to take negative values to better characterize the properties of the Hamiltonian.
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2.4 Summary and Perspectives

We have shown that, in a simple asset market model, non-informed traders con-

tribute a non-negligible fraction of the trading activity only when the market be-

comes informationally efficient. In the simple setting studied here, non-informed

traders do not have a destabilizing effect on the market as in the models of

Hommes [2006]. At the same time, when non-informed traders dominate, their

activity does not spoil information efficiency. This is due to the fact that the mar-

ket discussed here is basically the repetition over time of the same single period

framework. Nevertheless, we can see from our analysis that information efficiency

is associated with a phase transition in the statistical mechanics sense, character-

ized by strong fluctuations and sharp discontinuities in the optimal allocations.

This suggests that market efficiency carries in fact some seeds of instability. More-

over, when combined with the insights of the literature on Heterogeneous Agent

Models [Hommes, 2006], the very fact that non-informed traders start trading

massively when market efficiency is approached suggests in fact that information

efficiency can trigger the occurrence of bubbles and instabilities. This issue has

also been recently addressed by Goldbaum [2006], however the analysis was lim-

ited to a single type of fundamentalists (N = 1 in our case). A stronger case

would require first to extend the framework of Hommes [2006] to the case of

fundamentalists with many different types of private information, recovering a

picture for information efficiency similar to that provided by Berg et al. [2001].

Then one should investigate the effect of introducing non-informed traders, i.e.

genuine trend-followers. Besides understanding whether information efficiency is

also in that case a necessary condition for non-informed traders to dominate, one

could also address the interesting question of the effect of chartists on informa-

tion efficiency. Ultimately, the discussion of these results suggests that excessive

insistence on information efficiency in market regulation policies , as e.g. in the

debate on the Tobin tax [Haq et al., 1996], could have the unintended consequence

of propelling financial bubbles, such as those which have plagued international

financial markets in the recent decades.
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Chapter 3

Proliferation of derivatives and

market stability

One of the most debated questions in relation to the recent economic crisis has

certainly been that of the role of derivatives. A derivative is a financial contract

whose value is linked to the future price movements of an underlying asset. Exam-

ples of derivatives are futures contracts, options, and mortgage-backed securities.

Financial markets have increased tremendously in size and complexity in the last

decade [Fund, 2008a,b] and the volume of exchanged derivatives has been often

much larger that the corresponding underlying market. Notwithstanding the wor-

rying warning by Warren Buffet ”In my view, derivatives are financial weapons of

mass destruction, carrying dangers that, while now latent, are potentially lethal”

[Buffet, 2002], the increase in the repertoire of available financial instruments that

we witnessed in the past years has been welcomed by most practitioners. Indeed,

the growth in financial complexity as well as the unfettered access to trading were

expected [Merton and Bodie, 2005] to drive the market closer to the theoretical

limit of arbitrage free, complete market described by the Arbitrage Pricing The-

ory (APT) [Pliska, 1997], the theory at the basis of financial engineering.

APT makes it possible to give a present monetary value to future risks, and hence

to price complex derivative contracts. In order to do this, APT relies on idealiza-

tions which allow one to neglect completely the feedback of trading on market’s

dynamics. These concepts are very powerful, and APT has been quite successful

in stable market conditions. In addition, the proliferation of financial instruments
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3.1 Asset Pricing

provides even further instrument for hedging and pricing other derivatives. So

the proliferation of financial instruments produces precisely that arbitrage-free,

complete market which is described by APT. Paradoxically, the recent economic

crisis occurred in the period of greater expansion of financial markets, when real

markets were closer as never before to the perfect world of APT. In the following,

we will try to solve this apparent paradox by means of a description of financial

markets in terms of an interacting system.

After a short introduction to APT, we introduce a model of a simple market where

derivatives on an underlying market are traded. We will account in particular

for a feedback between the derivative market and the underlying one. Indeed,

the trading in derivatives generates demand in the underlying by banks trying to

hedge risk. We will show that uncontrolled proliferation of derivatives drives the

market towards the limit of ideal market considered in APT. We will also show,

however, that as the market becomes complete it also approaches a critical line

where a phase transition in the statistical mechanics sense occurs, characterized

by large fluctuations and instabilities.

3.1 Asset Pricing

In this section we try to introduce the basic concepts of Arbitrage Pricing Theory

by means of a simple example. Let us consider a financial market where a risk-

less asset and a risky asset are issued. We focus on a single period framework, so

that there are two relevant times t = 0 (today) and t = 1 (tomorrow). In order

to model the uncertainty about the future, we say that the market at t = 1 can

be in one of two states ω ∈ 1, 2, according to a probability distribution πω. The

risk-less asset cost 1 today and pays B(ω) = 1 + r tomorrow , while the risky

asset costs 1 today and pays S(1) = 1 + u if ω = 1 or S(2) = 1 − d if ω = 2.

Imagine now that a contract C is introduced that pays Cω at t = 1. The question

we want to answer is that of determining the correct price of this contract at time

0. In order to do this, we can try to replicate the payoff of C by means of a linear

combination of the two assets B and S, namely we write

C = αBB + αSS (3.1.1)
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3.1 Asset Pricing

and we look for coefficients that satisfy

C(1) = αB(1 + r) + αS(1 + u) = C1 (3.1.2)

C(2) = αB(1 + r) + αS(1− d) = C2. (3.1.3)

The solution of these equations leads to

αB =
C2(1 + u)− C1(1− d)

(1 + r)(u+ d)
(3.1.4)

αS =
C1 − C2

u+ d
. (3.1.5)

Now that we have a portfolio that reproduces the payoffs of assets S at t = 1, it

is reasonable to set the price of the contract C at t = 0 equal to the one of the

replicating portfolio, namely

pC = αB + αS =
1

1 + r

[
r + d

u+ d
C1 +

u− r
u+ d

C2

]
. (3.1.6)

Notice that this can be written as

pC =
1

1 + r
Eq[C

ω], (3.1.7)

where we have defined the probability distribution qω as q1 = r+d
u+d

, q2 = u−r
u+d

. The

above result tells us that the price of the asset C is the present discounted value

of its expected future payoff, and is one of the fundamentals results of arbitrage

pricing theory. Notice, in passing, that the computed price does not depend on

the probability over states πω.

The probability measure q introduced above is usually called equivalent mar-

tingale measure or risk neutral measure. What is the meaning of such a

measure? In a market where both assets S and B are traded, agents are typically

indifferent with respect to the two assets. This means that the expected payoff of

the two should be the same. The equivalent martingale measure is the probability

distribution which implements this statement: Eq[B] = Eq[S] = 1 + r. The risk

neutral measure is then the probability distribution used by investors in order to

model the uncertainty of the market. Notice that for the above probability to be
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3.1 Asset Pricing

meaningful some conditions must be satisfied, notably r > −d and u > r 1. Let

us comment on the meaning of such conditions. Let us suppose for instance that

u > r, but also −d > r: in that case asset S would outperform asset B for both

states ω = 1, 2. In an analogous (but opposite) way, if −d < r but u < r S would

over-perform B. In such situations, an investor who goes short2 on the dominated

asset and buys shares of the dominating one would make a profit without bear-

ing any risks, exploiting what is known as an arbitrage opportunity. Notice

that the presence of arbitrage opportunities affects equation (3.1.6) through the

presence of negative weights, so that it is no more possible to define an equivalent

martingale measure in presence of arbitrage opportunities. This is basically the

content of the arbitrage pricing theorem, which states that, in a market where

there are no arbitrage opportunities, there exists an equivalent martingale mea-

sure.

Notice that an essential element that allowed us to compute a unique price for

the contract C was that the number of assets was equal to the number of states.

Let us try to generalize the above ideas to the case with two assets (B and S) but

three states (ω ∈ {1, 2, 3}). Let us look for an equivalent martingale measure qω,

i.e. for a risk measure such that Eq[B] = Eq[S] = 1+r. In this case, one has then

to satisfy a system of two equations by fixing the value of the three variables q1,

q2 and q3. Different risk neutral measures can thus be defined, so that investors

may not agree in assigning a price to the contract. In this situation, market are

usually referred to as incomplete markets, in contrast to the case of complete

markets, where the number of independent assets is equal to the number of

states.

1Notice that these conditions also imply u+ d > 0, since u > r > −d→ u+ d > r + d > 0.
An alternative set of conditions would be r < −d and u < r, that would in turn imply u+d < 0,
preserving the meaning of probabilities for the coefficients of equation (3.1.6).

2short selling is the practice of selling assets that have been borrowed from a third party
with the intention of buying identical assets back at a later date to return to the lender. The
short seller hopes to profit from a decline in the price of the assets between the sale and the
repurchase, as the seller will pay less to buy the assets than the seller received on selling them.
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3.1.1 The world of asset pricing

The considerations of the previous section can be generalized, in a more system-

atic way, in the so called Arbitrage Pricing Theory [Pliska, 1997]. A more general

framework can be described as follows. There are only two times t = 0 (today)

and 1 (tomorrow). The world at t = 1 can be in any of Ω states and πω is the

probability that state ω = 1, . . . ,Ω occurs. We consider a market where one

risk-less asset (bond) and K risky assets are traded. The risk-less asset costs one

today and pays one tomorrow, in all states1. The price for the k-th risky assets

is one at t = 0 and is 1 + rωk at t = 1 if state ω materializes, where k = 1, . . . , K.

Prices of assets are assumed given at the outset. Portfolios of assets can be built

in order to transfer wealth from one state to the other. A portfolio ~θ is a linear

combination with weights θk, k = 0, . . . , K on the riskless and risky assets. The

value of the portfolio at t = 0 is

Vθ(t = 0) =
K∑
k=0

θk,

which is the price the investor has to pay to buy ~θ at t = 0. The return of the

portfolio, i.e. the difference between its value at t = 1 and at t = 0, is given by

rωθ ≡
K∑
k=1

θkr
ω
k .

The content of the theory relies on the following steps

No-arbitrage It is assumed that returns rωk are such that there is no portfolio
~θ whose return rωθ ≥ 0 is non-negative for all ω and strictly positive on at

least one state ω 2.

Equivalent martingale measure The absence of arbitrages implies the exis-

tence of an Equivalent Martingale Measure (EMM) qω which satisfies

Eq[rk] ≡
∑
ω

qωrωk = 0, ∀k = 1, . . . , K.

1This is equivalent to considering, for the sake of simplicity, discounted prices, namely r = 0
in the language of the previous section, right from the beginning).

2Namely there is no way to make a profit without bearing any risks.
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Let us try to give some intuition in order to understand the important

relation between the absence of arbitrage opportunities and the existence

of risk neutral measures.. Let us consider the simplest case of a market

where there is just one risky asset. An arbitrage opportunity in this case

would appear if, for instance, rω1 ≥= 0 ∀ω > 1 and r1
1 > 0. It is clear that,

in this situation, it is not possible to find any set of positive values for the

Ω variables qω satisfying
∑

ω q
ωrω1 = 0, so that no equivalent martingale

measure exists if arbitrage opportunities arise.

Valuation of contingent claims A contingent claim f is a contract between

a buyer and a seller where the seller commits to pay an amount fω to the

buyer dependent on the state ω (the contract C that we considered in the

previous section was a contingent claim). If the seller can build a portfolio

θ of securities such that fω = f0 +rωθ , i.e. which replicates f , then the seller

can buy the portfolio and ensure that she can meet her commitment. The

value of the replicating portfolio provides then a price for the contract f ,

which can be expressed in the form

Vf = Eq[f ] =
∑
ω

qωfω

Claims f for which this construction is possible are called marketable. If

this is not possible, the parties may differ in their valuation of f because

of their different perception of risk. Put differently, there may be many

different EMM’s consistent with the absence of arbitrage, each giving a

different valuation of the contract f .

Complete markets If there are at least Ω linear independent vectors among the

vectors (r1
k, . . . , r

Ω
k ), k = 1, . . . , K and (1, . . . , 1), then any possible claim is

marketable, which means that it can be priced. In such a case the market

is called complete and the risk neutral measure is unique.

Summarizing, the logic of financial engineering is: assuming that markets

are arbitrage free, the price of any contingent claim, no matter how exotic, can

be computed. This involves some consideration of risk, as long as markets are

incomplete. But if one can assumes that markets are complete, then prices can be
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computed in a manner which is completely independent of risk. Note indeed that

the probability distribution over πω plays no role at all in the above construction.

It is also worth to remark that asset returns rωk do not depend on the type of

portfolios which are traded in the market. A complete, arbitrage free market is

the best of all possible worlds and one is tempted to argue that this is indeed a

good approximation of real financial markets when these markets expand in both

complexity and volumes.

3.2 A picture of the market as an interacting

system

Why should markets be arbitrage free? According to the standard folklore, this

is because otherwise ”everybody would ’jump in’ [...] affecting the prices of the

security” Pliska [1997]. If an arbitrage opportunity appears, many investors will

indeed try to exploit it in order to make profit. As a result, prices of securities will

move in such a way as to eliminate that arbitrage opportunity. As we already said,

within the context of APT prices of risky assets are fixed at the outset. However,

the very fact that those assets are traded implies that some information has

been aggregated into their prices [Bouchaud et al., 2008]. Moreover, trading in

derivative contracts implies a trading activity in the underlying market by issuers

of such contracts, who need to meet their commitments. When the number of

traders and the volume of traded assets are very large, usually such impact on

the price is neglected. In the following we want however to account for this

(microscopic) feedback between underlying and derivative markets, in order to

see if such interactions may become relevant in some regimes. Let us then assume

that prices are affected not only when ”everybody jumps in” but anytime someone

trades, even though for individual trades the effect is very small. We will consider

a market where some assets are traded, and we will account for the presence

of a creative financial industry that develops derivative contracts based on the

underlying assets. In this picture, derivatives will simply be contracts which

deliver a particular amount of assets in a given state. In the simplified picture of

the market we shall discuss below, prices depend on the balance between demand
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and supply: if demand is higher than supply return is positive, otherwise it is

negative. Demand comes from either an exogenous state contingent process or is

generated from the derivative market in order to match contracts. Even if markets

are severely incomplete, financial institutions (which we shall call banks for short

in what follows) will match the demand for a particular derivative contract if that

turns out to be profitable, i.e. if the revenue they extract from it exceeds a risk

premium. We will be interested in characterizing the behavior of the market as the

number of derivatives (financial complexity) increases. Indeed one should expect

that, when financial complexity is large enough, the market becomes complete

because each claim can be replicated by a portfolio of bond and derivatives. So,

the proliferation of financial instruments leads finally to the efficient, arbitrage-

free, complete market described by APT. However, we will show that the road

to such ideal markets can be plagued by singularities which arise upon increasing

financial complexity.

3.2.1 A stylized model

We consider the one period framework described above, and we denote by πω be

the probability that state ω = 1, . . . ,Ω materializes. For simplicity, we imagine

there is a single risky asset1 and a risk-less asset. We shall implicitly take dis-

counted prices, so we set the return of the risk-less security to zero. The price of

the risky asset is 1 at t = 0 and 1 + rω, in state ω. However, rather than defining

at the outset the return of the asset in each state, we assume it is fixed by the

law of demand and supply. In the market we consider, banks develop and issue

financial instruments (derivative contracts). In this simplified world, a financial

instrument is a pair (c, aω) where c is the cost payed to the bank at t = 0 by the

investor and aω is the amount of risky asset it delivers in state ω at t = 1. We

imagine there is a demand s0 for each of N possible financial instruments (ci, a
ω
i ),

i = 1, . . . , N . The return of the asset at t = 1 in each state ω is given by

rω = dω0 +
N∑
i=1

sia
ω
i (3.2.8)

1Generalization to more assets is straightforward.
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where dω0 is assumed to arise from investors’ excess demand whereas the second

term is generated by banks hedging derivative contracts, si being the supply of

instrument i provided by banks. Since we wish to reproduce the typical features

of APT, we assume the existence of a risk neutral measure qω such that

Eq [rω] = 0 (3.2.9)

In order to enforce this condition in the following we will take Eq [dω] = 0 as

well as Eq [aωi ] = 0 ∀i. Notice that the condition for the exogenous demand is

required because (3.2.9) should hold also in absence of traded derivatives. The

condition on the derivative contracts is instead more restrictive than required by

(3.2.9), so we take it as a simplifying assumption. Moreover, we assume that the

risk neutral measure is given exogenously.

The supply si of instrument i is fixed by banks in order to maximize their

expected profit, which for a unit supply (si = 1) is given by:

ui =

[
ci −

Ω∑
ω=1

πωaωi (1 + rω)

]
. (3.2.10)

Banks will sell derivatives if the expected profit is large enough, and will not sell

it otherwise. Specifically, we assume that banks match the demand of investors

(i.e. si = s0) if ui > ūi, whereas si = 0 if ui < ūi. When ui = ūi the supply takes

instead a finite value si ∈ (0, s0). Here ūi can be interpreted as a risk premium

related to the risk aversion of banks.

3.2.2 A typical large complex market

Financial markets are quite complex, with all sorts of complicated financial instru-

ments. This situation is reproduced in our framework by assuming that demand

dω0 and derivatives aωi are drawn independently at random. Furthermore we take

the limit Ω → ∞. This situation clearly defies analytical approaches for a spe-

cific realization. However, it is possible to characterize the statistical behavior

of typical realizations of such large complex markets. In order to do that, some

comments on the scaling of different quantities, with the number of states Ω, is

in order. The interesting region is the one where the number of derivatives N is

37



3.2 A picture of the market as an interacting system

of the same order of the number of states Ω (N ∼ Ω). In this regime we expect

the market to approach completeness. For this reason we introduce the variable

n = N/Ω. Assuming that rω is a finite random variable in the limit Ω, N →∞,

requires dω0 to be a finite random variable – e.g. normal with mean d̄ and variance

∆. Likewise, we shall take aωi as random variables with zero average and variance

1/Ω. Indeed, the second term of Eq. (3.2.8) with aωi ∼ 1/
√

Ω is of the order of√
N/Ω, which is finite in the limit we are considering1.

It is convenient, in the following discussion, to introduce the parameters

εi
Ω
≡ ūi −

[
ci − c(0)

i

]
. (3.2.11)

where c
(0)
i =

∑
ω π

ωaωi is the expected price of instrument i, at t = 0. The

dependence on Ω in the equation above is motivated by the fact that the variance

of c
(0)
i and of the second term in Eq. (3.2.10), is of order πω2 ∼ 1/Ω2. This

implies that the relevant scale for the r.h.s. of Eq. (3.2.11) is of order 1/Ω. The

parameter εi encodes the risk premium which banks require for selling derivative

i. We first take the simplifying assumption that εi = ε does not depend on i, in

order to illustrate the generic behavior of the model. In the following, we shall

discuss the general case where εi depends on i. As in the previous chapter, we will

focus on the case of competitive equilibria, that can be achieved by means of an

adaptive dynamics of banks. As before, the statistical properties corresponding

to the competitive equilibrium will be related to those of the minima of a global

function (Hamiltonian).

Competitive equilibria: A competitive equilibrium for the market is given

by banks choosing the supply si so as to maximize their profit (3.2.10),

considering returns rω as given. When εi = ε a competitive equilibrium is

then defined as a set of variables {s∗i } such that

s∗i = argmaxx∈[0,s0]

[
−x

(∑
ω

πωaωi r
ω − ε

)]
, (3.2.12)

where returns are given by rω = dω0 +
∑N

i=1 sia
ω
i . In the above expression,

the term proportional to ε accounts for the earning obtained by selling

1Equivalently, one could assume aω
i to be of order one, but introduce a coefficient λ = 1/

√
Ω

in Eq. (3.2.8) as a finite market depth.
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derivatives as well as for the risk premium required by banks. The term

proportional to
∑

ω π
ωaωi r

ω refers instead to the fact that banks need to

trade on the underlying to match derivative contracts.

Learning dynamics: Let us assume that the context outlined above is re-

peated for many periods (e.g. days), indexed by t = 1, . . .. Let ω(t) be

the state of the market at time t and assume this is drawn independently

from the distribution πω in each period. Accordingly, the returns rω(t) are

still determined by Eq. (3.2.8), with ω = ω(t) and si = si(t), the supply of

instruments of type i in period t. In order to determine the latter, banks

estimate the profitability of instrument i on historical data. They assign a

score (or attraction) Ui(t) to each instrument i, which they update in the

following manner:

Ui(t+ 1) = Ui(t) + ui(t)− ūi = Ui(t)− aω(t)
i rω(t) − ε

Ω
. (3.2.13)

Notice that, by Eq. (3.2.10) and (3.2.11), Ui(t) increases (decreases) if

ui > ūi (ui < ūi). Banks supply instrument i according to the simple rule

si(t) =


0 if Ui(t) ≤ 0

Ui(t)/Ω if 0 ≤ Ui(t) ≤ s0

s0 if Ui(t) > s0

(3.2.14)

Therefore, if instrument i provides an expected utility larger than the mar-

gin ūi, its score will increase and the bank will sell it more likely. Conversely,

an instrument with ui(t) < ūi, on average, has a decreasing score and it

will not be offered by banks.

Hamiltonian: The competitive market equilibrium, as well as the stationary

regime of the learning dynamics, is given by the solution of the minimization

of the function:

H =
1

2

Ω∑
ω=1

πω (rω)2 +
ε

Ω

N∑
i=1

si (3.2.15)

over the variables 0 ≤ si ≤ s0, where rω is given in terms of si by Eq.

(3.2.8). A proof of the statement above follows by direct inspection of the
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first order conditions and the observation that ∂H
∂si

= −(ui − ūi). Imagine

{s∗i } to be the minimum of H. If s∗i = 0 it must be that

∂H

∂si

∣∣∣∣
si=0

= ūi − ui > 0. (3.2.16)

If ui < ūi, it is not convenient for banks to sell derivative i, which is

consistent with zero supply (s∗i = 0). Likewise, if s∗i = s0 the first order

condition yields ui > ūi, which is the condition under which banks should

sell as many derivatives as possible. If instead 0 < s∗i < s0, then ui = ūi

which is consistent with perfect competition among banks.

On the other hand:

∂H

∂si

∣∣∣∣
si=0

= −Eπ[Ui(t+ 1)− Ui(t)], (3.2.17)

so it is possible to show that, along the trajectories generated by the adap-

tive dynamics, Ḣ < 0 and the learning scheme converges towards the min-

ima of H.

Notice that, as far as competitive equilibria are considered, if ε is negligible

a consequence of banks maximizing their utility, is that return’s volatility

(the first term of Eq.(3.2.15)) is reduced1. Actually, with ε > 0, only those

derivatives which decrease volatility are traded (si > 0). This is an ”unin-

tended consequence” of banks’ profit seeking behavior, i.e. a feature which

emerges without agents aiming at it.

3.2.3 Market completeness and market stability

From a purely mathematical point of view, we notice that H is a quadratic form

which depends on N variables {si}, through the Ω linear combinations given by

the returns rω. It is intuitively clear that, as N increases, the minimum of H

becomes more and more shallow and, for large N , it is likely that there will be

directions in the space of {si} (i.e. linear combinations of the si) along which

1In the dynamical setting, the situation is actually more complex. Indeed the variables
si that appear in the Hamiltonian correspond to time averages in the stationary state of the
variables si(t) updated according to (3.2.14), so that the Hamiltonian accounts only for the
part of volatility due to the presence of different states ω = 1 . . . ,Ω.
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3.2 A picture of the market as an interacting system

H is almost flat. The location of the equilibrium is likely to be very sensitive to

perturbation along these directions. These qualitative conclusions can be put on

firmer grounds by the theoretical approach which we discuss next. A full charac-
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Figure 3.1: Volatility Σ = Eπ [(r − Eπ[r])2] in competitive equilibria (full lines),

as a function of n = N/Ω, for different values of ε. Points refer to the variance

of r̄ω computed in numerical simulations of a system with Ω = 64 (s0 = 1).

terization of the solution of the minimization of H, in the limit Ω, N →∞ with

N/Ω = n fixed, can be derived with tools of statistical mechanics of disordered

systems (see appendix B.1), following similar lines of those of chapter 2. Indeed,

mathematically the model is quite similar to the Grand Canonical Minority Game

studied by Challet and Marsili [2003]. The solution can be summarized in the

following ”representative” derivative problem: given a normal random variable z

with mean zero and unit variance, the supply of the ”representative” derivative

is given by

sz = max
{
s0,min

{
0,
√
g + ∆z − ε(1 + χ)

}}
(3.2.18)

where

g = nEz[s
2
z] (3.2.19)

χ =
nEz[szz]√

g + ∆− nEz[szz]
(3.2.20)
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3.2 A picture of the market as an interacting system

are determined self-consistently in terms of expected values Ez[. . .] over functions

of the normal variable z. Loosely speaking, z embodies the interaction through

the market of the ”representative” derivative with all other derivatives. Any

quantity, such as the average supply of derivatives

s̄ ≡ lim
Ω→∞

1

N

N∑
i=1

s∗i = Ez[sz] (3.2.21)

can be computed from the solution. Figure 3.1 plots the volatility Σ = Eπ [(r − Eπ[r])2]

as a function of n for small values of ε for the case s0 = 1. As it can be seen, as

the market grows in financial complexity, fluctuations in returns of the risky asset

decrease and, beyond a value n∗ ' 4.14542 . . ., they become very small (of order

ε2, for small ε). The expected return Eπ[r] = d̄/(1 + χ) also decreases, keeping a

bounded Sharpe ratio Eπ[r]/
√

Σ = d̄/
√
g + ∆.

The situation in the region n > n∗ and ε� 1 closely resembles the picture of an

efficient, arbitrage free complete market. Unfortunately this is also the locus of

a sharp discontinuity, as shown in Fig. 3.2. This plots s̄ as a function of n for

different values of ε. As it can be seen, as the market grows in financial com-

plexity, it passes from a regime (n < n∗) where its behavior is continuous and

smooth with ε to one (n > n∗) which features a sharp discontinuity at ε = 01.

In particular, the discontinuity manifests clearly in the limit s0 → ∞ when the

demand of investors is unbounded. Then while for ε > 0 the average supply s̄ is

finite, for ε < 0 and n > 2 the supply s̄→∞ diverges as s0 →∞. In other words,

while in one region (ε > 0 and ε < 0 for n < 2) the equilibrium is controlled by

the supply side, in the other region (ε < 0, n > 2) the equilibrium is dominated

by the demand side. This distinction, as we shall see in the next section, applies

to a more general model where εi depends on i.

The consequences of the singularity at n > n∗ and ε = 0 manifest strongly in

response functions: the market behavior close to the singularity is quite sensitive

to small perturbations. For example a small change in the risk perception of banks

(i.e. in ε) can provoke a dramatic change in the volume of trading in the derivative

1It should be noted that N is not the actual value of derivatives traded, but the number
of derivatives for which there is a demand. The number of derivatives with si > 0, is well
approximated by NProb{sz > 0}, which is less than Ω, for ε > 0.
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Figure 3.2: Average supply s̄ in competitive equilibria (full lines) for different

values of ε. Points refer to the variance of r̄ω computed in numerical simulations

of a system with Ω = 64 (s0 = 1).

market. The effects of this increased susceptibility appears dramatically in the

case where the interaction is repeated over time and banks learn and adapt to

investors’ demand. This setting not only allows us to understand under what

conditions will banks learn to converge to the competitive equilibrium, but it

also sheds light on the emergent fluctuation phenomena.

At odds with the competitive equilibrium setting, in the present case the

volatility of returns also acquires a contribution from the fluctuations of the vari-

ables si(t), which is induced by the random choice of the state ω(t). Hence, we

can distinguish two sources of fluctuations in returns

r(t) = r̄ω(t) + δr(t) (3.2.22)

the first depending on the stochastic realization of the state ω(t), the second from

fluctuations in the learning dynamics. Here r̄ω is the average return of the asset

in state ω, and it can be shown that it converges to its competitive equilibrium

value, ∀ω. Indeed the contribution of r̄ω to the volatility Σ = Eπ [(r̄ − Eπ[r̄])2]

closely follows the theoretical curve in Fig. (3.1).
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Figure 3.3: Dynamical contribution to the volatility V = Eπ[δr2] in numerical

simulations of a system with Ω = 64 for different values of ε (points). Lines refer

to the theoretical prediction in the approximation of independent variables si(t).

Inset: Total volatility Σ + V in numerical simulations for n = 1 (+ for Ω = 128

and × for 256) and n = 10 (∗ for Ω = 32 and • for Ω = 64) as a function of ε.

The dynamical contribution to the volatility V = Eπ[δr2] instead shows a

singular behavior which reflects the discontinuity of s̄ across the line ε = 0 for

n > n∗. Our theoretical approach also allows us to estimate this contribution

to the fluctuations under the assumption that the variables si(t) are statistically

independent. As Fig. 3.3 shows, this theory reproduces remarkably well the

results of numerical simulations for n < n∗ but it fails dramatically for n > n∗ in

the region close to ε = 0. The same effect arises in Minority Games Haq et al.

[1996]; Marsili and De Martino [2006], where its origin has been traced back to

the assumption of independence of the variables si(t). This suggests that in this

region, the supplies of different derivatives are strongly correlated. This effect

has a purely dynamical origin and it is reminiscent of the emergence of persistent

correlations arising from trading in the single asset model of Bouchaud and Wyart

[2007].

We have considered ε as a fixed parameter up to now. Actually, in a more

refined model, εi should depend on i and it should be fixed endogenously in terms

of the incentives of investors and banks. At the level of the discussion given thus
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3.2 A picture of the market as an interacting system

far, it is sufficient to say that the scale of incentives of banks and investors, and

hence of ε, is fixed by the average return r̄ = d̄/(1 + χ) or by the volatility
√

Σ + V . Both these quantities decrease as n increases, so it is reasonable to

conclude that ε should be a decreasing function of n, in any model where it is

fixed endogenously. In other words, as the financial complexity (n) increases, the

market should follow a trajectory in the parameter space (n, ε), which approaches

the critical line n > n∗, ε = 0. In the next section, we extend our analysis to the

case where εi depends on i.

3.2.4 Asset dependent risk premia

We now generalize the model presented in the previous section to the case of

a asset dependent risk premia, in order to see how heterogeneity in the risk

perception affects the market in relation to its stability. We consider the case

where the {εi} are taken as quenched asset-dependent random variables drawn

from a gaussian distribution with mean ε and variance σ2
ε . In analogy with

the previous treatment, the competitive equilibrium is equivalent to finding the

ground state of the Hamiltonian

H =
1

2

∑
ω

πω(rω)2 +
∑
i

εi
Ω
si. (3.2.23)

As before, the solution can be summarized in a representative derivative problem.

Given a normal random variable z with 0 mean and unit variance, the supply of

the representative derivative is given by

sz = min

s0,max

0,

√
g+∆

(1+χ)2 + σ2
ε z − ε

ν


 , (3.2.24)

where

ν =
1

1 + χ
(3.2.25)

and

g = nEz[s
2
z], (3.2.26)

χ =
nEz[szz](1 + χ)√
g + ∆ + σ2

ε (1 + χ)2
(3.2.27)
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Figure 3.4: Volatility as a function of n for different values of σ2
ε and ε̄ = 0.1

(s0 = 1). From top to bottom σ2
ε = 20, 10, 1 and 0.01.

are determined self-consistently.

The main features of this generalized problem are as follows:

1. As for the homogeneous case, the fluctuations of returns eventually become

very small as the market complexity n increases (see figure (3.4) where we

plot the volatility of returns Σ = Eπ[r − Eπ[r]2]). However, we can observe

that the value n∗ beyond which the volatility approaches zero depends on

the width of the risk premium distribution, and it increases with σ2
ε .

2. The sharp transition previously observed in the behavior of the average

supply for large n becomes smooth as soon as the risk premium distribution

has a finite width (see Figure (3.5)).

The sharpness of the crossover in the behavior of s as a function of ε̄ is enhanced

as the demand s0 for derivatives increases. This signals a transition from a supply

limited equilibrium, where the main determinant of the supply si of derivatives

is banks’ profits, to a demand limited equilibrium, where si is mostly limited by

the finiteness of the investors’ demand. In order to make this point explicit, it is
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Figure 3.5: Supply as a function of n for different values of ε, for σ2
ε = 0.01 and

s0 = 1.

instructive to investigate the case of unbounded supply (s0 → ∞), because the

transition becomes sharp in this limit. The representative derivative, in this case,

is described by

sz = max

0,

√
g+∆

(1+χ)2 + σ2
ε z − ε

ν

 , (3.2.28)

and, as before,

g = nEz[s
2
z], (3.2.29)

χ =
nEz[szz](1 + χ)√
g + ∆ + σ2

ε (1 + χ)2
. (3.2.30)

Similarly to the case σε = 0, the system displays a phase separation in the

(ε, n) plane between a region in which the average supply remains finite and a

region in which the volume of the traded assets diverges (see left panel of Figure

3.6).

Introducing a gaussian distribution of risk premia with variance σε2 has then

very different effects depending on whether the supply is bounded or not. In
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Figure 3.6: Phase diagram for the case of unbounded supply. Left panel: the plane

is divided into two region. Above the blue line the supply diverges, while bleow it

remains finite. Right panel: critical line for different values of σε (σ3 > σ2 > σ1).

the first case σε acts as a regularizer preventing the occurrence of a sharp phase

transition. On the other hand, as s0 → ∞, σε 6= 0 entails a deformation of the

critical line that tends to flatten along the n = 2 line as σε grows (see right panel

of Figure 3.6 ). In this case, heterogeneity in the risk perception by banks makes

the system more unstable, since for each value of ε there exists a critical value of

n where a phase transition occurs. This is clearly shown in Figure 3.7, where we

plot both the volume of traded derivatives and the volatility of the underlying

market as a function of financial complexity. The growth in market complexity

leads here to an increase in the volume of traded derivatives. Correspondingly,

however, we observe a peak in the volatility of the underlying asset as the volume

of trading starts raising. This signals that an instability of the underlying market

occurs when the market becomes complete, suggesting that the path towards a

complete market may be a path towards an unstable market. Notice, in this

respect, that the introduction of a Tobin tax, namely a cost proportional to

the volume of traded assets, would have the effect of shifting the average risk

premium: ε → ε̃ = ε + εt, where we have indicated with εt > 0 the cost that

banks have to pay for each unit of traded asset. This would in turn result in a
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Figure 3.7: Red curve: average supply of derivatives (left axes) as a function of

financial complexity (i.e. n). Green curve: volatility of the underlying (right axis)

as a function of financial complexity.

shift of the critical value of the financial complexity: nc → ñc > nc. the effect of

such a tax would then be that of retarding, but not of preventing, the occurrence

of the phase transition. For the system to attain complete stability, a super-linear

tax would be in this case needed. This would then be quite different with respect

to the case of minority games, where it was shown that the introduction of a

Tobin tax drives the system far from the critical line [Bianconi et al., 2009]

Further investigation is certainly needed concerning policy related issues, since

at the level of the present modeling these are just interesting speculations.

3.3 Summary and perspectives

We presented a very stylized description of an arbitrage free market where we

accounted for a feedback between derivative and underlying markets. As the

number of financial instruments grows, the system was shown to approach the

limit of complete, efficient, arbitrage free market described by APT. Interest-

ingly, the uncontrolled proliferation of financial instruments was shown to drive
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the market through a transition from a supply limited to a demand limited equi-

librium, where large fluctuations and instabilities may arise.

It has to be said that, in order for these kind of models to be more realistic, some

improvements certainly are needed. For instance, the demand for derivatives can

be derived from a state dependent utility function for consumption at t = 1. This

could also be a way to obtain an endogenous risk neutral measure. We believe

that, while accounting for these effects can make the model more appealing, the

collective behavior of the model will not significantly change. Indeed, the quali-

tative behavior discussed above is typical of a broad class of models [Marsili and

De Martino, 2006] and mainly depends on the proliferation of degeneracies in the

equilibria of the model.

In summary, the considerations of these two chapters suggest that the ideal

view of financial markets on which financial engineering is based may not be

compatible with market stability. The proliferation of financial instruments makes

the market look more and more similar to an ideal arbitrage-free, efficient and

complete market, as well as the increase in the heterogeneity of investors who

have access to the market makes the market more informationally efficient. In

both cases, however, this occurs at the expense of market stability.

In contrast with the axiomatic equilibrium picture on which financial engineering

is based, the models we discussed provide a coherent, though stylized, picture of

financial markets as systems made of interacting units. In this picture, concepts

such as no-arbitrage, perfect competition, market efficiency or completeness arise

as emergent properties of the aggregate behavior, rather than being postulated

from the outset. We believe that such an approach can potentially shed light on

the causes of and conditions under which liquidity crises, arbitrages and market

crashes occur.
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Chapter 4

Optimal liquidation strategies

regularize portfolio selection

In the first part of this thesis we described financial markets as systems of inter-

acting agents. Notably, accounting for an interaction between agents’ behaviors

and price processes, we argued that the concept of ideal financial market may

be linked to that of market instability. In this chapter, we are going instead to

consider a different problem, that of portfolio selection, which in real practice is

plagued by instabilities of risk measures and we will show that, in this context,

accounting for interactions may be a way to tame fluctuations [Caccioli et al.,

2010; Still and Kondor, 2009].

Portfolio selection refers to the problem of finding an optimal investment policy,

optimal in the sense of bearing the minimum risk. Different measures for quanti-

fying risk have been introduced so far, all of them being characterized by instabil-

ities [Kondor and Varga-Haszonits, 2008b; Kondor et al., 2007; Varga-Haszonits

and Kondor, 2008]. Indeed, when looking for an optimal investment policy, one

need to estimate risk starting from historical data concerning the performances

of the assets in the market. Such estimation may be strongly biased when time

series are too short with respect to the number of assets involved. In this case

deviations of the estimated optimal portfolio with respect to the true optimal

one may grow unbounded and degeneracies in the space of solutions may arise

Ciliberti et al. [2007]; Kondor and Varga-Haszonits [2008a]. Finding a way to

reduce fluctuations in this region may be of crucial importance for practitioners,
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4.1 The Markovitz problem

since optimization of large portfolios in real life operates precisely in the regime

where instabilities occurs.

After a brief introduction to the problem and a short review of the main results

obtained so far exploiting techniques borrowed from statistical mechanics, we will

show that the sought reduction of fluctuations may be achieved accounting for

liquidation strategies in portfolio selection. Indeed, the value of a portfolio should

always be estimated once the strategy for liquidating the portfolio has been con-

sidered [Acerbi and Scandolo, 2007], since prices will move according to it. We

will consider in this chapter the specific case of Expected Shortfall in order to

illustrate the effect of market impact in portfolio selection. We will show how

regularized optimization problems may be derived when market impact is taken

into account. Notably, we will discuss in some detail the case of linear as well

as instantaneous market impact, showing explicitly how the accessible region of

phase space is increased with respect to the standard procedure. We will end

with some analysis concerning real data in order to see whether the strength of

market impact may be quantified by means of portfolio optimization techniques.

4.1 The Markovitz problem

Let us consider a market where N assets are traded and let us assume we want

to invest in the market, namely we want to buy a portfolio of assets that we

represent through a vectors of weights ~w = {w1 . . . wN}. The weight wi represents

the relative fraction of the total investment invested on asset i, so that a budget

constraint of the kind
∑N

i=1 wi = 1 must be satisfied. The obvious problem we

have to face now is that of choosing how to invest across different assets, i.e. that

of selecting the optimal set of weights. Optimal with respect to what? There are

two objectives one wish to achieve through an investment policy:

• maximizing the expected return of the portfolio,

• minimizing the risk associated to the investment.

The problem of finding the optimal portfolio was formulated by Markowitz [Markowitz,

1952, 1959] in terms of a tradeoff between reward and risk. The idea is that in
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4.1 The Markovitz problem

presence of portfolios with equal risks one should prefer that of greater expected

return, while if expected returns are equal one should choose the portfolio bearing

smaller risk. In the following we are going to focus on the part of the problem

related to risk, so that the problem we consider is that of choosing the set of

weights that minimizes a certain measure of risk. The simplest way to quan-

tify the risk associated to a portfolio is that of measuring its variance, i.e. its

volatility [Elton and Gruber, 1995]. If we introduce the matrix σi,j measuring the

covariance between assets i and j, the Markowitz optimization problem reduces

to finding the minimum of

σ2
P =

N∑
i,j=0

wiσi,jwj, (4.1.1)

under the budget constraint
∑N

i=1wi = 11. The optimal set of weights is thus

given in terms of the inverse of the covariance matrix as

w∗i =

∑
j (σ−1)i,j∑
j,k (σ−1)j,k

. (4.1.2)

In practice, the covariance matrix is unknown and has to be estimated from

measurements on the market. If we indicate by xi.t the return of asset i at time

t, an estimate of the covariance matrix can be given from historical data as

σi,j =
1

T

∑
t

xi,txj,t, (4.1.3)

where T is the number of time records we have access to. For a portfolio of N

assets and time series of length T , we need to estimate O(N2) elements out of

data sets including O(NT ) returns. In order for the estimate to be precise, we

would then need N << T . However, such a situation rarely holds in practice,

so that noisy estimates may arise [Kondor et al., 2007]. It is therefore of crucial

importance to understand how the typical features of the optimal solution com-

puted on the basis of historical data change as a function of the ratio N/T .

1Notice that wi can take any real value, so that no ban on short-selling is considered.
Although unrealistic, this setup is in fact the most suitable to highlight the problems related
to the instability of risk measures.
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As a measure of the estimation error, the following quantity was introduced by

Pafka and Kondor [2002]

q0 =

∑
i,j w

∗
i σ

(0)
i,j w

∗
j∑

i,j w
∗(0)
i σi,jw

∗(0)
j

, (4.1.4)

where σi,j denotes the empirical covariance matrix, σ
(0)
i,j the true covariance ma-

trix, w∗i the optimal weights as computed from the empirical matrix and w
∗(0)
i

the true optimal weights1. In the simple case of independent gaussian returns,

corresponding to the identity covariance matrix, Pafka and Kondor [2002] were

able to compute q0 in the limit N, T →∞ with fixed N/T , obtaining

q0 =
1

1− N
T

. (4.1.5)

The divergence of the estimation error forN = T has a clear meaning. The rank of

the empirical covariance matrix is in fact the minimum between N and T , so that

such matrix develops zero eigenvalues as soon as T < N and the optimization

problem becomes meaningless, fact that is signaled by the divergence of q0 as

T → N . Figure 4.1 shows a comparison between the result of equation (4.1.5) and

numerical simulations. The simulations where carried on by generating artificial

time series of length T representing assets returns. Returns where drawn at

random independently across assets and times from gaussian distributions of zero

mean and standard deviation 1/
√
N . The empirical covariance matrix was then

computed from the time series, as well as the optimal weights were computed

according to (4.1.2) from the empirical covariance matrix. The estimation error

has then be computed according to (4.1.4).

Another interesting quantity to look at is the behavior of the intensity of

fluctuations in the optimal weights. Notably, Kondor et al. [2007] showed that

such fluctuations become wilder as T approaches N . Figure 4.2 shows the opti-

mal weights computed from covariance matrices estimated using time series with

different length together with a comparison with the true optimal weights. It

is clear from the picture that fluctuations increase as T becomes smaller. The

1Notice that the above quantity is denoted as q2
0 in [Pafka and Kondor, 2002]. We choose

a slightly different definition for later convenience.
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Figure 4.1: Behavior of the estimation error as a function of T/N . The solid

line represents the result of equation (4.1.5). Red dots refer to simulations with

N = 100.
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Figure 4.3: Behavior of the fluctuations of the optimal weights as a function of

T/N .

behavior of fluctuations as a function of T/N is explicitly shown in Figure 4.3.

The divergence of q0, as well as the increase of fluctuations as T approaches N ,

suggests the presence of a phase transition at T = N . We will further elaborate

on this in the next section, where we will introduce a risk measure that is more

important for applications than the variance we have considered so far. In this

context, we will discuss the emergence of a phase transition in the statistical

mechanics sense.

4.2 Instability of risk measures

In the previous section we have introduced the problem of portfolio optimization

using as a risk measure the variance of portfolio returns. This is certainly a good

measure to characterize portfolio fluctuations in the case of normally distributed

returns. Real portfolio, however, often display long tailed distributions that call

for a different quantification of risk [Bouchaud and Potters, 2000]. In fact alter-

native risk measures abound in the literature as well as in the practice [Kondor
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4.2 Instability of risk measures

et al., 2007]. We will focus in the following on the particular case of the Expected

Shortfall.

4.2.1 Expected Shortfall

Given a portfolio of weights ~w = {w1, . . . , wN} and N assets with return ~x =

{x1, . . . , xN} drawn from the probability distribution p(~x), we define the loss

l(~w|~x) = −
∑

iwixi. The probability for such loss to be smaller than a threshold

α is

P<(~w, α) =

∫ ∏
i

dxip(~x)θ(α− l(~w, ~x)), (4.2.6)

with θ(x) = 1 if x > 0 and θ(x) = 0 otherwise. The associated βVaR, which

represents the possible minimal loss assuming a confidence level β, is defined as

βVaR(~w) = min{α : P<(~w, α) ≥ β}, (4.2.7)

while the Expected Shortfall ES(~w) is given by

ES(~w) =
1

1− β

∫ ∏
i

dxip(~x)l(~w|~x)θ
(
l(~w|~x)− βVaR(~w)

)
. (4.2.8)

Expected Shortfall (ES) is then the mean loss above a high quantile.1 It gives a

more faithful representation of large losses than Value at Risk (VaR) [Jorion, 2000]

that can be identified by the quantile itself. In addition, ES can be computed

by fast linear programming algorithms [Rockafellar and Uryasev, 2000] and, most

significantly, it was shown [Acerbi, 2002, 2004; Acerbi and Tasche, 2002] to belong

to the set of coherent risk measures [Artzner et al., 1999]. The calculation of the

ES can be obtained through the minimization of the function [Rockafellar and

Uryasev, 2000]

Fβ(~w, ε) = ε+
1

1− β

∫ ∏
i

dxip(~x)[l(~w|~x)− ε]+ (4.2.9)

as

ES(~w) = minεFβ(~w, ε), (4.2.10)

1Note the sign convention: in the context of risk measures losses are counted positive.
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4.2 Instability of risk measures

with [x]+ = (x + |x|)/2. Approximating the integral in (4.2.9) by sampling the

probability distributions of returns∫ ∏
i

dxip(~x)f(~x)→ 1

T

∑
τ

f(~xτ ), (4.2.11)

the problem can be reduced to the calculation of the minimum of the cost function

E[v, {uτ}] = (1− β)Tε+
T∑
τ=1

uτ (4.2.12)

under the constraints

uτ ≥ 0 ∀τ,

uτ + ε+
N∑
i=1

xi,τwi ≥ 0 ∀τ

and ∑
i

wi = N, 1

where we have defined uτ = [−ε−
∑

i xi,τwi]
+.

Given that the cost function is monotonous in uτ , the first two constraints enforce

the fact that uτ = −ε−
∑

i xi,τwi if −ε−
∑

i xi,τwi > 0 and uτ = 0 otherwise.

4.2.2 Instability of Expected Shortfall

We now focus on a limit case of ES and discuss a very simple example useful to

easily understand the reason for instabilities that may arise when looking for the

optimal portfolio [Kondor et al., 2007]. Let us consider the special case of ES

corresponding to β = 1. The problem reduces in this case to that of finding the

weights that minimize the maximal loss (ML)

ML(~w) = max
t=1,...,T

[
−
∑
i

wixi,t

]
, (4.2.13)

so that we need to find

~w∗ = argmin~w [ML(~w)] . (4.2.14)

1From now on, we choose to normalize the sum to N for later convenience, while usually
the normalization is set to unity.
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4.2 Instability of risk measures

Let us consider the very simple case of two assets and two times: N = T = 2.

Since the weights sum to 1 we take w1 = w and w2 = 1−w. The losses associated

to the two periods t = 1, 2 are then

l1 = −wx11 − (1− w)x21 = w(x21 − x11)− x21 (4.2.15)

l2 = −wx12 − (1− w)x22 = w(x22 − x1,2)− x22. (4.2.16)

It is clear at this stage that, depending on the slopes of these two straight lines,

the maximal loss max{l1, l2} may or may not be bounded from below. Notably,

if the two slopes have opposite sign, the maximal loss is bounded from below and

the optimization problem has a solution. In contrast, if the slopes have the same

sign, the maximal loss is not bounded from below and the minimum runs away

to infinity, as well as the value of the objective function (4.2.13) goes to minus

infinity. What is the meaning of two slopes with the same sign?

This situation can happen when

• x21 > x11 and x22 > x12,

• or x21 < x11 and x22 < x12.

In both cases we have an asset that dominates the other for all t = 1, 2. Obviously,

if the return of an asset is always greater than the return of an other asset, going

infinitely short1 in the dominated asset and infinitely long2 in the dominating one

will produce profit without bearing any risk.

More generally, being a conditional average, ES is not bounded from below:

if a portfolio produces a large gain, rather than a loss, then ES takes a large

negative value. Now, on a finite sample it may happen that one of the items,

or a combination of items, dominates the others, i.e. produces a larger return

at each time point than the rest. When such an apparent arbitrage occurs,

1short selling is the practice of selling assets that have been borrowed from a third party
with the intention of buying identical assets back at a later date to return to the lender. The
short seller hopes to profit from a decline in the price of the assets between the sale and the
repurchase, as the seller will pay less to buy the assets than the seller received on selling them.

2A long position in a security means the holder of the position owns the stock and will
profit if the price of the security will increase.
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Figure 4.4: Phase diagram for the optimization problem under Expected Shortfall.

the optimization of ES suggests to go as long as possible in the dominating

asset and correspondingly short in the dominated ones. In particular, if there

are no other constraints except for the fixed budget, this leads to a runaway

solution and to a seemingly infinite return. Therefore, by considering an ensemble

where returns are generated from a given distribution, for finite N and T the

optimization of ES will have a finite solution with a probability always less than

one. This probability quickly approaches one as N/T goes to zero, and quickly

approaches zero as N/T goes to infinity. Moreover, it was shown [Ciliberti et al.,

2007; Kondor et al., 2007] that the transition between the two limits becomes

sharper and sharper as N and T go to infinity such that their ratio is fixed,

which is the realistic limit to consider for large institutional portfolios. In this

limit there will be a critical value of the ratio N/T where a sharp transition occurs

between the region where the optimization of ES leads to a finite solution and

the one where it does not. This instability of ES was pointed out, for the case

of independent gaussian distributed returns, by Kondor et al. [2007], where the

phase diagram was determined numerically, while Ciliberti et al. [2007] derived

an analytic expression for the critical line exploiting tools borrowed from the

61



4.2 Instability of risk measures

0.35 0.4 0.45 0.5
0

200

400

600

800

1000

N/T

su
sc

ep
tib

ili
ty

0.35 0.4 0.45 0.5
0

1

2

3

4

5
x 105

N/T

es
tim

at
io

n 
er

ro
r

Figure 4.5: Divergence of susceptibility and estimation error for the ES problem

in the case β = 0.7.
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statistical physics of random systems. Figure 4.4 reproduces the phase diagram

computed by Ciliberti et al. [2007]. The region labeled as feasible is the region

where a finite solution may be identified, while in the unfeasible region weights

run to infinity and large fluctuations set in. This is highlighted by the divergence

of the susceptibility as well as of the estimation error in the whole unfeasible

region (see Figure 4.5 ). We do not reproduce here the calculation carried on

in Ciliberti et al. [2007], since we are going to provide the solution for a more

general problem in the following sections.

4.2.3 Coherent risk measures

The generality of the argument presented above suggests that the presence of

accidental statistical arbitrages causes instabilities in portfolio selection not only

under ES, but also for all the risk measures that are unbounded from below. It

was indeed demonstrated [Kondor and Varga-Haszonits, 2008b] that the coher-

ence axioms [Artzner et al., 1999] imply the appearance of a similar instability.

Coherent risk measures have been introduced [Artzner et al., 1999] as an attempt

to characterize risk in axiomatic way, giving solid theoretical foundations to the

way of quantifying risk. Let us imagine we have a risk measure ρ(~w,X), where

~w represent a portfolio and X is an N × T matrix whose entry xi,t reprents the

return of asset i at time t. In our case, ρ(~w,X) represents a measure of the loss

probability associated to the portfolio ~w when the risk is estimated on the basis

of the historical data encoded in the matrix X. The risk measure ρ is said to be

coherent with respect to the sample X if it satisfies the following requirements:

• monotonicity ~u is such that
∑

i uixi,t > 0 ∀t ⇒ ρ(~u|X) ≤ 0 (if a portfolio

has only positive returns, its risk should be negative);

• sub-additivity ρ(~u + ~v|X) ≤ ρ(~u|X) + ρ(~v|X) (the risk of two portfolios

together cannot get any worse that adding the two risks separately);

• positive homogeneity a > 0 ⇒ ρ(a~u|X) = aρ(~u|X) (if you increase the size

of your portfolio by a factor a, you also increase the risk by the same factor);

• translational invariance ρ(~u|X+a) = ρ(~u|X)−a (adding cash to a portfolio

reduces the risk of the investment),
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4.3 Regularized portfolio selection

where ~u and ~v represent two portfolios and X + a denotes a matrix obtained

adding the real number a to each element of the matrix X. The problem to solve

for the selection of the optimal portfolio reads

~w∗ = argmin~w [ρ(~w|X)] , (4.2.17)∑
i

wi = N. (4.2.18)

Let us introduce the definition of dominant portfolio. Let us consider two

portfolios ~u and ~v. We say that ~u dominates ~v over the sample X if
∑

i uixi,t ≥∑
i vixi,t ∀t = {1, . . . T}. In presence of strict inequalities we say that ~u strictly

dominates ~v. A general result about the feasibility of the optimization problem

(4.2.17) was proven by Kondor and Varga-Haszonits [2008b]:

Theorem: if there are two portfolios ~u ans ~v such that ~u strictly dominates ~v

the optimization problem min~wρ(~w|X),
∑

iwi = N has no solution.

This results generalizes the considerations of the previous section concerning the

role of apparent arbitrages arising when we consider finite time series. The pres-

ence of such historical arbitrages constitutes a sufficient condition for the opti-

mization problem to be unfeasible. 1

While keeping in mind the generality of these results, in the following we will

keep on considering the specific case of Expected Shortfall.

4.3 Regularized portfolio selection

Problems of portfolio selection in real life usually lie in the range N ∼ T , where a

transition from a feasible to an unfeasible region may occur and large fluctuations

might set in. As we said, the origin of such fluctuations may be traced back to

over-fitting of noisy samples. It is therefore of primary interest the development

of techniques allowing for a reduction of noise fitting in the estimation of risk.

In this respect, within the context of ES, it was recently proposed to consider

a regularized problem where a further constraint to the optimization problem is

added, so to reduce the available space for optimal solutions. Notably, Still and

1This condition was proven to be also necessary in the case of the Maximal Loss. Kondor
and Varga-Haszonits [2008b].
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4.3 Regularized portfolio selection

Kondor [2009] proposed to solve in place of (4.2.12) the following optimization

problem

min
~w,~u,ε

[
(1− β)Tε+

T∑
τ=1

uτ + 1
2C

∑
i

w2
i

]
(4.3.19)

under the constraints

uτ ≥ 0 ∀τ,

uτ + ε+
N∑
i=1

xi,τwi ≥ 0 ∀τ,

and ∑
i

wi = N,

where C is a positive constant that was shown to be related to the capacity of

a certain class of learning machines [Still and Kondor, 2009]. The addition of

a term proportional to the L2 norm of the vector of weights, was justified in

view of a mapping of the optimization problem onto a modified support vector

regression problem [Vapnik, 1995]. Moreover, from the financial point of view

the introduction of such a term can be justified in terms of an enhanced portfolio

diversification.

An in-depth analysis of the relation between the portfolio optimization problem

and learning machine theory is presented by Still and Kondor [2009]. In the

following we show that the regularized problem may be derived by accounting

for the impact of liquidation strategies when searching for the optimal portfolio.

After providing a derivation of the optimization problem (4.3.19) from this point

of view, we will characterize the typical properties of the solutions of such problem

and we will prove that the introduction of a regularizer is indeed useful to tame

fluctuations and enhance the fitting performances on finite data samples.

4.3.1 Regularization from market illiquidity

To generate cash, an investor has to liquidate (part of) his portfolio. The set

up of the portfolio optimization problem discussed so far ignores the fact that

this liquidation may have an impact on asset prices. Consider the case that an

investor has a portfolio of N assets that we represent through a vector ~qt =
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4.3 Regularized portfolio selection

(q1,t, . . . , qN,t), where qi,t is the quantity of the i-th stock that the investor has on

day t = 0, 1, 2, . . .. Let us assume that the liquidation of a part of the portfolio

with weights ~wt on day t affects prices of securities in a linear way

~pt+1 = ~pt + ~xt − η ~wt. (4.3.20)

Here ~xt is the vector of returns, and η is an impact parameter. Notice that

investment is taken to move prices in the direction opposite to trading: selling

(wi,t > 0) will cause prices to fall and buying (wi,t < 0) will push prices up. The

cash flow generated on day t is then given by

ct = ~wt · ~pt+1 = ~wt · ~pt + ~wt · (~xt − η ~wt) (4.3.21)

The first part ~wt · ~pt is known at time t, so risk only enters in the second part,

~w · ~x − η‖~w‖2, where we have dropped the subscript t to simplify the notation.

Similarly to what is done in classical portfolio theory [Markowitz, 1952], we con-

sider the problem of finding the portfolio of minimal risk, for a given present

value
∑

iwipi,t = WN of the realized cash flow. The parameter W plays the role

of a normalization, and is customarily set to one, because risk is usually linear in

the size of the portfolio. Here, however, the size of the portfolio matters as the

impact of liquidation strategies on prices depends on the size. We therefore keep

W as an independent parameter. In order to further simplify the notation, we

consider pi = 1, ∀i, so that we have the constraint∑
i

wi = WN. (4.3.22)

As before, we take the expected shortfall as a risk measure. The loss is now given

by l(~w|~x) = −~w · ~x + η‖~w‖2, and we then have to find the minimum of the cost

function

Eη[v, {uτ}] = (1− β)Tv +
T∑
τ=1

uτ (4.3.23)

under the constraints

uτ ≥ 0 ∀τ, (4.3.24)

uτ + v +
N∑
i=1

wixi,τ − η‖~w‖2 ≥ 0 ∀τ, (4.3.25)∑
i

wi = WN. (4.3.26)
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4.3 Regularized portfolio selection

All of the T inequality constraints contain a term that is independent of τ (τ =

1, . . . , T ), given by

ε = v − η‖~w‖2. (4.3.27)

Substitution of ε+ η‖~w‖2 for v in the cost function, Eq. (4.3.23), and multiplica-

tion by 1
2(1−β)Tη

leads us to the regularized expected shortfall problem (4.3.19):

min
~w,~u,ε

[
1

2
‖~w‖2 + C

(
1

T

T∑
τ=1

uτ + (1− β) ε

)]
(4.3.28)

s.t. ~w · ~xτ + ε+ uτ ≥ 0; uτ ≥ 0; ∀τ, (4.3.29)∑
i

wi = WN. (4.3.30)

with

C =
1

2(1− β)η
. (4.3.31)

We recognize that the term proportional to η in Eq. (4.3.21) acts as a regularizer.

4.3.2 Stability of regularized Expected Shortfall

In order to develop some intuition about the role of the L2 regularizer introduced

in the optimization problem under ES, we consider as before the limit case of

Maximal Loss in the simple situation where the optimization involves two assets

i = 1, 2 and two periods t = 1, 2. The maximal loss is defined in this case as1

ML(~w) = max
t=1,...,T

[
−
∑
i

wixi,t +
η

2

∑
i

w2
i

]
, (4.3.32)

and we need to find

~w∗ = argmin~w [ML(~w)] . (4.3.33)

1The β → 1 limit is a bit tricky to recover from the ES optimization problem. A section in
the appendix is devoted to the derivation of the correct limit.
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We thus compute the losses associated to times t = 1, 2:

l1 = −wx11 − (1− w)x21 +
η

2
w2 +

η

2
(1− w)2 (4.3.34)

= ηw2 + (x21 − x11 − η)w − x21 −
η

2
(4.3.35)

l2 = −wx12 − (1− w)x22 +
η

2
w2 +

η

2
(1− w)2 (4.3.36)

= ηw2 + (x22 − x12 − η)w − x22 −
η

2
, (4.3.37)

where we have implemented the budget constraint taking w1 = w and w2 = 1−w.

It is clear at this stage that, given the fact that the losses are convex quadratic

functions, there exists always a finite and unique minimum for the maximal loss

as soon as η > 0.

More in general, imagine that there are two portfolios ~w+ and ~w−, each properly

normalized (i.e.
∑

iw
±
i = WN), with ~w+~xτ ≥ ~w−~xτ for all τ = 1, . . . , t and

~w+~xτ > ~w−~xτ for at least one τ . Then, when η = 0, minimal Expected Shortfall

would be realized by selling K units of ~w− and buying K + 1 units of ~w+, with

K → ∞. This, as we said before, is the origin of the instability in coherent

risk measures. Such infinite returns cannot be realized, however, by liquidating

a real portfolio because prices will adjust. In the linear approximation discussed

here, when η > 0, the investment behavior discussed above is going to modify

future returns, because xi,t+1 → xi,t+1 − ηwi, thereby eliminating the apparent

arbitrage. This effect eliminates the apparent arbitrage and reflects precisely the

logic behind the no-arbitrage hypothesis.

4.3.3 Behavior of large random minimal risk portfolios

under L2 regularized Expected Shortfall

We have argued that the instability of risk measures can be alleviated by reg-

ularization discussing a very simple example. We present now a more general

discussion generalizing the calculation by Ciliberti et al. [2007] to see how the

regularizer takes care of the instability. The calculation is reported in some de-

tails in appendix C.1, here we just quote the result and discuss its consequences,

namely the removal of the singularity of the risk measure. We also refer the

interested reader to the related literature within statistical learning theory, such
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as [Dietrich et al., 1999; Malzahn and Opper, 2005; Opper, 1995; Opper and

Haussler, 1995] and references therein.

Given a realization for the history of returns {xi,τ} drawn from a Gaussian

distribution1, the calculation proceeds by considering the partition function

Zγ({xi,τ}) =

∫
V ({xi,τ})

d~Y e−γE[~Y ], (4.3.38)

where γ is the inverse temperature, we have used the notation ~Y to indicate the

set of variables, and V ({xi,τ}) represents the portion of phase space where all

constraints are satisfied. The minimum cost can then be computed as

lim
N→∞

lim
γ→∞
− logZγ({xi,τ})

Nγ
. (4.3.39)

In order to compute typical properties of the ensemble, we average over the prob-

ability distribution of returns, that is we compute the average of logZγ({xi,τ}).
This can be achieved through the replica trick exploiting the identity

〈logZ〉 = lim
n→0

〈∂Zn

∂n

〉
, (4.3.40)

where we have denoted by 〈· · · 〉 averages over ~Y . We showed in the previous

sections that both statistical and financial considerations lead us to a cost function

of the form

E[v, {uτ}] = (1− β)Tε+
T∑
τ=1

uτ + η̃‖~w‖2,

where η̃ can be expressed in terms of C or η. Starting from this cost function,

after some manipulations, it is possible to express the energy in terms of three

order parameters as in Ciliberti et al. [2007]

E(ε̃, q̃0,∆) = ∆

[
t(1− β)ε̃− q̃0

2
+

t

2
√
π

∫ ∞
−∞

dse−s
2

g(ε̃+ s
√

2q̃0)

]
(4.3.41)

+
W 2

2∆
+ η̃q̃0∆2, (4.3.42)

1Here xi,t are taken as i.i.d. Gaussian variables with zero mean and variance 1/
√
N . The

latter ensures a meaningful limit N,T → ∞ with N/T = n constant, and is also realistic for
typical cases where N ∼ 103 − 104.
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where ∆ is the susceptibility, q0 = q̃0∆2 =
∑
w2
i /N , ε = ε̃∆, t = T/N and

g(x) =


0, x ≥ 0
x2, −1 ≤ x ≤ 0

−2x− 1, x < −1
. (4.3.43)

The difference with respect to Ciliberti et al. [2007] is that now we have an

additional term proportional to q0. Indeed the extra term η̃q̃0∆2 precisely maps

into the term η̃‖~w‖2 added to the objective function, if one considers the definition

of q̃0.

Let us now discuss how the term proportional to ‖~w‖2 in the cost function

takes care of the instability in the portfolio optimization problem. The saddle

point equations corresponding to (4.3.42) read

−1 +
t√

2πq̃0

∫
dse−s

2

sg′(ε̃+ s
√

2q̃0) + 2η̃∆ = 0, (4.3.44)

1− β +
1

2
√
π

∫
dse−s

2

g′(ε̃+ s
√

2q̃0) = 0, (4.3.45)

− w2

2∆2
+ t(1− β)ε̃− q̃0

2
+

t

2
√
π

∫
dse−s

2

g(ε̃+ s
√

2q̃0) + 2η̃∆q̃0 = 0. (4.3.46)

Notice that the variables ε̃ and q̃0 are finite 1, since they have already been re-

scaled with respect to the original variables as ε̃ = ε/∆ and q̃0 = q0/∆
2. This

should be sufficient to conclude that all integrals over the variable s are finite. In

order to see if a solution with divergent susceptibility exists, let us now impose

the condition ∆→∞ on the saddle point equations. We first note that, in order

for (4.3.46) to be satisfied, q̃0∆ has to be finite as ∆→∞, i.e. q̃0 = α/∆ with α

finite. This is in contrast with a similar constraint we can deduce from equation

(4.3.44), where we find that a solution exists only if ∆
√
q̃0 is finite. Indeed if we

multiply all terms of (4.3.44) for
√
q̃0 and impose q̃0 = α/∆ we see that all the

terms are bounded except the last one which diverges as
√

∆. We thus conclude

that no solution with divergent susceptibility can be found as long as η̃ > 0.

1The divergence of ε̃ and q̃0 is prevented by equation (4.3.45), that admits solutions as long
as the two variables are kept finite.
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The numerical solution of the saddle point equations confirms this prediction. In

figures 4.6 and 4.7 we show the behavior of q0 = 1
N

∑
iw

2
i and of the susceptibility.

We can clearly observe that the divergence, which is present for η̃ = 0 disappears

as soon as η̃ > 0. This is further confirmed by figure 4.8, where we show that, in

the unfeasible region of the original problem, the susceptibility diverges at η̃ = 0.

Finally, the case of independent gaussian variables is a quite useful benchmark

since it allows for a direct comparison with the (known) correct solution, namely

that with wi = 1 ∀i. Figure 4.9 shows the optimal weights computed with

and without regularization for t = 2.25 compared with the true solution. The

reduction in weights fluctuations due to the introduction of the regularizer is

quite clear in the picture.
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Figure 4.6: q0 as a function of N/T for different values of η̃ and β = 0.7.

Let us now comment on the generality of the result. Concerning the linear

assumption in Eq. (4.3.20), we observe that the estimate of market impact func-

tions is a matter of active current research Eisler et al. [2009]. In double auction

markets, if one restricts attention to the instantaneous impact of market orders,

the effect on the price depends on the shape of the order book. In order to discuss

this case in some more detail, let ρi(p, t) be the density of limit orders for asset

i at time t, and consider the situation where a market order for a quantity wi

arrives at time t. If pi,t−1 is the current price and pi,t−1 + xi,t is the price (of the
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Figure 4.7: Susceptibility as a function of N/T for different values of η̃ and β = 0.7.
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Figure 4.8: Susceptibility as a function of η̃ for the case t = 1.5 and β = 0.7 .

transaction which occurred) just before the order arrives, then the price pi,t at

which the transaction will take place is given by

wi =

∫ pi,t

pi,t−1+xi,t

dpρi(p, t). (4.3.47)

A linear impact, as the one assumed in Eq. (4.3.20), then corresponds to an order

book with a constant density of limit orders. Hence, a measure of η is given by

the density of the order book close to the best bid/ask. Since the density of the

order book fluctuates and liquidity varies across assets, ηi,t could also be taken

as an asset dependent stochastic quantity.

Then the computation of the ES can still be performed in terms of the cost
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Figure 4.9: Optimal weights for N = 32. Green dots: T = 72 and η = 0. Blue dots: T = 72
and η = 0.1. Black dots: T = 500 and η = 0. Red dots: T = 500 and η = 0.1. The solid line
refers to the target optimal weights.

function (4.3.23), but now with the T constraints

uτ + v +
N∑
i=1

wixi,τ −
∑
i

ηi,τw
2
i ≥ 0 (4.3.48)

in place of Eq. (4.3.25). In this case the mapping to a simple L2 regularizer

that we have laid out in section 4.3.1, is then complicated by the fact that the

impact term depends on τ and cannot be absorbed into a τ independent constant.

Nevertheless we do not expect the essential features of the problem to change with

respect to the case of a constant η.

Note furthermore that different assumptions for the market impact function

lead to different regularizers. For example, considering the instantaneous impact

and Eq. (4.3.47) in the presence of a bid-ask spread, we expect the price to

bounce from the bid to the ask, depending on the direction of trading (i.e. on the

sign of wi). This suggests a term proportional to the sign of wi in the equation

for the price, which, in turn, would then introduce an L1 regularizer. We address

in the next subsection the effect of considering an L1 regularizer in the portfolio

optimization problem, in order to see that also in this case the regularized problem

is more stable than the standard one.
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4.3 Regularized portfolio selection

4.3.4 Behavior of large random minimal risk portfolios

under L1 regularized expected shortfall

In order to develop some intuition about the problem, we focus again on the case

of the Maximal Loss, that in presence of the L1 regularizer we define as

ML(~w) = max
t=1,...,T

[
−
∑
i

wixi,t + η||~w||

]
, (4.3.49)

where ||~w|| is the L1 norm form the vector of weights. Let us consider, as we

already did for the L2 case, the simple case of two asset and two times. The loss

associated to each time can be expressed as

l1 = −wx11 − (1− w)x21 + η|w|+ η|1− w| (4.3.50)

l2 = −wx12 − (1− w)x22 + η|w|+ η|1− w|, (4.3.51)

where we have taken into account the budget constraint by taking w1 = w and

w2 = 1− w. We distinguish now four different cases:

• if 0 < w < 1, then lt = w(x2t − x1t) + η − x2t

• if w > 1, then lt = w(x2t − x1t + 2η)− x2t − η

• if −1 < w < 0, then lt = w(x2t − x1t − 2η) + η − x2t

• if w < −1, then lt = w(x2t − x1t)− η − x2t.

The instability may arise in the following situations:

• if w < −1, x21 − x11 > 0 and x22 − x21 > 0 (the two straights lines have

both positive slope).

• if w > 1, x21 − x11 < −2 and x22 − x21 < −2η (the two straights lines have

both negative slope).

If we assume that xi,t are independent normal distributed random variables, the

instability is then present with probability P (η) = 1/4(1+erfc2(η)). This has to

be compared with the result in absence of regularizer, where there is an instability

with probability 0.5. Since P (η) ≤ 0.5, we conclude that the stability of the
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4.3 Regularized portfolio selection

system is augmented by the presence of the regularizer, even though the instability

is not removed 1.
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Figure 4.10: Probability that the system is unstable as a function of η

From the intuition that we gain from this very simple case we may expect that

a shift of the transition towards the unfeasible region may be obtained introduc-

ing the L1 regularizer in the optimization problem under ES. This generalized

problem reads

min
~w,~u,ε

[
(1− β)Tε+

T∑
τ=1

uτ + η|~w|

]
, (4.3.52)

s.t. ~w · ~xτ + ε+ uτ ≥ 0; uτ ≥ 0; ∀τ, (4.3.53)∑
i

wi = WN. (4.3.54)

Again, we can easily extend the calculation of Ciliberti et al. [2007] valid for

independent gaussian returns. After some effort, the saddle point free energy

1Notice that with the same argument it is possible to understand that for any Lp norm
with (integer) p > 1 the instability disappears.
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Figure 4.11: Susceptibility as a function of T/N for different values of η for the L1 regularize
ES.

may be written in terms of six order parameters (details about the calculation

are reported in appendix C.3):

F (λ̃, ε̃, q̃0,∆, ˜̂q0, ∆̂) = −λ̃W − t(1− β)ε+ ∆˜̂q0 + ∆2∆̂q̃0 (4.3.55)

+
1

γ

〈
log

∫ ∞
−∞

dwe−γV (w,z)
〉
z

+
t∆

2
√
π

∫ ∞
−∞

dse−s
2

g(ε̃+ s
√

2q̃0),

where V (w, z) = ∆̂w2 + η|w| − λ̃w − zw
√
−2˜̂q0 and 〈· · · 〉z represent an average

over the normal variable z.

The solution of the saddle point equations that can be derived from the above

expression, confirms the expectation that the L1 regularization produces a shift

towards higher values of N/T of the feasible-unfeasible transition. Even tough

the L1 regularizer is not enough to prevent the occurrence of such transition,

nevertheless the accessible region of phase space is greater with respect to the

standard situation. The shift in the critical point due to the regularization is

clearly shown in Figures 4.11 and 4.12, where we plot the behavior of the suscep-

tibility and of the estimation error.
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Figure 4.12: Estimation error as a function of T/N for different values of η for the L1

regularize ES.

In summary, we have considered a generalized problem of portfolio selection

where we accounted for the impact of liquidation strategies. We have explicitly

shown in the case of Expected Shortfall that, once market impact has been taken

into account, one has to solve a regularized problem where the norm of the vector

of weights enters into the cost function. We have considered the cases of linear and

instantaneous market impact, showing in both cases that the accessible region of

phase space is augmented by the presence of the regularizer. Since market impact

is a real feature of financial markets, one may at this point wonder whether the

effect of finite liquidity may be detected in real data by means of an augmented

stability of optimal portfolio solutions with respect to the case of purely random

returns. Figure 4.13 refers to an analysis carried on using data from the New

York Stock Exchange. Notably, we considered daily returns of the 41 more repre-

sentative assets from ranging from 1970 to 2007. We can then rely on time series

of length Tmax = 6908. In order to see whether some differences with respect to

the case of random data may arise when solving the optimal portfolio problem,

we compared the results of the linear programming problem (4.2.12) obtained

from the real time series and random time series. In order to make averages we

proceeded in the following way. For a fixed value of T , we divided the real time
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Figure 4.13: Inverse of the minimum of the cost function for real data taken from the Dow
Jones (blue dots), i.i.d. gaussian variables (green dots) and random variables with the same
correlation of real data (red dots) .

series into chunks of length T , we computed the solution of the linear program-

ming problem and we averaged over chunks. Artificial data have been treated in

the same way starting from random time series of length Tmax. Figure 4.13 shows

the inverse of the cost function computed for the optimal portfolio in three cases:

real returns, independent gaussian returns and gaussian returns generated with

the same correlation of real ones. Keeping in mind that in the unstable region

of the optimization problem the cost function diverges, we can distinguish from

the figure that a difference between solutions computed using real returns and

solutions computed from random data exists. In particular the unstable region is

shifted towards greater values of the ratio N/T . This may be due to the presence

of a market impact in real data.

4.4 Summary and perspectives

We considered in this chapter the topic of portfolio optimization. Given a set of

N assets, the problem we considered was that of finding the portfolio of mini-

mal risk. As a measure of risk, we considered the so called Expected Shortfall,
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4.4 Summary and perspectives

which belongs to the class of coherent risk measures. Coherent risk measures are

characterized by instabilities when time series are too short with respect to the

size of portfolio. We argued that a possible remedy for such instabilities may be

the introduction of regularizers in the optimization problem. Notably, we showed

that regularized problems naturally arise when accounting for the impact of port-

folio liquidation. We explicitly showed that the introduction of an L2 regularizer

in the optimization problem under ES completely removes the instability of the

risk measure, as well as the presence of an L1 regularizer is enough to shift the

instability, thus increasing the accessible volume of phase space. This is of par-

ticular interest since practical cases of portfolio selection operate in the regime

N ∼ T where risk measures become unstable, so that taming fluctuations in this

regime may be a good way to select a portfolio closer to the real optimal one. We

also presented some preliminary results concerning the analysis of real data, that

support the idea that market impact should be accounted for when searching for

optimal investment strategies.
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Chapter 5

Conclusions

In this thesis we have discussed problems of economic relevance through the

prism of statistical mechanics of disordered systems. In all the problems we have

considered, the aim was that of understanding how the presence of interactions

between units at the ”microscopic” scale reflects at the macroscopic level in non

trivial emergent collective properties. The very complex nature of economic sys-

tems, built of individuals that interact according to heterogeneous behavioral

rules, has been modeled by considering systems with random couplings. In this

respect, statistical mechanics of disordered systems provides tools that allows for

the analytical characterization of systems of heterogeneous agents and for the de-

termination of phase diagrams to describe the typical properties of these systems

in terms of few relevant parameters.

The first part of the thesis was devoted to discuss the consequences of some

idealizations usually assumed in the modeling of financial markets. Notably, we

first considered the topic of information efficiency. In the context of a simple

model, we showed that as market become efficient they start being dominated

by trend followers, which are usually associated with a destabilizing effect on

the market. Moreover, the region of phase space where the market is perfectly

efficient turns out to be a critical line where a phase transition of the second

order occurs. In the context of the model we have introduced, we claimed that

information efficiency may play a non-trivial role in triggering the occurrence of

bubble events. A natural development of the present work is that of proving this
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claim. A first step in this direction may be that of extending the framework by

Hommes [2006] to the case of fundamentalists with different bits of information

and to recover in this context the picture of information efficiency we have dis-

cussed in chapter 2. Another direction for future investigations may as well be

that of introducing a dynamics for information costs, in such a way to see whether

the market follows a self-organized path towards the critical line.

As a second point, we addressed the problem of the effect on the underlying

market of the proliferation of financial instruments. By accounting for a feed-

back between derivative market and underlying one, which is due to financial

institutions trading on the underlying for hedging derivatives, we showed that

the proliferation of financial instruments drives the market towards a state that

closely resemble that of the efficient, arbitrage free complete market described

by APT. Also in this case, however, the same region of phase space is the locus

of a sharp phase transition. In this respect we argued that the path towards

ideal markets may be a path towards unstable markets, a point that should be

taken into account when deciding for regulatory policies. Possible directions for

future research include i) a deep discussion about possible stabilizing effects of

taxes on trading activities, such as the Tobin tax; ii) the introduction of an util-

ity function for consumption from which demand for derivatives may be derived;

iii) extension of the present model to the case of an endogenous generated risk

neutral measure, as that considered by Marsili [2009].

Although the problems we discussed may be of relevance in the discussion

concerning policy issues, the tone of our discussion was definitely on the theo-

retical side in the first part of this thesis. The second part of the thesis was

instead devoted to a problem of immediate impact on real practice, namely that

of portfolio optimization. The problem is that of finding the portfolio that min-

imizes a certain measure of risk. In practice, the real risk is unknown and the

optimization problem is done on the basis of estimations of risk made from his-

torical data. Real data are however noisy and this may cause troubles related

over-fitting, i.e. the optimal portfolio computed on the basis of historical data

may be dramatically different from the true optimal one. Statistical mechanics
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has revealed very useful also in this context, allowing for the determination of pre-

cise phase diagrams where a sharp phase transition discriminates a region where

the optimization problem has solutions and one where the optimization problem

cannot be solved. Notably, the latter is characterized by large fluctuations and

divergent estimation errors. In this context, we showed that accounting for the

impact of liquidation strategies on the market leads to a regularized optimization

problem where such problems are drastically reduced. Natural extensions of the

present work concern i) the derivation of general results for the class of coherent

risk measures; ii) the study of a generalized ES problem with a mixed L1 and

L2 regularization, iii) a deeper analysis of real data, in order to show whether

regularized optimization problem may improve the real practice.

In summary, we tried to show that concepts and tools borrowed from statistical

mechanics may give an useful perspective in the discussion of problems related

to financial markets. In the three cases we have discussed the major contribution

of statistical mechanics has been that of allowing for a proper understanding

of the connection between interactions at the ”microscopic” scale and collective

properties that appear at the ”macroscopic” scale. This allowed also to put in

the same framework problems in principle very different that, once seen through

the lenses of statistical mechanics, have been recognized as different expressions

of the same phenomena.
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Appendix A

Information efficiency and

financial stability

A.1 The statistical mechanics analysis

The competitive equilibrium solution of our problem can be obtained through the

minimisation of the following Hamiltonian function

Hε =
N2

4Ω

∑
ω,k0

(Rω − pω,k0)2 +
ε

2

∑
i,m

zmi , (A.1.1)

with pω,k0 = 1
N

∑
i,m z

m
i δkωi ,m +

∑
k0

z
k0
0

N
. In order to compute the minima of H we

introduce the partition function

Z(β) =

∫ ∞
0

dz+
0

∫ ∞
0

dz−0 · · ·
∫ ∞

0

dz+
N

∫ ∞
0

dz−Ne
−βHε{zmi }. (A.1.2)

In the limit β → ∞ integrals are dominated by those configurations {zmi } that

minimise the Hamiltonian. The central quantity to compute is the free energy

fβ = −β−1 logZ(β), which has to be averaged over the realisations of the disorder,

namely {kωi , Rω}. In the following we are going to consider kωi = ±1 with equal

probability ∀ i, ω, and we take Rω = R + R̃√
N

, where R̃ are Gaussian variables
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A.1 The statistical mechanics analysis

with zero mean and variance equal to s2. In order to compute the average over

the disorder 〈fβ〉 we can resort to the so called replica trick through the identity

logZ = limM→0(ZM−1)/M . The problem reduces then to that of computing the

average over the disorder of the partition function of M non interacting replicas

of the system:

〈
ZM
〉

=
〈

Tr{z}
∏
a

δ

(
NR−

∑
i

zi,a − z0,a

)
×

e
−β
"P

a,ω,k0(NRω−
P
i,m zmi δkωi ,m

−zk0
0 )2+ε

P
i,a

z+
i,a

+z−
i,a

2

#〉
,

with a ∈ {1, . . . ,M}, i ∈ {1, . . . , N}, ω ∈ {1, . . . ,Ω}, m ∈ {−1, 1} and k0 ∈
{−1, 1} and zi.a = (z+

i,a+z−i,a)/2 . We verified through numerical simulations that,

for the specific public signal k0 that we considered in this paper,
〈
z+

0

〉
=
〈
z−0
〉

so, in order to simplify the calculation, we make the assumption z+
0 = z−0 = z0.

After performing a Hubbard-Stratonovich transformation in order to linearize

the quadratic term of the Hamiltonian, taking the average over the quenched

variables introduces an effective interaction between replicas:

〈Zn〉 =
〈∫
{dQa,b}{dQ̂a,b}{dR̂}Tr{z}

e−
P
a,b Q̂a,b(NQa,b−

P
i ∆a

i ∆b
i)−

P
a R̂a(NR−

P
i zi,a−z0,a) ×

e
−βN/Ω

P
a,b,ω(R̃ω)2

“
βQa,b
α

+δa,b

”−1

−βε
P
i,a zi,a ×

e
−Ω

2
Tr log

“
βQa,b
α

+δa,b

”〉
,

where we have introduced the overlap matrix Qa,b and the variables ∆i.a =

(z+
i,a − z−i,a)/2, while Q̂a,b and R̂a are conjugated variables that come from in-

tegral representations of δ functions:

δ(X −X0) ∝
∫
dX̂e−X̂(X−X0). (A.1.3)

In order to make further progress we consider the replica symmetric ansatz,

namely we take

Qa,b = q0 + α
χ

β
δa,b (A.1.4)

Q̂a,b = −β
2q̂0

α2
+
β2q̂0/α

2 + βw/α

2
δa,b (A.1.5)
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A.1 The statistical mechanics analysis

The resulting expression is handled in such a way to be able to use saddle point

methods in the limit N, β → ∞ (see Caccioli et al. [2009] for more details on a

similar calculation). The final result is given in terms of the free energy

f(q0, χ, q̂0, w, R̂, z0) =
s2 + q0

1 + χ
+2

R̂R

α
−2

R̂z0

α
+
χq̂0

α
− wq0

α
+

2

α

〈
minz≥0 {V (z)}

〉
t
,

(A.1.6)

with the potential V (z) given by

V (z) =
w

2
∆2 −

√
q̂0t∆− R̂z + εz (A.1.7)

and where we used 〈· · · 〉t to denote averages over the normal variable t. The

corresponding saddle point equations are

w =
α

1 + χ
(A.1.8)

q̂0 =
α(s2 + q0)

(1 + χ)2
(A.1.9)

R = z0 + 〈∆∗〉t (A.1.10)

q0 = 〈∆∗2〉t (A.1.11)

χ =
〈t∆∗〉t√

q̂0

(A.1.12)

R̂ = 0, (A.1.13)

where

∆∗(t) = θ(t− τ)

√
q̂0

w
(t− τ) + θ(−t− τ)

√
q̂0

w
(−t− τ) (A.1.14)

τ =
ε√
q̂0

. (A.1.15)

Using these equations it is possible to compute 〈Hε〉 = q0+s2

(1+χ)2 . It is useful to

define the three functions

ψr(τ) = 2

∫ ∞
τ

dte−t
2/2(t− τ) =

√
2

π
e−τ

2/2 − τerfc

(
τ√
2

)
(A.1.16)

ψq(τ) = 2

∫ ∞
τ

dte−t
2/2(t− τ)2 = (1 + τ 2)erfc

(
τ√
2

)
−
√

2

π
τe−τ

2/2(A.1.17)

ψχ(τ) = 2

∫ ∞
τ

dte−t
2/2t(t− τ) = erfc

(
τ√
2

)
(A.1.18)

85



A.1 The statistical mechanics analysis

It is now possible to express equations (A.1.10), (C.1.6) and (B.1.23) in terms of

these non-linear functions.We can now look for a parametric solution in terms of

τ , and consider α as an independent variable. From the definition of τ we have

q̂0 = ε2/τ 2. Inserting equation (A.1.8) into equation (B.1.23) we find

α =
1 + χ

χ
ψχ(τ), (A.1.19)

while from equation (C.1.6) we get

q0 =
ε2

τ 2

ψq(τ)

ψ2
χ(τ)

χ2. (A.1.20)

Inserting these expressions into equation (A.1.9) we obtain

ε2

τ 2
=

s2ψχ(τ)

χ(1 + χ)
+
ε2

τ 2

ψq(τ)χ

ψχ(τ)(1 + χ)
, (A.1.21)

from which

χ± =

−1±
√

1 + 4ψχ(τ)s2 τ2

ε2

(
1− ψq(τ)

ψχ(τ)

)
2(1− ψq(τ)/ψχ(τ))

. (A.1.22)

Since χ has the meaning of a distance between replicas the only physical solution

is χ = χ+. Inserting this expression for χ in the previous equations makes possible

to express all order parameters and α in terms of the functions ψr, ψq, ψχ and of

the free parameters ε and τ .

A parametric solution can be found also for the case of α fixed and ε variable.

From equation (B.1.23) we find

χ =
ψχ(τ)

α− ψχ(τ)
. (A.1.23)

From equation (C.1.6)

q0 =
ε2

τ 2

(1 + χ)2

α2
ψq(τ). (A.1.24)

Finally, inserting this expression in equation (A.1.9) we can now express ε as:

ε2

τ 2
=

αs2

(1 + χ)2

1

1− ψq(τ)

α

. (A.1.25)

As before, using this expression, is now possible to write the order parameters in

terms of ψr, ψq, ψχ and of the free parameters α and τ .
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Appendix B

Proliferation of derivatives and

market stability

B.1 The statistical mechanics analysis

The problem is the one of finding the ground state of the Hamiltonian

H =
1

2

∑
ω

πω(rω)2 +
∑
i

εi
Ω
si =

1

2Ω

Ω∑
ω=1

(rω)2 +
N∑
i=1

f(si). (B.1.1)

Let’s write down the partition function

Zq,a = Trr,se
−βHδ

(∑
ω

qωrω

)
Ω∏
ω=1

δ

(
rω − dω −

∑
i

sia
ω
i

)
(B.1.2)

=

∫
du

2π
Trr,se

−β
P
i f(si)

Ω∏
ω=1

eiur
ωqω−β

2
rω2

δ

(
rω − dω −

∑
i

sia
ω
i

)
(B.1.3)

=

∫
du

2π
Trr,s,ξe

−β
P
i f(si)

Ω∏
ω=1

eiur
ωqω−β

2
rω2+irωξω−idωξω−iξω

P
i sia

ω
i (B.1.4)

where we have used the shorthand Tr to indicate integrals on the variables in the

index. Here it is understood that all variables si are integrated from 0 to s0 and
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B.1 The statistical mechanics analysis

all variables rω and ξω are integrated over all the real axis, with a factor 1/(2π)

for each ω. The next step is to replicate this, i.e. to write

Zm
q,a =

∫
d~u

2π
Tr~r,~s,~ξe

−β
P
i,a f(si,a)

Ω∏
ω=1

ei
P
a[uarωa q

ω−β
2
rω2
a+irωa ξ

ω
a−idωξωa ]−i

P
i a
ω
i

P
a si,aξ

ω
a

=

∫
d~u

2π
Tr~s,~ξe

−β
P
i,a f(si,a)

Ω∏
ω=1

e−
1

2β

P
a(uaqω+ξωa )2−idω

P
a ξ

ω
a−i

P
i a
ω
i

P
a si,aξ

ω
a

where the sums on a runs over the m replicas. In the second equation above, we

have performed the integrals over rωa . We can now perform the average over the

random variables aωi which will be assumed to be normal with zero average and

variance 1/Ω. This yields

〈Zm
q 〉 =

∫
dG

∫
d~u

2π
Tr~ξ

Ω∏
ω=1

e−
1

2β

P
a(uaqω+ξωa )2−idω

P
a ξ

ω
a− 1

2

P
a,b ξ

ω
a ξ
ω
b Ga,b〈Is(G)〉ε

〈Is(G)〉ε =
〈

Tr~se
−β
P
i,a f(si,a)

∏
a≤b

δ

(
ΩGa,b −

∑
i

si,asi,b

)〉
ε
,

where the average 〈. . .〉ε is taken over gaussian variables with mean ε and variance

σ2
ε and the symbol dG stands for integration over all the independent entries of

the matrix G. In order to evaluate the latter we use a standard delta function

identity bringing into play the matrix R = Ra,b conjugated to the overlap matrix

G = Ga,b. The ε-average is evaluated as follows

〈Is(G)〉ε =

∫
dRTr~se

P
a≤bRab[ΩGab−

P
i si,asi,b]

∫ +∞

−∞

∏
i

[
dεie

− (εi−ε)
2

2σ2
ε
−β
P
a f(si,a)

]
=

∫
dRTr~se

P
a≤bRab[ΩGab−

P
i si,asi,b]−β

P
i,a εs

a
i +

Ωβ2σ2
ε

2

P
a,bGa,b ,

where the quadratic term (
∑

a s
a
i )

2 arising from the gaussian integration has been

replaced by the overlap matrix. Taking the replica symmetric (RS) ansatz for G

and R

Gab = g +
χ

β
δa,b, Rab = −β2r2 +

β2r2 + βν

2
δa,b (B.1.5)
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B.1 The statistical mechanics analysis

the ~s-independent part of the exponent in the integrand takes the form

Ω
∑

a≤bRa,bGa,b + Ωβ2σ2
ε

2

∑
a,bGa,b

= Ωm
(
g + χ

β

)(
βν
2
− β2r2

2

)
− Ωm(m−1)

2
gβ2r2 + Ωσ2

ε

2
(m2β2g +mβχ)

' Ωmβ
2

(νg − r2χ+ σ2
εχ+ νχ/β)

where we have neglected terms of order m2 in view of the m → 0 limit. This

yields

Is(G) =

∫
dRe

Ωmβ
2

[νg−r2χ+σ2
εχ+νχ/β]Wε[ν, r]

N , (B.1.6)

where we have defined

Wε[ν, r] =
[
Tr~se

−β
P
a[εsa+ ν

2
s2a]+ 1

2(βr
P
a sa)

2]N
. (B.1.7)

In the limit m→ 0 this quantity can be evaluated as follows

Wε[ν, r] = e
N log

"
Tr~se

−β
P
a[εsa+ ν

2 s
2
a]+ 1

2 (βr
P
a sa)2

#

= exp
{
N log

[
Tr~se

−β
P
a[εsa+ ν

2
s2a]
〈
ezβr

P
a sa
〉
z

]}
where we have performed a Hubbard-Stratonovich transformation in order to de-

couple the {sa} variables introducing the average 〈. . .〉z over the gaussian variable

z. Clearly:

Wε[ν, r] = exp

{
N log

〈(∫ s0

0

dse−β[s2+s(ε−zr)]
)m 〉

z

}
. (B.1.8)

Exploiting the usual identity

log〈Xm〉 ' m〈logX〉, (B.1.9)

valid for m→ 0, we finally obtain

Wε[ν, r] = exp

{
Nm

〈
log

∫ s0

0

dse−β[s2+s(ε−zr)]
〉
z

}
. (B.1.10)

Inserting (B.1.10) into (B.1.6) we eventually get

Is(G) =

∫
dRe

Ωmβ
n

1
2

[νg−r2χ+σε2χ+νχ/β]+n
β

D
log
R∞
0 dse−β[εs+νs2/2−rsz]

E
z

o
(B.1.11)
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B.1 The statistical mechanics analysis

After inserting (B.1.11) into (B.1.5) we have to perform the (m · Ω) integrals in

ξωa . For each ω

J [χ, g, u] =
∫
d~ξe−

1
2β

P
a(uaqω+ξa)2−idω

P
a ξa−

1
2

P
a,b ξaξbGa,b (B.1.12)

The matrix G, in the RS ansatz has two distinct eigenvalues:

a‖ = mg + χ
β

multiplicity 1 (B.1.13)

a⊥ = χ
β

multiplicity m− 1. (B.1.14)

Therefore the determinant of
(
G + I

β

)
is clearly

det

(
G +

I

β

)
= e−

1
2 [m log(χ+1)+log(1+βmg

1+χ )]. (B.1.15)

The expression (B.1.15) assists performing the gaussian integral in (B.1.12) as

J [χ, g, u] = e−
1
2

log(1+βm g
1+χ)−m2 log(1+χ)+ βm

2(1+χ+mβg)
(uqω+idω)2−βm

2
(uqω)2

(B.1.16)

where we have rescaled u as u → βu and considered for ua the form ua = u ∀a.

Taking the average over qω in the limit m→ 0 we use the fact that

〈emf(q)〉q ' 1 +m〈f(q)〉q ' em〈f(q)〉q

which in our case yields

〈f(q)〉q = − βχ

1 + χ
u2 − 1

2

β〈d2〉
1 + χ

,

having taken for q an exponential distribution with average 1 . Hence

〈Zm
q 〉 =

∫
dG

∫
dR

∫
d~u

2π
emΩβF (B.1.17)

F = − u2χ

1 + χ
− 1

2

g + 〈d2〉
1 + χ

− 1

2β
log(1 + χ) +

1

2

[
νg − r2χ+ σ2

εχ+
νχ

β

]
+
n

β

〈
log

∫ s0

0

dse−β[εs+νs2/2−rsz]
〉
z

. (B.1.18)

We first observe that the saddle point equation for u yields u = 0. Then we take

the limit β →∞ which gives

F = −1

2

g + 〈d2〉
1 + χ

+
1

2

[
νg − r2χ+ σ2

εχ
]
−n

〈
min

0≤s≤s0

[
εs+

ν

2
s2 − rsz

]〉
z

(B.1.19)
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B.2 Computation of the critical line

The saddle points equations, obtained differentiating (B.1.18) with respect to

the order parameters and sending β to ∞, read

r2 =
g + 〈d2〉
(1 + χ)2

+ σ2
ε (B.1.20)

ν =
1

1 + χ
(B.1.21)

g = n〈s2
z〉z (B.1.22)

rχ = n〈szz〉z (B.1.23)

(B.1.24)

where sz = min{s0,max{0, (rz − ε)/ν}}, since, in our case, the supply is limited

to 0 ≤ s ≤ s0. The above set of equations can then be recasted in the form

sz = min
{

1,max
{

0,
(
z
√

g+〈d2〉
(1+χ)2 + σ2

ε − ε
)

(1 + χ)
}}

(B.1.25)

g = nEz[s
2
z] (B.1.26)

χ = nEz [szz](1+χ)√
g+∆+σ2

ε (1+χ)2
. (B.1.27)

The above calculation can also be performed, in order to probe the solution,

introducing an auxiliary field hω coupled to the returns rω. This allows also

to easily compute the average and the fluctuations of returns by deriving with

respect to h the logarithm of the free energy and then setting h = 0:

r̄ =
∑
ω

πωrω =
d̄

1 + χ
(B.1.28)

δr2 =
∑
ω

πω(rω − r̄)2 =
g + 〈d2〉 − 〈d〉2

(1 + χ)2
(B.1.29)

B.2 Computation of the critical line

We show here how it is possible to find the critical line in the case of unbounded

supply. Let us consider the case s ∈ [o,∞), so that sz = max
{

0, r
ν
(z − z0)

}
, with

z0 = ε
r
. From the saddle pont equations we get

g =
n[〈d2〉+ σ2

ε (1 + χ)2]I2(z0)

1− nI2(z0)
(B.2.30)
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B.2 Computation of the critical line

where we have defined I2(z0) =
∫∞

0
dz e

−z2/2
√

2π
(z−z0)2. Inserting now this expression

for g into equation (B.1.20) and explointing r = ε/z0 we obtain

ε2

z2
0

(1− nI2(z0)) = σ2
ε +

〈d2〉
(1 + χ)2

(B.2.31)

that using (B.1.23) can be writen as

ε2

z2
0

(1− nI2(z0)) = σ2
ε + 〈d2〉(1− nI1(z0))2, (B.2.32)

where I1 =
∫∞

0
dz e

−z2/2
√

2π
(z−z0)z. If we now look for a solution in the case χ→∞

the above equation reduces to

ε2

σ2
ε

(
1− I2(z0)

I1(z0)

)
= z2

0 (B.2.33)

and we also have that n = 1/I1(z0). These equations define the critical line. In

particular it is clear at this level that the dependence on the parameters of the

risk premia distribution enters through the ratio ε/σε
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Appendix C

Optimal liquidation strategies

regularize portfolio selection

C.1 The replica calculation for the L2 regular-

ized Expected Shortfall

We present here the replica calculation used to solve the following optimization

problem: find the minimum of the cost function

E[ε, {uτ}] = (1− β)Tε+
T∑
τ=1

uτ + η̃‖w‖2

under the constraints

uτ ≥ 0,

uτ + ε+
N∑
i=1

xi,τwi ≥ 0

and ∑
i

wi = WN.
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C.1 The replica calculation for the L2 regularized Expected Shortfall

The replicated partition function, corresponding to the partition function of n

copies of the system can be computed as

Zn
γ [xi,τ ] =

∫ ∞
−∞

n∏
a=1

dεa
∫ ∞

0

T∏
τ=1

n∏
a=1

duaτ

∫ ∞
−∞

N∏
i=1

n∏
a=1

dwai

∫ ∞
−∞

n∏
a=1

dλa

×
∫ ∞

0

T∏
τ=1

n∏
a=1

dµaτ

∫ ∞
−∞

T∏
τ=1

n∏
a=1

dµ̂τ exp

{∑
a

λa(
∑
i

wai −WN)

}

×
∏
τ

exp

{∑
a

iµ̂aτ

(
uaτ + εa +

∑
i

xi,τw
a
i − µaτ

)}

× exp

{
−γ
∑
a

(1− β)Tεa − γ
∑
a,τ

uaτ − γη̃
∑
i

wai
2

}
.

Averaging over the quenched variables {xi,τ} and introducing the overlap matrix

Qa,b = 1
N

∑
iw

a
iw

b
i one obtains

Zn
γ [xi,τ ] =

∫
[Dε][Du][Dw][Dλ][Dµ][Dµ̂][DQ][DQ̂] exp

{∑
a

λa(
∑
i

wai −WN)

}

×
∏
τ

exp

{
−1

2

∑
a,b

µ̂aτQa,bµ̂
b
τ

}
exp

{∑
a,b

Q̂a,b

(
NQa,b −

∑
i

waiw
b
i

)}

× exp

{
−γ
∑
a

(1− β)Tεa − γ
∑
a,τ

uaτ − γη̃
∑
i

wai
2

}

×
∏
τ

exp

{
i
∑
a

µ̂aτ (uaτ + εa − µaτ )

}
.
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C.1 The replica calculation for the L2 regularized Expected Shortfall

We can now perform the Gaussian integral over the variables {µ̂aτ}:

Zn
γ [xi,τ ] =

∫
[Dε][Du][Dw][Dλ][Dµ][DQ][DQ̂] exp

{∑
a

λa(
∑
i

wai −WN)

}

× exp

{
−γ
∑
a

(1− β)Tεa − γ
∑
a,τ

uaτ − γη̃
∑
i

wbi
2

}

× exp

{∑
a,b

Q̂a,b

(
NQa,b −

∑
i

waiw
b
i

)}

×
∏
τ

exp

{
−1

2

∑
a,b

(uaτ + εa − µaτ )Q−1
a,b

(
ubτ + εb − µbτ

)}

× exp

{
−T

2
tr logQ

}
.

We are now allowed to perform a Gaussian integration over the variables {wai },
which is going to bring the inverse of the operator Q̂a,b + γη̃δa,b into the game:

Zn
γ [xi,τ ] =

∫
[Dε][Du][Dλ][Dµ][DQ][DQ̂] exp

{∑
a

−wλaN

}

× exp

{
−γ
∑
a

(1− β)Tεa − γ
∑
a,τ

uaτ

}

×
∏
τ

exp

{
−1

2

∑
a,b

(uaτ + εa − µaτ )Q−1
a,b

(
ubτ + εb − µbτ

)}

× exp

{∑
a,b

Q̂a,bNQa,b

}
exp

{
−T

2
tr logQ

}
exp

{
−nN

2
log 2

}

× exp

{
−N

2
tr log(Q̂+ γη̃δa,b)

}
exp

{
N

4

∑
a,b

λa
(
Q̂a,b + γη̃δa,b

)−1

λb

}
.
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C.1 The replica calculation for the L2 regularized Expected Shortfall

Integrating now over the {λa} we obtain

Zn
γ [xi,τ ] =

∫
[Dε[Du][Dµ][DQ][DQ̂] exp

{
−γ
∑
a

(1− β)Tεa − γ
∑
a,τ

uaτ

}

×
∏
τ

exp

{
−1

2

∑
a,b

(uaτ + εa − µaτ )Q−1
a,b

(
ubτ + εb − µbτ

)}

× exp

{
N
∑
a,b

Q̂a,bQa,b

}
exp

{
−T

2
tr logQ

}
exp

{
−nN

2
log 2

}

× exp

{
−N

2
tr log(Q̂+ γη̃δa,b)

}
exp

{
−Nw2

∑
a,b

(Q̂a,b + γη̃δa,b)

}
.

Introducing the variables yaτ = µaτ −ubτ and zaτ = µaτ +ubτ and integrating over the

{zaτ} one is left with

Zn
γ [xi,τ ] =

∫
[Dε][DQ][DQ̂][

× exp

{
−Nw2

∑
a,b

(Q̂a,b + γη̃δa,b)− γ(1− β)
∑
a

Tεa +N
∑
a,b

Q̂a,bQa,b

}

× exp

{
−Tn log γ − T

2
tr logQ− N

2
tr log(Q̂+ γη̃δa,b)−

nN

2
log 2

}
× exp {T logZγ({εa, Q})} ,

where we have defined

Zγ({εa, Q}) =

∫ ∏
a

dya exp

{
−1

2

∑
a,b

(ya − εa)Q−1
a,b(y

b − εb)

}

× exp

{
γ
∑
a

yaθ(−ya)

}
.

We now take the replica symmetric (RS) ansatz

Qa,b =

{
q1, a = b
q0, a 6= b

(C.1.1)

Q̂a,b =

{
q̂1, a = b
q̂0, a 6= b.

(C.1.2)
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C.1 The replica calculation for the L2 regularized Expected Shortfall

and we define the susceptibility ∆q = q1 − q0 as well as ∆q̂ = q̂1 − q̂0. For Q−1

we then have

Q−1
a,b =

{
(∆q − q0)/(∆q)2 + O(n), a = b
−q0/(∆q)

2 + O(n), a 6= b
(C.1.3)

The effective partition function Zγ({εa, Q}) reads

Zγ({εa, Ra, Q}) =

∫ ∏
a

dxa exp

{
−1

2

∑
a,b

xaQ−1
a,bx

b

}

× exp

{
γ
∑
a

(xa + εa)θ(−xa − εa)

}
,

where we have defined xa = ya − εa. By introducing a Gaussian variable s with

measure dPq0(s) = ds√
2πq0

e−s
2/2q0 we obtain, in the limit n→ 0,

1

n
log(Zγ({εa, Q}) =

q0

2∆q
+

∫
dPq0(s) logBγ(s, ε,∆q),

where

Bγ(s, ε,∆q) =

∫
dx exp

{
−(x− s)2

2∆q
+ γ(x+ ε)θ(−x− ε)

}
.

If we also consider that

tr logQ = n(log ∆q + q0/∆q)

and

tr log(Q̂+ γη̃δa,b) = n(log(∆q̂ + γη̃) + q̂0/(∆q̂ + γη̃)),

we finally obtain the free energy

−γF (q0,∆q, q̂0,∆q̂, ε)

nN
= q0∆q̂ + q̂0∆q + ∆q∆q̂ − w2 (∆q̂ + γη̃)− γt(1− β)ε

− t log γ + t

∫
dPq0(s) logBγ(ε, s, R,∆q)−

t

2
log ∆q

− log 2

2
− 1

2

(
log(∆q̂ + γη̃) +

q̂0

∆q̂ + γη̃

)
,

where we have put T = tN . From the saddle point equations for q̂0 and ∆q̂ we

get

∆q̂ + γη̃ =
1

2∆q

q̂0 =
w2 − q0

2(∆q)2
.
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C.1 The replica calculation for the L2 regularized Expected Shortfall

Exploiting these relations the free energy becomes

−γf(ε, q0,∆q) = − γF
nN

=
1

2
− t log γ − γt(1− β)ε

+ t

∫
dPq0(s) logBγ(ε, s, R,∆q) +

1− t
2

log ∆q +
q0 − w2

2∆q
− γη̃q0.

Notice that

∆q =
1

2N

∑
i

(wai − wbi )2 (C.1.4)

is the squared distance between two approximate solution of the optimization

problem, drawn with a Gibbs measure with energy E. As γ → ∞ the Gibbs

measure gets more and more peaked on the optimal solution. If the latter is

unique, we expect ∆q → 0. Indeed, given that the measure is nearly Gaussian,

we expect ∆q ∼ 1/γ. Hence, in the large γ limit, it is natural to rescale ∆q = ∆/γ

keeping ε and q0 independent of γ. In this limit we obtain the energy function

E = t(1− β)ε− q0 − w2

2∆
−
∫ −∆

−∞

dx√
2πq0

e−(x−ε)2/(2q0)

(
x+

∆

2

)
+

t

2∆

∫ 0

−∆

dx√
2πq0

e−(x−ε)2/(2q0)x2.

We now define x̃ = x/∆, ε̃ = ε/∆ and q̃0 = q0/∆
2. The reason for this

change of variables is that we want to expose the singular behavior at the phase

transition in terms of a single divergent quantity1 ∆. Hence, we anticipate that ε̃

and q̃0 are going to attain finite values at the transition. In terms of the rescaled

variables, we have

E(ε̃, q̃0,∆) =
w2

2∆
+ ∆

[
t(1− β)ε̃− q̃0

2
+

t

2
√
π

∫ ∞
−∞

dse−s
2

g(ε̃+ s
√

2q̃0)

]
+ η̃tq̃0∆2

where

g(x) =


0, x ≥ 0
x2, −1 ≤ x ≤ 0

−2x− 1, x < −1
(C.1.5)

and q̃0 and ε̃ are the solutions of the saddle point equations

−1 +
t√

2πq̃0

∫
dse−s

2

sg′(ε̃+ s
√

2q̃0) + 2η̃∆ = 0, (C.1.6)

1It helps to note that ∆ is the susceptibility.
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C.2 The Maximal Loss problem

1− β +
1

2
√
π

∫
dse−s

2

g′(ε̃+ s
√

2q̃0) = 0, (C.1.7)

− w2

2∆2
+ t(1− β)ε̃− q̃0

2
+

t

2
√
π

∫
dse−s

2

g(ε̃+ s
√

2q̃0) + 2η̃∆q̃0 = 0. (C.1.8)

C.2 The Maximal Loss problem

We show here how to recover the correct β → 1 limit leading to the Maximal Loss

problem. The problem of finding the set of weights that minimizes the Maximal

Loss (4.3.49) can be cast into that of finding the minimum of the cost function

E[u] = u (C.2.9)

under the constraints

u+
∑
i

wixi,t ≥ 0 ∀t

and ∑
i

wi = WN.

Let us show how this can be recovered starting from the general optimization

problem under Expected Shortfall, where

E[ε, {uτ}] = (1− β)Tε+
T∑
τ=1

uτ , (C.2.10)

uτ ≥ 0 ∀τ, (C.2.11)

uτ + ε+
N∑
i=1

xi,τwi ≥ 0 ∀τ , (C.2.12)∑
i

wi = WN. (C.2.13)

The first observation is that, for ε ≥ ML, (C.2.12) is satisfied for any set

of {ui,τ} satisfying (C.2.11). The minimum of the cost function can then be

obtained by taking ε equal to the Maximal Loss and ui,τ = 0 ∀i, τ . By comparing

the resulting expression for (C.2.10) with (C.2.9), we can see that the two are
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C.3 The replica calculation for the L1 regularized Expected Shortfall

equivalent if we keep T (1 − β) = 1. If we now introduce the regularization, the

cost function for the Maximal Loss problem reads

E[u, {wi}] = u+
T

2C
‖~w‖2.

As in section 4.3.1, an equivalent expression can be obtained by introducing the

effect of the price impact. The two approaches are equivalent once we have taken

C =
T

2η
. (C.2.14)

Notice that one can derive Eq. (C.2.14) also by taking 1 − β = 1/T in (4.3.31),

which is indeed the appropriate confidence level for maximal loss, because in a

finite time window of T points, the worst possible outcome occurs with probability

1− β = 1/T .

C.3 The replica calculation for the L1 regular-

ized Expected Shortfall

We present here the replica calculation for the L1 regularized ES. We need to find

the minimum of

E[ε, {uτ}] = (1− β)Tε+
T∑
τ=1

uτ + η̃‖~w‖

under the constraints

uτ ≥ 0,

uτ + ε+
N∑
i=1

xi,τwi ≥ 0

and ∑
i

wi = WN.
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C.3 The replica calculation for the L1 regularized Expected Shortfall

The replicated partition function, corresponding to the partition function of n

copies of the system can be computed as

Zn
γ [xi,τ ] =

∫ ∞
−∞

n∏
a=1

dεa
∫ ∞

0

T∏
τ=1

n∏
a=1

duaτ

∫ ∞
−∞

N∏
i=1

n∏
a=1

dwai

∫ ∞
−∞

n∏
a=1

dλa

×
∫ ∞

0

T∏
τ=1

n∏
a=1

dµaτ

∫ ∞
−∞

T∏
τ=1

n∏
a=1

dµ̂τ exp

{∑
a

λa(
∑
i

wai −WN)

}

×
∏
τ

exp

{∑
a

iµ̂aτ

(
uaτ + εa +

∑
i

xi,τw
a
i − µaτ

)}

× exp

{
−γ
∑
a

(1− β)Tεa − γ
∑
a,τ

uaτ − γη̃
∑
i

|wai |

}
.

Averaging over the quenched variables {xi,τ} and introducing the overlap matrix

Qa,b = 1
N

∑
iw

a
iw

b
i one obtains

Zn
γ [xi,τ ] =

∫
[Dε][Du][Dw][Dλ][Dµ][Dµ̂][DQ][DQ̂] exp

{∑
a

λa(
∑
i

wai −WN)

}

×
∏
τ

exp

{
−1

2

∑
a,b

µ̂aτQa,bµ̂
b
τ

}
exp

{∑
a,b

Q̂a,b

(
NQa,b −

∑
i

waiw
b
i

)}

× exp

{
−γ
∑
a

(1− β)Tεa − γ
∑
a,τ

uaτ − γη̃
∑
i

|wai |

}

×
∏
τ

exp

{
i
∑
a

µ̂aτ (uaτ + εa − µaτ )

}
.
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C.3 The replica calculation for the L1 regularized Expected Shortfall

We can now perform the Gaussian integral over the variables {µ̂aτ}:

Zn
γ [xi,τ ] =

∫
[Dε][Du][Dw][Dλ][Dµ][DQ][DQ̂] exp

{∑
a

λa(
∑
i

wai −WN)

}

× exp

{
−γ
∑
a

(1− β)Tεa − γ
∑
a,τ

uaτ − γη̃
∑
i

|wai |

}

× exp

{∑
a,b

Q̂a,b

(
NQa,b −

∑
i

waiw
b
i

)}

×
∏
τ

exp

{
−1

2

∑
a,b

(uaτ + εa − µaτ )Q−1
a,b

(
ubτ + εb − µbτ

)}

× exp

{
−T

2
tr logQ

}
.

Introducing now the variables yaτ = µaτ − ubτ and zaτ = µaτ + ubτ and integrating

over the {zaτ} we obtain

Zn
γ [xi,τ ] =

∫
[Dε][Du][Dw][Dλ][DQ][DQ̂] exp

{∑
a

λa(
∑
i

wai −WN)

}

× exp

{
−γ
∑
a

(1− β)Tεa − γ
∑
a,τ

uaτ − γη
∑
i

|wai |

}

× exp

{∑
a,b

Q̂a,b

(
NQa,b −

∑
i

waiw
b
i

)}

×
∏
τ

exp

{
−1

2

∑
a,b

(uaτ + εa − µaτ )Q−1
a,b

(
ubτ + εb − µbτ

)}

× exp

{
−T

2
tr logQ− TN log γ + T logZγ({εa, Q})

}
where

Zγ({εa, Q}) =

∫ ∏
a

dya exp

{
−1

2

∑
a,b

(ya − εa)Q−1
a,b(y

b − εb)

}

× exp

{
γ
∑
a

yaθ(−ya)

}
.
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C.3 The replica calculation for the L1 regularized Expected Shortfall

In order to make further progress, let us consider the replica symmetric ansatz

Qa,b =

{
q1, a = b
q0, a 6= b

(C.3.15)

Q̂a,b =

{
q̂1, a = b
q̂0, a 6= b.

(C.3.16)

and introduce the following rescaling relations

∆q = q1 − q0 = ∆/γ, (C.3.17)

∆̂q = q̂1 − q̂0 = ∆̂γ, (C.3.18)

λa = λ̃a/γ, (C.3.19)

q̂0 = ˜̂q0/γ
2. (C.3.20)

The ~w-dependent part of the partition function∫
[Dw]e−γFw =

∫
[Dw]e

P
ia λ

awai −γη
P
i |wai |−

P
a,b Q̂a,b

P
i w

a
i w

b
i , (C.3.21)

exploiting the identity log〈Xn〉 ' n〈logX〉 valid for n → 0, after some manipu-

lations gives the following contribution to the free energy

Fw =
nN

γ

〈
log

∫
dwe

−γ
h
∆̂w2+η|w|−λ̃w−zw

√
−2˜̂q0

i〉
z
, (C.3.22)

where we have denoted by 〈· · · 〉z averages over the normal variables z. Upon

introducing also the new variables ε = ε̃∆ and q0 = q̃0∆2, after some algebra we

eventually obtain the full free energy

F (λ, ε̃, q̃0,∆, q̂0, ∆̂)

Nn
= −λW − t(1− β)ε+ ∆q̂0 + ∆2∆̂q̃0 (C.3.23)

+
1

γ

〈
log

∫ ∞
−∞

dwe−γV (w,z)
〉
z

+
t∆

2
√
π

∫ ∞
−∞

dse−s
2

g(ε̃+ s
√

2q̃0),

where

V (w, z) = ∆̂w2 + η|w| − λw − zw
√
−2q̂0 (C.3.24)

and

g(x) =


0, x ≥ 0
x2, −1 ≤ x ≤ 0

−2x− 1, x < −1
. (C.3.25)
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