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Introduction

In the last few years the study of condensed matter systems has received an

exceptional boost due to some experimantal breakthroughs in the field of

cold atoms. The unprecedented level of accuracy and precision reached in

this field allows to realize perfectly tunable quantum systems described e.g.

by the Hubbard, Bose-Hubbard, Luttinger and Kondo models. It is worth

stressing that until some decades ago such models were toy-models, i.e. theo-

retical simplified models proposed to capture the low energy physics of more

complex systems. At present, one of the long-term goals of this experimental

work is to concretly implement devices supporting quantum computation.

But most interestingly, the situation is now that the continuous experimen-

tal advances explore new frontiers of condensed matter physics, which call

for a theoretical understanding. The non-equilibrium dynamics in closed

quantum systems lies indeed at one of such frontiers. On the theoretical

side, while a lot of tools (mean field theory, renormalization group, con-

formal field theory, just to mention some of them) help in understanding

equilibrium systems, much less is known for systems out of equilibrium.

Out of the several ways in which an interacting quantum system may be

pushed out of equilibrium, here we concentrante on the case of a quantum

quench. This is nothing but a change in one of the system parameters: it

could happen slowly, through a continuous time dependence of a part of the

Hamiltonian, or suddenly. Both the slow and sudden quenches disclose very

rich physics linking different ingredients (e.g. quantum phase transitions,

thermalization, integrability) and stimulating the development of beautiful

theories.

In the case of a slow quench, the Hamiltonian visits differents points in

the phase space during its evolution. A particularly intriguing situation is

when at a given time the system crosses a phase transition: the initial and

final states are thus macroscopically different. An experimental milestone in

the observation of quantum phase transitions is the work by Greiner et al.

[78]. They succeeded in realizing the superfluid-insulator phase transition

ix



x Introduction

Figure 1: Absorption images of multiple matter wave interference patterns,

showing the Mott insulating phase and the superfluid phase. Adapted from

Ref. [78]

in the Bose-Hubbard model, see Fig. 1. Following this seminal work, other

experiments have been performed in this direction [133, 146, 121], for a

review see Ref. [10].

The interest in slow quenches is also related to quantum computation pro-

tocols, as in Adiabatic Quantum Computation [65, 134, 135]. The idea is to

map a the solution of a classical optimization problem into the ground state

of a quantum Hamiltonian. The way to find this (complex) unknown state

is buidling a time-dependent Hamiltonian, such that at the initial time it

possesses a known and very simple ground state and such that the ground

state of the final Hamiltonian is the solution of the complex problem. The

fundamental ingredient is the quantum adiabatic theorem. Starting the evo-

lution in the (known) ground-state, if the Hamiltonian is always gapped and

the Hamiltonian changes not too quickly, then the system will remain in the

ground state throughout the whole evolution, thus leading to the solution of

the optimization problem. Crossing a quantum phase transition spoils this

scheme, because in the thermodynamic limit the gap is known to vanish.

From the theoretical point of view, universality, which is at the deep roots

of quantum phase transitions, is the key for understanding the dynamics

of quenches involving critical points. On the grounds of simple arguments

based on universality, it is possible to predict the scaling of many observ-

ables related to the loss of adiabaticity at critical points, like the number

of topological defects. This is the main finding of the two seminal works

in this context [157, 115], which set the foundations of two equivalent the-

oretical frameworks known as Kibble-Zurek mechanism (KZM) and Adia-
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batic Perturbation Theory (APT) respectively. The KZM, originally for-

mulated for classical transitions driven by thermal fluctuations [156] and

then adapted to quantum systems at zero temperature, assumes that the

evolution of a system driven through a quantum phase transition becomes

diabatic when the time scale at which the Hamiltonian is varied is of the

order of the relaxation time, determined by the inverse of the instanta-

neous gap. Adiabaticity is recovered only when, after the critical point has

been crossed, the relaxation time comes back to be smaller than the time

scale of the variation of the Hamiltonian, τ, and the defect density can be

estimated via the correlation length ξ at the instant of the loss of adia-

baticity. KZM has been tested in various models through both analytical

and numerical studies [30, 33, 39, 40, 51, 52, 56, 59, 93, 104, 115, 157]

and it is also supported by experiments [133] and, in generalized formula-

tions, in Refs. [4, 22, 40, 43, 57, 60, 140]. Adiabatic perturbation theory

[115, 117], appeared almost contemporarily to the quantum rielaboration of

KZM, moves instead from a different perspective: the excitation probability

during the dynamics is estimated by considering only transitions involving

the instantaneous ground state and neglecting the contribution of direct pop-

ulation exchange between excited states. Then general scaling arguments

can be invoked in order to extract the dependence of the defect density on

the quench time scale τ . The crossing of critical points is actually only one of

the applications of APT, which also works for both gapped and gapless sys-

tems with quasi-particle excitations, sudden quenches with small amplitude

and finite temperature systems [39, 40, 41, 42, 127, 128] . It should be men-

tioned that recent studies have highlighted particular transitions apparently

not describable with these approaches [23, 25, 45, 49, 50, 104, 110, 141].

In the opposite limit, when a closed quantum system undergoes a sudden

quench, the energy after the quench is constant and is distributed among the

various degrees of freedom during the evolution. Different questions arise in

this case. Are the interactions within the degrees of freedom of the system

sufficient to establish ergodicity? Does the system reach asymptotically a

steady state? Is this steady state thermal? The definition of quantum er-

godicity is a very subtle topic which has been discussed from the early days

of quantum mechanics until now [47, 76, 97, 111, 144, 151]. A crucial result

of this theoretical discussion is that, differently from classical systems, in

quantum systems ergodicity must be defined with respect to macroscopic

observables rather than to states.

The issue of thermalization in closed quantum systems has triggered a

lot of attention after the experiment by Kinoshita et al., in which they real-

ized a nearly integrable system which does not thermalize, see Fig. 2. Indeed
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Figure 2: Time-of-flight absorption images of an ensemble of 1D Bose gases

after the atoms were placed in a superposition of ±2p0 momentum states.

Adapted from Ref. [89]

integrability implies an infinite number of conserved quantities, so that spec-

ifying the initial state through its energy is not enough to make predictions

about the asymptotic state. Nevertheless a characterization of the steady

state and of the asymptotic bahavior of some local observables is possible

through the generalized Gibbs ensemble (GGE), proposed by Rigol et al. in

Ref. [125]. The GGE is a statistical ensemble that keeps track of all the in-

tegrals of motion. The conditions of applicability and the drawbacks of this

ensemble have been extensively investigated [5, 16, 18, 27, 35, 61, 70, 75].

For nonintegrable systems, thermalization is expected to occur for all the

observables, as numerically confirmed in many circumstances [26, 62, 91, 96,

124, 123, 126]. The mechanism underlying thermalization is related to quan-

tum chaos, as originally proposed in Ref. [111]. The presence of quantum

chaos means that simple observables are represented by random matrices in

the eigenbasis of the Hamiltonian. More recently thermalization in nonin-

tegrable systems has been precisely formulated in terms of the eigenstate
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thermalization hypothesis (ETH). It states that the expectation value of

some natural observable is a smooth function of the energy of the eigen-

states [47, 144, 9], so thermalization in quantum chaotic systems happens

at the level of individual eigenstates. In this context an interesting direction

of research involves the crossover from integrability to non-integrability and

the correspondent thermal or non thermal behavior in relation with quan-

tum chaos [8, 91, 96, 123, 124]. Indeed is has been known for long [114] that

integrable systems are characterized by a Poisson distribution of the level

statistics, while the distribution is Wigner-Dyson in non-integrable systems.

The results discussed in this Thesis, developed during the PhD course,

focus on both the adiabatic and the sudden quench dynamics. In the former

case we test the applicability of the scaling relations of the KZM and its

generalizations for a system related to the Bose-Hubbard model, which, as

we mentioned above, is of primary experimental importance. In the latter

case we focus on the issue of thermalization and the way it is entangled with

integrabilty. We find that the problem of thermalization can be successfully

formulated in the language of many-body localization. We also suggest that

disorder may affect significantly the way non-local observables reach their

asymptotic state in integrable systems.

The contents of the Thesis are organized as follows. In Chapter 1 we

review the state of the art about the dynamics both in the adiabatic case

and after a sudden quench.

In Chapter 2 we study the adiabatic dynamics of an anisotropic spin-1 chain

across a second order quantum phase transition of the Berezinskii-Kosterlitz-

Thouless type. We consider a linear quench in the single spin anisotropy

and characterize the loss of adiabaticity after the quench through the excess

energy. We will show that, for sufficiently large system sizes, the excess

energy admits a non-trivial scaling behavior that is not predictable by stan-

dard Kibble-Zurek arguments for isolated critical points or extended critical

regions. This emerges from a competing effect of many accessible low-lying

excited states, inside the whole continuous line of critical points.

In Chapter 3 we concentrate on the study of the dynamics following a sud-

den quench and to its interplay with integrability. We will describe the onset

of thermalization in terms of localization-delocalization transition in quasi-

particle space [2, 6] induced by the integrability breaking term. We will

further show that, in order to observe such a transition, one has to investi-

gate the behavior of observables which are local in terms of quasi-particles.

Indeed, as it is known from previous studies [129, 130], non-local quantities

do thermalize also in the integrable case. We will test the validity of our

conjecture in the XXZ model in the presence of an integrability breaking
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term. We will first characterize the breaking of integrability in detail and

quantify the delocalization in quasi-particle space in terms of some statisti-

cal quantities, and then look at the behavior of two observables, a local and

a non-local one, in order to verify their different sensitivity to the the break-

ing of integrability and their possibility of thermalization. In Appendix B

we further support our conjecture in different non-integrable models.

In Chapter 4 we will present some preliminary results about the dynamics

of the disordered Ising model after a sudden quench of the transverse field.

First of all we will compare the real-time dynamics of the model with a

constant Hamiltonian at T = 0 and at finite temperature to the imaginary

time dynamics [85, 153, 152]. Building on the known results for the ordered

case [129, 130], we will then numerically investigate the effect of disorder

on the time-evolution and the asymptotics of a non-local observable.



Chapter 1

Quantum quenches in

many-body systems

1.1 Adiabatic dynamics close to a quantum phase

transition

The subject of this section is the dynamics of a closed quantum system

whose Hamiltonian possesses a continuous time dependence in one of its

parameters, in particular here we will be interested in the situation in which

the system crosses a quantum phase transition during its evolution. In

what follows we will briefly recall the concept of quantum phase transition

and then review the major theoretical achievements describing with simple

physical arguments the non-equilibrium dynamics of this kind of systems.

We will see that it is possible to characterize the scaling of observables

through the knowledge of the critical exponents of the phase transition.

Some very recent revews can be found in Refs. [58, 79, 118], see also Ref [20].

1.1.1 Dynamics thorugh a quantum phase transition.

A phase transition is a drastic change in the structure and/or properties of

a system: the simplest example from common experience is the change of

state of substances from the gaseous to the liquid state, from liquid to solid,

etc. Classical transitions are driven by thermal fluctuations and occur at a

finite temperature, called critical temperature. On the contrary quantum

phase transitions (QPT) occur at T = 0 and are entirely driven by quantum

fluctuations. Both classical and quantum phase transitions are character-

ized by the existence of an order parameter which becomes non-zero in the

ordered phase. The order parameter can be continuous or show a jump at

1
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the transition point depending on whether the transition is of second or first

order respectively. Only second order phase transitions [131] are considered

in this Thesis. Indeed they involve a very rich physics and can be studied

through a variety of powerful theoretical tools, which turn out to capture

also the non-equilibrium dynamics.

A second order quantum phase transition can be studied by means of two

quantities: the correlation length ξ and the energy scale ∆, which typically

is the gap, i.e. the energy difference between the ground state and the first

excited state. The correlation length ξ is a characteristic length scale which

for example determines the exponential decay of equal time correlations in

the ground state or the length scale at which some characteristic crossover

occurs to the correlations at the longest distances. Consider a parameter

dependent Hamiltonian H(λ), where λ is dimensionless. At a QPT the

correlation length diverges as:

ξ−1 ∝ |λ− λc|ν (1.1.1)

where ν is a critical exponent. Generally speaking, the fundamental feature

of critical exponents is that they are universal, i.e. they do not depend

on most of the microscopic details of the Hamiltonian, but for example on

the dimensionality of the system and on its symmetries. In correspondence

with the divergence of the correlation length, the gap ∆ vanishes in the

thermodynamic limit according to:

∆ ∼ ξ−z , (1.1.2)

where z is the dynamical critical exponent. In terms of the distance from

the critical point, Eq. 1.1.2 can be rewritten as:

∆ ∼ |λ− λc|zν . (1.1.3)

The time scale on which a system is able to adjust its state to the varia-

tion of a parameter is measured by the inverse of the minimum instantaneous

gap. The adiabatic theorem establishes that a system can be adiabatically

driven without introducing excitations only if the transformation rate is

much larger than the minimum gap encountered during the whole dynamics

[99]. The critical closure of the gap then sets up an insurmountable obsta-

cle for the adiabaticity condition: no matter how slow the system is driven

through the transition, its evolution becomes impulsive.

A QPT takes place when the governing Hamiltonian is characterized by

two (or more) competing parts: in Bose-Hubbard-like models the kinetic

term copes with the onsite repulsion; in ferromagnetic Ising-like models the
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coupling between spins along a particular direction has to struggle with a

transverse field. Typically when the relative weight of one term with respect

to the other is very large the system belongs to one phase; the transition

happens when the intensity of the competing forces is of the same order.

The dynamics through a QPT can be then performed by introducing a time

modulation of the relative strength of the two terms.

In this section we will consider Hamiltonians with the following structure:

H(t) = H0 + λ(t)Ht (1.1.4)

where λ is typically chosen to vary linearly in time. We are interested in

the case in which a given time, say t = 0 for convenience, λ(t) is such

that the Hamiltonian crosses a critical point. The dynamics of a system

crossing a quantum critical point, i.e. with the known initial state and the

unknown final state belonging to different phases, is characterized by the loss

of adiabaticity due to the closure of the gap. In this situation the system

becomes unavoidably excited with respect to the instantaneous ground state.

In terms of the order parameter of the phase transition, the consequence is

the production of defects. An intense theoretical effort has been devoted

to quantifying the loss of adiabaticity by studying the scaling of suitable

quantities which we will now recall.

A first measure of the loss of adiabaticity is the difference between the

instantaneous energy of the system and the energy of the instantaneous

ground state, whose normalized definition, the excess energy, is given by:

Eexc(t) =
〈ψ(t)|H(t)|ψ(t)〉 − 〈ψGS(t)|H(t)|ψGS(t)〉
〈ψ0|H(t)|ψ0〉 − 〈ψGS(t)|H(t)|ψGS(t)〉 (1.1.5)

This quantity, which we will study for a specific system in Chapter 2, de-

pends on how fast the Hamiltonian is varied in time: the slower the variation,

the smaller the excess energy. In particular, if the system remains always in

its ground state Eexc is zero, while if the state of the system never changes

(apart from phases) from the initial state, the excess energy is unity.

Another quite useful way of measuring the degree of adiabaticity of the

evolution is in terms of the infidelity, that measures the total excitation

probability of the evolved state with respect to the ground state of the final

Hamiltonian

I = 1 − |〈ψ(tfin)|ψGS(tfin)〉|2 (1.1.6)

where |ψGS(tfin)〉 represents the ground state of H(tfin). This quantity is

commonly used in studying optimization problems involving an initial state

and a target state to be reached after unitary evolution (see for example

Ref. [24]).
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Nevertheless the most widely used quantities used in literature to study

nonadiabaticity are the total number of excitations nex and its density ρex,

which for example may count the (density) of topological defects if they

are well defined, or the number of created quasiparticles in theories which

predict them. These quantities have been studied for example in the seminal

papers [157, 115, 117]. Their definition is strongly dependent on the model

in analysis and on what is considered as a defect. For instance in Ising

chains, with the transverse field along the z direction, the defect density is

identified with the kink density and can be defined as:

ρk =
1

N

N−1
∑

i

〈ψ(tfin)|1
2
(1 − σxi σ

x
i+1)|ψ(tfin)〉 (1.1.7)

where N is the size of the chain and σαi are the Pauli operators.

Finally, non-adiabaticity can be accounted for studying the entropy, since

it is conserved only for adiabatic processes, while it is expected to increase as

the system passes through a quantum critical point. Identifying a suitable

definition entropy is nevertheless quite subtle and two definitions have been

used in literature: the diagonal entropy [116] and the entanglement entropy.

The first is generated only due to nonadiabatic transition and in some cases

satisfies the same scaling relations of the density of quasi-particles [40, 41,

42, 105]. The other definition consists in the entanglement entropy, i.e. the

Von Neumann entropy of the reduced density matrix of a part of the system,

which has been studied in the context of time independent conformal field

theories at quantum phase transitions [148, 120, 14] and in sudden quenches

in Refs. [15, 16, 31, 17, 19, 64, 63].

1.1.2 Kibble-Zurek mechanism and its generalizations.

Assuming that the non-adiabatic behavior manifests only nearby the critical

point, it is natural to wonder whether the loss of adiabaticity can be de-

scribed in terms of the static features of the transition, for instance through

its critical exponents. The Kibble-Zurek mechanism [156] addressed ex-

actly this issue, providing an elegant connection between statics and non-

equilibrium properties. According to KZM the time scale at which the

system is able to react to an external change diverges at the transition point

as a manifestation of the critical slowing down, observed also in the classical

case [157]. The main idea behind KZM is distinguishing two regimes for the

evolution: the adiabatic regime, in which the system is able to follow the

variation of the time dependent Hamiltonian, so that there is no popula-

tion transfer between the instantaneous energy eigenstates, and the impulse
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Figure 1.1: (color online). Relaxation time scale from KZM theory; t̂ repre-

sents the freeze-out time (picture from Ref.[37]).

regime, which contains the critical point, where the relaxation times are so

long that there is no change in the wave function except for an overall phase

factor. The instant of the evolution which signals the boundary between the

two regimes is called the freeze-out time, t̂, see Fig.1.1.

According to the KZM, the adiabaticity is lost when the time remaining to

the transition is equal to the relaxation time, given by the inverse of the

instantaneous gap ∆. Calling ǫ ≡ λ− λc the dimensionless parameter mea-

suring the distance from the transition, near the critical point (ǫ = 0) its

time dependence can be linearized:

ǫ = t/τ (1.1.8)

where τ represents the quench time. The freeze-out time is thus given by:

t̂ ∼ ∆−1(t̂) = |ǫ(t̂)|−zν (1.1.9)

or, in terms of τ :

t̂ ∼ τ−zν/(1+zν) (1.1.10)

zν being the critical exponents entering in Eq.1.1.3. The correlation length

at the freezing time, giving an estimate of the size of the typical ordered

domain, can be employed to evaluate the defect density ρex, assuming that

on average one defect per domain is produced. The Kibble-Zurek prediction

is then

ρex ∼ ξ−d(t̂), (1.1.11)

where d is the space dimension and by using ξ(t̂) ∼ |ǫ(t̂)|−ν it finally leads

to

ρex ∼ τ−dν/(1+zν). (1.1.12)
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As an example, for the ordered quantum Ising chain[157], in which z = ν =

1, Eq.1.1.12 gives the well known result[56] ρex ∼ τ−1/2.

The formula Eq. 1.1.12 was also independently found by means of adi-

abatic perturbation theory [115] (see Sec. 1.1.4) and has been tested in a

variety of models through both analytical and numerical studies, in par-

ticular for the Ising model [157, 115, 56, 33], for the XY spin 1/2 model

[104, 30], for periodic optical lattices [59], for a spinor condensate [93], for

the sine-Gordon model [39, 40] and very recently for graphene [51, 52] and

it is also supported by experiments [133].

The KZM formula 1.1.12 has been generalized for different time and

space dependences. Dziarmaga et al. [60] get a modified scaling equation for

the case in which the dimensionless distance from the critical point ǫ is not

homogeneous in space, a more realistic condition for the experimental setup.

An application of these results can be found in the study the structural

defects in ion crystals [43]. If the time dependence of the tuning parameter

λ is not linear, λ(t) ∼ λc ± δ|t|r, arguments similar to those leading to

Eq. 1.1.12 and adiabatic perturbation theory (see below) [4, 40, 140] give:

ρex ∼ |δ|dν/(zνr+1) (1.1.13)

A power-law time dependence of the tuning parameter turns out to be opti-

mal in order to minimize the number of defects generated passing through a

critical point [4]. Finally, the KZM scaling can be generalized to disordered

systems, like a disordered Ising chain, where it is found that the density of

kinks scales as ρk ∼ 1/ log2(τ) [22, 57], as expected from Eq.1.1.12 due to

the divergence of the exponent z near the critical point [72].

1.1.3 Landau Zener approximation

In Ref. [157] an alternative approach based on the quantum tunneling ef-

fect has been also proposed. For finite-size systems with a small but non-

vanishing gap, the thermodynamical critical closure of the gap is rounded

off in an avoided level crossing that can be locally approximated with a

Landau-Zener model [155]. Under the assumption that only the first gap

accessible during the dynamics is responsible for the loss of adiabaticity, the

Landau-Zener formula can be used to give a lower bound to the true, global

excitation probability of the system:

Pex = e−π(∆/2)2τ (1.1.14)

where ∆ represents the amplitude of the gap at the finite size critical point

and τ is the rate of the linear quench. Notice that for particular models,
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like the ordered Ising chain [56], or the 1d Kitaev model [140], the first

instananeous gap can be exactly mapped onto a LZ-like Hamiltonian. Then

once the scaling of the critical gap with the size is known, ∆ = f(N),

Eq. 1.1.14 can be exploited to determine the behavior of the maximum

defect-free size after a quench, Nfree, as a function of τ . Once an arbitrary

small but fixed probability P̃ is chosen, it turns out that

P̃ex = e−π(f(Nfree)/2)
2τ ⇒ Nfree ∼ f−1

(
√

κ

τ

)

(1.1.15)

with κ = −4(ln P̃ )/π . Finally, once the relation connecting Nfree and the

selected measure of the loss of adiabaticity (excess energy, defect density,

infidelity, etc.) is established, the desired behavior is obtained. For instance,

for the ordered Ising chain it is known that [53] ∆ ∼ N−1 and ρex ∼ N−1
free,

so Eq. 1.1.15 leads to the correct result ρex ∼ τ−1/2.

1.1.4 Adiabatic perturbation theory

The KZM results emerge in the more general context of the adiabatic per-

turbation theory (APT), first introduced in [115] and then fully developed

in [117, 39, 128, 40, 42, 127]. In the KZM arguments there is a velocity δ

(which in the linear quench case is proportional to 1/τ) which is implicitly

assumed to be small: this is indeed the small parameter at the heart of

adiabatic perturbation theory (APT) which we will briefly recall in a while

following Ref. [42] in detail. APT is a very powerful tool for studying the

scaling of quantities like excitations, entropy, heat, in the general case of

linear quenches [42, 40] starting from the ground state or finite (small)

temperature states. APT turns out to be very general, because it is able to

capture the role of dimensionality and its interplay with universality at low

dimensionality. Indeed, for low dimensional systems the adiabatic dynamics

induces few transitions and the systems effectively explore only the low en-

ergy part of the spectrum, which can be characterized by a small number of

parameters in some effective low energy theory. The situation becomes dif-

ferent in high dimensional systems [117], because the density of low energy

states is small. As a result the transitions to high energy states dominate

the dynamics, universality is lost and the scaling of excitations is quadratic.

The arguments of APT also show that there exist a direct analogy between

slow quenches (with small velocity) and sudden quenches with small ampli-

tude λ∗, through the identification λ∗ ∼ |δ|1/(zν+1) and an analogous role of

dimensionality emerges.
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Given an Hamiltonian H(t) = H0 + λ(t)V , with H0 stationary, the fol-

lowing linear dependence for λ(t) is assumed:

λ(t) =











λi t < 0

λi + tδ(λf − λi) 0 ≤ t ≤ 1/δ

λf t > 1/δ

(1.1.16)

where δ is the rate of change of the parameter λ(t). Since λi and λf can be

arbitrarily far from each other, one cannot rely on conventional perturbation

theory in the difference |λf − λi|. In the limit of slow quenches, the “good”

small parameter for developing a perturbative approach and finding an ap-

proximate solution of the Schrödinger equation i∂t|ψ〉 = H(t)|ψ〉 is in turn

the velocity δ. It is convenient to introduce the adiabatic (instantaneous)

basis:

|ψ(t)〉 =
∑

n

an(t)|φn(t)〉 (1.1.17)

where |φn(t)〉 are instantaneous eigenstates of the Hamiltonian H(t)|φn(t)〉 =

En(t)|φn(t)〉 corresponding to the instantaneous eigenvalues En(t). These

eigenstates implicitly depend on time through the coupling λ(t). Substitut-

ing this expansion into the Schrödinger equation and multiplying it by 〈φm|
one finds:

i∂tam(t) + i
∑

n

an(t)〈φm|∂t|φn〉 = Em(t)am(t). (1.1.18)

Through the gauge transformation an(t) = αn(t) exp(−iΘn(t)), where

Θn(t) =

∫ t

ti

En(τ)dτ (1.1.19)

the Schrödinger equation becomes:

α̇n(t) = −
∑

m

αm(t)〈n|∂t|m〉 exp[i(Θn(t) − Θm(t))], (1.1.20)

which may also be rewritten as an integral equation:

αn(t) = −
∫ t

ti

dt′
∑

m

αm(t′)〈n|∂t′ |m〉ei(Θn(t′)−Θm(t′)). (1.1.21)

If the energy levels En(τ) and Em(τ) are not degenerate, the matrix element

〈n|∂t|m〉 can be written as

〈n|∂t|m〉 = − 〈n|∂tH|m〉
En(t) − Em(t)

= −λ̇(t)
〈n|V |m〉

En(t) − Em(t)
, (1.1.22)
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where we emphasize that the eigenstates |n〉 and eigenenergies En(t) are

instantaneous. If λ(t) is a monotonic function of time the in Eq.1.1.21 one

can change variables from t to λ(t) and derive:

αn(λ) = −
∫ λ

λi

dλ′
∑

m

αm(λ′)〈n|∂λ′ |m〉ei(Θn(λ′)−Θm(λ′)) (1.1.23)

where

Θn(λ) =

∫ λ

λi

dλ′
En(λ

′)

λ̇′
. (1.1.24)

Formally exact, Eqs.1.1.21 and 1.1.23 cannot be solved in the general case.

However, they allow for a systematic expansion of the solution in the small

parameter λ̇. Indeed, in the limit λ̇ → 0 all the transition probabilities are

suppressed because the phase factors are strongly oscillating functions of λ,

the only exception occurring for degenerate levels. In the leading order in

λ̇ only the term m = n should be retained in the sums in Eqs. 1.1.21 and

1.1.23. 1.

We now compute the first order correction to the wave function assuming

for simplicity that initially the system is in the ground state n = 0, so that

α0(0) = 1 and αn(0) = 0 for n 6= 0. In the leading order in λ̇ we can keep

only one term with m = 0 in the sums in Eqs. 1.1.21 and 1.1.23 and derive:

αn(t) ≈ −
∫ t

ti

dt′〈n|∂t′ |0〉ei(Θn(t′)−Θ0(t′)), (1.1.25)

or alternatively

αn(λ) ≈ −
∫ λ

λi

dλ′〈n|∂λ′ |0〉ei(Θn(λ′)−Θ0(λ′)). (1.1.26)

The transition probability from the level |φ0〉 to the level |φn〉 as a result

of the process is determined by |αn(λf )|2. As mentioned before, Eqs.1.1.25

and 1.1.26 are derived for a generic linear quench. First of all one can show

that the Landau-Zener transition probabilities for both infinite and finite

times (see Sec.1.1.3 and App.A) can be recovered [40, 42]. The situation in

which a quantum critical point (QCP) is crossed, which is recalled below, is a

particular case of these APT equations, but other very interesting cases may

be treated as well, for example gapless systems with quasiparticle excitations

and gapped systems. Keeping in mind Eqs.1.1.3 and 1.1.1 and locating for

convenience the critical point at λ = 0, a scaling analysis of Eq.1.1.26 can

be performed assuming that quasiparticles generated from the quench are

1This term results in the emergence of the Berry phase
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created in opposite momenta. The phase factor in Eq.1.1.26 is rewritten as

Θk(λ
′)−Θ0(λ) = 1

δ

∫ λ
λi
dλ′(εk(λ′)− ǫ0(λ

′)). From general scaling arguments

[115] the energy difference may be written as:

εk(λ) − ε0(λ) = λzνF (k/λν) (1.1.27)

such that F (x) ∝ xz for x ≫ 1 and F (x) → const for x ≪ 1 if the system

in gapped away from the QCP. Another scaling ansatz can be done for the

matrix element:

〈k|∂λ|0〉 = − 〈k|V |0〉
εk(λ) − ε0(λ)

=
1

λ
G(k/λν), (1.1.28)

where G(x) ∝ x−1/ν at x ≫ 1 and G(x) ∝ xβ for x ≪ 1 and β is some

non-negative number. With the change of variables λ = ξδ1/(zν+1), k =

ηδν/(zν+1) the number of quasiparticles reads:

nex ∼
∫

ddk

(2π)d
|αk|2 = |δ| dν

zν+1

∫

ddη

(2π)d
|α(η)|2 (1.1.29)

where

α(η) =

∫ ξf

ξi

dξ
1

ξ
G(

η

ξν
) exp

[

i

∫ ξ

ξi

dξ1ξ
zν
1 F (η/ξν1 )

]

. (1.1.30)

The KZM scaling of the quasiparticles Eq. 1.1.12 is recovered if the integral

in η is convergent (the integration in ξ being always convergent). This

happens for d < d∗, otherwise a quadratic scaling is found [40], the crossover

dimension being by d∗ = 2z + 2/ν, since α scales as

α(η) ∝ 1

ηz+1/ν
. (1.1.31)

1.1.5 Cases eluding the KZM or APT

An interesting issue arising from the KZM is investigating what happens try-

ing different paths in the parameter space spanned by the Hamiltonian, and

verifying whether the KZM formulas still hold. For instance in the XY spin

1/2 model [30] a quench can be performed not only by modulating the trans-

verse field along the z direction but also the anisotropy in the XY plane.

The idea behind the procedure is to investigate the possibility of finding a

gentle way to cross the transition in order to reduce the impact of the loss

of adiabaticity. For the ordered Ising model the issue has been recently ana-

lyzed [104], enlightening the existence of peculiar paths, specifically through
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a multicritical point, for which the anomalous τ−6 decay of the defect den-

sity with the quench time cannot be described via usual KZM or adiabatic

perturbation theory, which would predict a 1/
√
τ behavior. And this is not

an isolated case. Other patological situations, unmanageable with standard

tools have been revealed, such as while crossing a multicritical point [104, 50]

or a (d−m) dimensional critical surface [141, 102], quenching along a gapless

line [49, 45, 46], or going through a BKT phase transition [110, 25], see also

Chapter 2. Moreover the KZM or adiabatic perturbation theory cannot be

used for infinetely coordinate systems, i.e. without a definite space dimen-

sionality d [23].

The problem with these situations is that the critical exponents and also

the effective model dimension characterizing the quantum phase transition

turns out to be dependent on the path followed during the quench in the

Hamiltonian parameter space [45, 46]. Unluckily, this issue cannot be easily

cured within KZM derivation of Eq. 1.1.12: the only possibility is to intro-

duce ad hoc substitutions. It turns out that crossing a multicritical point

the exponent z has to be changed by a new dynamical exponent z2 [50];

instead, going thorugh a (d −m) dimensional critical surface not all phase

space is at disposal and this influences the scaling of the variables in such

a way that d must be corrected with m [141, 102]. In many situations, for

finite size systems, the issue can be cured by exploiting Landau-Zener (LZ)

effective models (see Sec. 1.1.3) locally approximating the dynamical criti-

cal gap [157, 22, 23, 110, 32]. Although based on the assumption that the

contribution to the non adiabatic behavior is due only to the first minimum

gap, this approach is quite more general, bypassing the knowledge of critical

exponents and dimension, and focussing the attention only on the spectral

properties of the system: the path dependence of the critical exponents is

directly taken into account by the spectrum shape close to the critical point.

There are still cases where an effective theory is still lacking, for example in

presence of a BKT transition [110, 25], in which it is not possible to identify

a dominant gap, see also Chapter 2.

1.2 Thermalization after a sudden quench

While in the previous section we considered the adiabatic dynamics due

to a slowly varying Hamiltonian, here we focus on the dynamics of closed

quantum systems when one of the control parameters of the Hamiltonian is
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suddently changed, i.e. a sudden quench according to the following scheme:

H(t) =

{

H(λ0) ≡ H0 for t < 0

H(λ) ≡ H for t ≥ 0
(1.2.1)

where λ is a control parameter and is put initially (for t < 0) in the ground

state |ψ0〉 of H0. In this case the energy of the system after the quench

E0 ≡ 〈ψ0|H|ψ0〉 (1.2.2)

is conserved throughout the evolution. The most natural question that

arises is whether and how the system under study relaxes at long times,

that is, if the behavior of the observables reaches a steady state and whether

it coincides with some thermal distribution2. As we will show below, the

study of these systems entangles the issues of ergodicity, thermalization,

integrability and localization, as discussed for example in the review [118].

1.2.1 Ergodicity

If we put an ideal classical gas in one part of a box diveded in two parts

and then remove the wall separating the two chambers, soon the particles

will occupy the whole box and acquire a Maxwell-Boltzmann distribution

of momentum. The same equilibrium situation will take place irrespectively

of the initial conditions, depending only on the total energy of the system

and on the number of particles. This “thermodynamical universality” is ex-

plained in classical physics[74] as a consequence of the non-linearity of the

equations of motion, which forces all the trajectories to explore uniformly

the hypersurface at constant energy in phase-space. However, if the system

possesses further conserved quantities which are functionally independent

of the Hamiltonian and of each other, then time evolution is confined to a

highly restricted hypersurface of the energy manifold, so that microcanon-

ical predictions fail and thermalization is not possible. This is what hap-

pens for example in the celebrated Fermi-Pasta-Ulam numerical experiment

[68]. Thus thermalization in classical systems is essentially made possible

by the emergence of dynamical chaos. On the contrary, Schrödinger equa-

tion is linear, so a definition of ergodicity in quantum mechanics is not at

all straightforward. The most obvious generalization of ergodicity leads to

deep difficulties [151]. One needs first to define the microcanonical density

2The case of sudden quenches starting from initial thermal states in Ref. [143] where

it is found that any finite subsystem eventually reaches a stationary thermal state with a

momentum-dependent effective temperature.
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matrix for a system with Hamiltonian H and eigenstates |ψα〉 as:

ρmc = 1/N
∑

α∈H(E)

|ψα〉〈ψα| (1.2.3)

where H(E) denotes the set of eigenstates of H with energy in the coarse-

grained energy shell [E,E + δE] and N is the number of such states. Given

a generic initial state |ψ0〉 =
∑

α∈H(E) cα|ψα〉, superposition of eigenstates

with energy in the microcanonical shell, it is obvious to compare the long

time average of the density matrix with the microcanical prediction. As

already observed in 1929 by Von Neumann [151, 76], the two quantities

almost never coincide. Given the time average of the density matrix:

|ψ(t)〉〈ψ(t)| =
∑

α

|cα|2|ψα〉〈ψα| ≡ ρdiag , (1.2.4)

also known in recent times as diagonal ensemble [125, 124], the obvious

generalization of ergodiciy would require ρmc = ρdiag, implying |cα|2 = 1/N
for every α, which is almost never true [151, 76].

A sensible definition of quantum ergodicity turns out to be nevertheless

possible, concentrating on observables rather than on states [151, 97, 111].

Given a set of macroscopic observables {Mβ} and for every |ψ0〉 on the

microcanonical shell H(E), ergodicity would mean:

〈ψ(t)|Mβ |ψ(t)〉 t→∞−→ Tr[Mβρdiag] = 〈Mβ〉mc (1.2.5)

if the long time limit exists. A more precise definition is obtained referring

to the time average of the density matrix:

〈ψ(t)|Mβ |ψ(t)〉 = Tr[Mβρmc] ≡ 〈Mβ〉mc (1.2.6)

1.2.2 Generalized Gibbs ensembles

In a very famous experiment with arrays of 1D Bose gases [89], Kinoshita

et al. succeded in realizing a quantum system, the quantum Newton cradle,

which does not thermalize. The reason for the absence of thermalization is

that the system is nearly integrable, namely there is an infinite number of

conserved quantities. The consequence on the dynamics is that the knowl-

edge of the initial energy of the system is not enough to characterize the

asymptotic state. Does the system relax to some kind of equilibrium state?

Is it possible to predict with some statistical ensemble the mean value of ob-

servables? As a possible answer to these questions, Rigol et al. [125] have in-

troduced the generalized Gibbs ensemble (GGE). Sketching their argument,
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if an equilibrium state exists, it must satisfy the standard prescription of

statistical mechanics, i.e. it must maximize the entropy S = −kBTr[ρ ln(ρ)]

subject to the constraints imposed by the integrals of motion. This amounts

to the following density matrix:

ρ = Z−1 exp[−
∑

m

ΛmÎm] (1.2.7)

where
{

Îm
}

is the full set of the integrals of motion, Z = Tr[exp(−∑mΛm)Îm]

is the partition function, and {Λm} are the Lagrange multipliers, fixed by

the initial conditions via:

Tr[Îmρ] = 〈Îm〉(t = 0). (1.2.8)

The GGE reduces to the usual grand-canonical ensemble for a generic sys-

tem where only the total energy, the number of particles. If translation

invariance holds, momentum is also conserved. In Ref. [125] a system of

hard-core bosons is considered in order to verify that the correct asymptotic

momentum distribution functions are correctly reproduced by the GGE.

The quantum Ising model is another prototypical system in which it

is possible to analitically confirm the validity of the GGE for a local ob-

servable, as shown in Ref. [118], the argument of which we recall below.

The Hamiltonian HI = −∑i σ
x
i σ

x
i+1 + gσzi , can be expressed as a system

of free fermions [131] after a Jordan-Wigner transformation. In terms of

the fermionic operators ck relative to modes of momentum k = 2πn/L the

Hamiltonian takes the form:

HI = 2
∑

k>0

(g − cos(k))(c†kck − c−kc
†
−k) + i sin(k)(c†kc

†
k − c−kck) (1.2.9)

Under this mapping the transverse magnetization becomes

Mz = −2
∑

k>0

(c†kck − c−kc
†
−k). (1.2.10)

The eigenmodes γk of energy Ek = 2
√

(g − cos(k))2 + sin(k)2 diagonalizing

the Hamiltonian are related to the fermionic operators ck by a Bogoliubov

transformation. In Heisenberg representation the operators γk acquire a

simple time dependence: γk(t) = γk(0) exp[−iEkt]. If the energies are in-

commensurate, at sufficiently long times different momentum modes become

statistically independent from each other. This statement does not apply

to modes with opposite momenta k and −k which have identical energies.

However, if these correlations are not important then in the long time limit
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each mode can be characterized by a conserved quantity nk = 〈γ†kγk〉. If the

unitary dynamics starts with a generic initial condition |ψ0〉, then the time

evolution in terms of the eigenmodes of the Hamiltonian is:

Mz(t) = −2
∑

k>0 cos(2θk)(γ
†
kγk − γ−kγ

†
−k) (1.2.11)

+i sin(2θk)(γ−kγke−2iEkt − γ†kγ
†
−ke

2iEkt).

The GGE reproduces the correct asymptotic expectation value of the mag-

netization because in the long time limit only the diagonal terms in the sum

survive, while the off-diagonal ones, describing creation or destruction of two

fermions average to zero. So for any initial condition |ψ0〉 the asymptotic

value of the transverse magnetization is:

〈Mz(t)〉 = −2
∑

k>0

cos(2θk)(〈γ†kγk〉 − 〈γ−kγ†−k〉). (1.2.12)

hence it is perfectly described by the GGE, the integrals of motion being

fixed by nk = 〈ψ0|γ†kγk|ψ0〉.
The validity of the GGE has been verified in many situations: Luttinger

liquids [27], Hubbard-like models [61, 90] and in the Bose-Hubbard model

for a special class of quenches (from the Mott quantum phase to the free

strong superfluid regime) [35]; in these cases correct predictions are found

for the momentum distribution functions. In continuum integrable models,

integrability means that the system has well defined quasi-particles which

scatter elastically [106, 145]. In some specific integrable models, the quench

dynamics can be exactly solved [66, 67] without invoking the GGE, but ex-

ploiting the Bethe Ansatz solution, which in particular gives access to simple

expressions for the scalar product of eigenstates of two different Hamiltoni-

ans. Generalizing a previous results by Calabrese and Cardy [18], Barthel

and Schollwöck [5] have proven rigorously that for Gaussian initial state

and quadratic (fermionic or bosonic) systems the GGE does work, being

the integrals of motion the occupation numbers of each quasi-particle state,

and suggested that the GGE should also be generalized for Bethe Ansatz

integrable systems. In a very recent work [70] the GGE has been shown to

give correct results in one-dimensional integrable field theories for a special

class of translationally invariant states, the so-called integrable boundary

states.

Although the GGE gives correct predictions in many different contexts,

there are some caveats and still open questions. As pointed out in Ref. [118],

the choice of the integrals of motion in the GGE is strongly constrained by

the fact that conserved quantities must be additive, in order to guarantee the
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statistical independence and invariance of the ensemble with respect to the

subsystem. Another case in which the GGE does not provide correct results

is when the Hamiltonian is translationally invariant, but the initial condition

is not, for example in the Ising case wheh |ψ0〉 has broken translational

invariance and the observable is δnkδnk′ , with δnk = γ†kγk − 〈γ†kγk〉 [118].

A very important issue is whether all observables behave necessarily

non-ergodically. In two recent papers [129, 130] it has been shown both

numerically and analitically that at low energies the autocorrelation func-

tion of the order parameter of the Ising model after a sudden quench of the

transverse magnetic field perfectly thermalizes, while the transverse magne-

tization is non ergodic. These results maybe understood taking into account

the locality of the observables in terms of the quasi-particles of the model.

Indeed the order parameter σx is non-local in terms of fermions because

it contains all the strings factors from the Jordan-Wigner transformation,

although it is local in terms of spins. As we shall see in Chapter 3 (see also

Ref. [26]) for the disordered XXZ model a different behavior of local and

non-local quantities in terms of quasi-particles seems to take place. We will

see that in this context a relation between thermalization and many-body

localization in quasi-particle space may be conjectured.

1.2.3 Eigenstate thermalization hypothesis

When a system is far from the integrable limit, thermalization is expected to

occur for all the observables [91, 96, 62, 124, 123, 126]. The intense theoreti-

cal efforts [111, 47, 144, 124] towards understanding the necessary conditions

for thermalization focus on the connection with quantum chaos, a link orig-

inally proposed in Ref. [111]. In the latter work quantum chaos is defined

intrinsically in quantum mechanics language as the situation in which simple

dynamical variables are represented by pseudorandom matrices in the eigen-

basis of the Hamiltonian. The consequences of chaos on thermalization have

been described more precisely by conjecturing that thermalization in quan-

tum chaotic systems occurs eigenstate-by-eigenstate, i.e. the expectation

value of a natural observable 〈ψα|A|ψα〉 on an eigenstate |ψα〉 is a smooth

function of its energy Eα, being essentially constant on each microcanonical

shell [47, 144]. If this happens, then ergodicity and thermalization in the

asymptotic state follow for every initial condition sufficiently narrow in en-

ergy. This hypothesis is called eigenstate thermalization hypothesis (ETH),

independently introduced by Deutsch[47] and Srednicki[144]. Deutsch [47]

considers a model with an integrable Hamiltonian perturbed by a real sym-

metric random matrix, with elements drawn from a random Gaussian en-
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semble. The idea is to show that, for a large enough number of degrees

of freedom, this perturbation ensures ergodicty, i.e. the time average of an

observable equals the microcanonical average, without invoking any ensem-

ble average (differently from the classical case). This is possible because

the random pertubation mixes with random phases an exponentially large

number of eigenstates of the integrable Hamiltonian with energy in a given

window, so that the fluctuations of 〈ψα|A|ψα〉 around the microcanonical

average can be made arbitrarily small. For an integrable system the fluctu-

ations are much larger.

The emergence of ETH can be also found in a quantum gas of N particles of

mass m [144], with an initial condition sufficiently narrow in energy, under

the assumption that Berry’s conjecture holds. The latter states that each

energy eigenfunction ψα(X) is a superposition of plane waves (in the 3N co-

ordinate space X = (x1, . . . ,xN)), with random phase and gaussian random

amplitude, but fixed wavelength. Thus the eigenfunctions have the form:

ψα(X) = Nα

∫

d3NPAα(P)δ(P2 − 2mUα) exp(iP ·X/~) (1.2.13)

where P = p1, . . . ,pN are the 3N conjugate momenta and Aα(P) be-

ing pseudo-random variables with gaussian statistics, 〈Aα(P)Aβ(P
′)〉 =

δαβδ
3N (P + P′)/δ(P2 − P′2). Berry’s conjecture is expected to hold only

for systems which exhibit classical chaos in all or at least most of the classi-

cal phase space. The validity of Berry’s conjecture allows to show that the

momentum distribution function relaxes to the Maxwell Boltzmann distri-

bution3:

〈f(p)〉 =
∫

dp2dp3 . . . 〈|ψα(p,p2 . . . )|2〉 (1.2.14)

= e−
p2

2mkT

(2πmkT )3/2 = fMB(p) (1.2.15)

where the temperature is set by the equipartition law Eα = 3/2NkT .

A recent paper [9] sheds further light on the precise definition of ETH and

to its relation with finite-size effects. In particular two versions, a weak

and a strong formulation, of the ETH are proposed. The weak formulation

(WETH) states that the matrix elements Aα = 〈ψα|A|ψα〉 of a few body

observable have vanishing fluctuations over eigenstates close in energy in the

thermodynamic limit. The WETH does not imply thermalization, because

states with a value of Aα different from the microcanonical one actually do

exist, even if they are rare, and, weighted by the cα of the diagonal ensemble,

3Here we do not make any assumption on the symmetry of the wavefunctions under

exchange of particles; for further details on bosons and fermions see Ref. [144]
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they may shift microcanonical average away from the diagonal expectation

value. The WETH is indeed verified even for integrable systems and some

finite-size non integrable systems like the Bose-Hubbard model[9]. Instead

the stronger version of the ETH (SETH) implies thermalization, because

it holds if the WETH is valid and the support of the distribution of the

Aα shrinks around the thermal microcanonical value in the thermodynamic

limit.

Keeping in mind both the scenarios for thermalization in the integrable

and in the nonintegrable case, it is very interesting to investigate the crossover

between the two situations. A useful tool is represented by the study of the

level statistics, since the breaking of integrability is associated to quan-

tum chaotic behavior [114]. In particular, integrable systems are char-

acterized by Poisson spectral distributions, while the breaking of integra-

bility emerges at finite sizes as a gradual crossover to the Wigner Dyson

distribution. Numerous recent works specifically investigate the crossover

from non-ergodic to thermal behavior as integrability is gradually broken

and on the origin of ergodicity in systems sufficiently far from integrability

[8, 91, 96, 123, 124, 136, 126, 26]. We will come back to this point later in

the Thesis, see Chapter 3.

Besides the characterization of the asymptotic state, a complementary prob-

lem is the behavior of the relaxation time, in particular in the thermody-

namic limit. In a series of studies of relaxation in fermionic Hubbard model

subject to quenches in the interaction strength it has been argued that, for

sufficiently rapid quenches, relaxation towards thermal equilibrium occurs

through a pre-thermalized phase [100, 101].



Chapter 2

Adiabatic dynamics in a

spin-1 chain with uniaxial

single-spin anisotropy

2.1 Introduction

In this chapter we study the adiabatic dynamics of a one-dimensional XY

spin-1 system with single-spin uniaxial anisotropy [138, 44], exhibiting (in

equilibrium) a QPT of the Berezinskii-Kosterlitz-Thouless (BKT) type. The

interest in the dynamics of this specific spin-chain is motivated by the fact

that it describes quite accurately the properties of the Bose-Hubbard (BH)

Hamiltonian both in the limit of strong interaction and close to the Mott-to-

superfluid QPT [1, 83]; understanding the nonlinear response of such system

to slow quenches may reveal itself as a powerful tool to probe Bose conden-

sates loaded in optical lattices [39]. Interestingly, the results presented below

suggest that the knowledge of the static properties of the system, in par-

ticular of the BKT transition, may not be sufficient to predict and fully

characterize the dynamical behavior.

Some dynamical properties of the BH model after a quasi-adiabatic cross-

ing of the QPT have been analyzed both from the superfluid to the Mott

insulator [139], and in the opposite direction [34], where topological defects

arise. Other works focused on the emergence of universal dynamical scaling,

when quenching to the superfluid phase: they started using the original KZ

mechanism [115, 36], but then realized that, for non-isolated critical points

or critical surfaces, a generalization in terms of dynamical critical exponents

characterizing the whole critical region was necessary [141, 45, 49]. A more

general analysis of the problem in the context of the breakdown of adia-

19
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baticity for gapless systems has been presented in Ref. [117]. A numerical

analysis of the raising of defects in a quenched spin chain model exhibiting a

BKT transition has been performed in Ref. [110]; in that case defect forma-

tion is dominated by an isolated critical point, so that a LZ treatment based

on the finite-size closure of the dynamical gap at that point is still possi-

ble. On the other hand, one can also devise a KZ scaling argument, which

relies on the closing behavior of the gap as a function of the distance from

the critical point [115, 36]. In some circumstances this problem can be quite

subtle, since it is possible that the gap depends differently on the inverse size

of the system and on the parameter driving the transition, so that the two

approaches give different results: this seems to be the case for the system

considered in the present chapter. The results presented in this chapter fur-

ther investigate the dynamical defect formation after an adiabatic crossing

of the BKT transition line; the major obstacle in understanding this type

of dynamics raises from the fact that here the scaling of defects is generally

due to multiple level crossings within the whole gapless phase. The chapter

is organized as follows. In Sec. 2.2 the model is introduced and the main

features of its phase diagram are recalled. In Sec. 2.3 the linear quenching

scheme adopted in this work is discussed, and the excess energy of the sys-

tem with respect to the adiabatic limit is defined: this quantity captures the

essential physics of the defect formation in the system. All the numerical

results of this chapter are concentrated in Sec. 2.4.

2.2 The Model

The Bose Hubbard (BH) model [73], well suited for describing interacting

bosons in optical lattices [88], is defined by the following Hamiltonian

HBH = −J
∑

i

(a†iai+1 + h.c.) +
U

2

∑

i

ni(ni − 1) . (2.2.1)

Here a†i (ai) are the boson creation (annihilation) operators on site i (we

assumed that the lattice is one-dimensional), and ni = a†iai is the corre-

sponding occupation number. The parameters J and U respectively denote

the tunneling between nearest neighbor lattice sites and the on-site inter-

action strength. At integer fillings 1, 2, . . ., when the ratio t/U is gradually

increased, the BH chain undergoes a QPT of the BKT type from a Mott

insulating state, where bosons are localized in an incompressible phase, to

a superfluid, with long range phase order.

The BH model in equation 2.2.1 can be mapped into an effective spin-

1 Hamiltonian in the limit of a large filling and for small particle number
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fluctuations [1, 83]. When number fluctuations are not large it is possi-

ble to truncate the local Hilbert space to three states with particle num-

bers n0, n0 ± 1 (n0 being the average lattice filling per site). The reduced

Hilbert space of site i can then be represented by three commuting bosons

tα,i (α = −1, 0, 1), which obey the constraint
∑1

α=−1 t
†
α,itα,i = I. In this

way, the bosons of equation 2.2.1 are represented by a†i =
√
n0 + 1 t†1,it0,i +√

n0 t
†
0,it−1,i. In the limit n0 ≫ 1 the effective Hamiltonian becomes the

Hamiltonian of a one-dimensional spin-1 XY chain with single ion anisotropy [138,

44],

Hspin = −J⊥
2

∑

i

(

S+
i S

−
i+1 + h.c.

)

+D
∑

i

(Szi )
2 , (2.2.2)

where S+
i =

√
2(t†1,it0,i + t†0,it−1,i), S

+
z = t†1,it1,i − t†−1,it−1,i and with the

identification
Jn0

2
→ J⊥ , U → D (2.2.3)

(we chose to use the conventional notation for the spin-1 model). In the

previous equations Sαi are spin-1 operators on site i and S±
i = Sxi ± iSyi ;

J⊥ and D respectively characterize the nearest neighbor coupling strength

in the xy plane and an uniaxial single-ion anisotropy along the transverse

z direction. This system is invariant under rotations around the z axis,

therefore the total magnetization Sztot =
∑

i S
z
i is conserved. From now on

all the quantities are expressed in units of the exchange coupling J⊥ = 1.

Critical phase

0
D

Dc ≈ 0.44

Large-D gapped phase

Figure 2.1: Phase diagram of the spin Hamiltonian 2.2.2 for J⊥ = 1 and

D ≥ 0.

The phase diagram associated to the Hamiltonian in 2.2.2 is sketched in

figure 2.1. For D > 0 it consists in a large-D phase for D > Dc, that is

characterized by zero total magnetization (in the limit D → ∞ each spin

has zero magnetization), and a BKT transition line for D ≤ Dc; the critical

point has been numerically estimated to be Dc ≃ 0.44 [29, 113, 11, 12, 147].

In the rest of the chapter we will only concentrate on the adiabatic dynamics

of the Hamiltonian 2.2.2.
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2.3 Adiabatic dynamics

The adiabatic quench is realized by slowly changing the anisotropy param-

eter D through the critical point Dc. We suppose to vary D linearly in

time:

D(t) = Din − t

τ
, with t ∈ [0, τ(Din −Dfin)] ; (2.3.1)

here τ is the quenching time-scale, Din and Dfin respectively denote the ini-

tial and the final value ofD. In all the cases that will be analyzed we consider

Din > Dc, and suppose to initialize the system in its ground state; on the

other hand we take Dfin < Dc, so that during the quench the system crosses

the BKT transition. Since the initial ground state has zero total magnetiza-

tion, and this is conserved by the dynamics dictated by equation 2.2.2, only

the excited states carrying zero magnetization will be accessible throughout

the quench.

In order to quantify the loss of adiabaticity of the system following the

quench, we study the behavior of the excess energy with respect to the actual

adiabatic ground state, after a proper rescaling:

Eexc(t) =
〈ψ(t)|H(t)|ψ(t)〉 − 〈ψGS(t)|H(t)|ψGS(t)〉
〈ψ0|H(t)|ψ0〉 − 〈ψGS(t)|H(t)|ψGS(t)〉 (2.3.2)

where |ψ0〉 is the initial state of the system, that is the ground state of

Hamiltonian H(0); |ψGS(t)〉 is the instantaneous ground state of H(t), and

|ψ(t)〉 is the instantaneous wave function of the system. Strictly speaking,

the quantity Eexc(t) is not defined at the initial time t = 0, but one has

Eexc(t → 0+) = 1; on the other hand at tf ≡ (Din − Dfin)/τ , the excess

energy gives, apart from a constant factor, the final energy cost of defects

in the system. The final excess energy ranges from Eexc(tf ) = 1 (totally

impulsive case) to Eexc(tf ) = 0, for a fully adiabatic evolution.

An exact solution for the spin model in equation 2.2.2 is not available, not

even for the static case, therefore one has to resort to numerical techniques.

In order to investigate both static properties and the dynamics after the

quench, we used the time-dependent Density Matrix Renormalization Group

(t-DMRG) algorithm with open boundary conditions [137, 38]. For the

dynamics at small sizes L ≤ 10, we checked our t-DMRG results with an

exact numerical algorithm which does not truncate the Hilbert space of the

system. For static computations we were able to reach sizes of L = 200, while

for dynamics simulations we considered systems of up to L = 80 sites. The

time evolution has been performed with a second order Trotter expansion

of H(t); in most simulations we chose a discretization time step δt = 10−3,

while the truncated Hilbert space dimension has been set up to m = 200.
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2.4 Results

In this section we describe our results for the adiabatic dynamics of the spin-

1 Hamiltonian. We first analyze the behavior of the excitation gaps which

are relevant for the quenched dynamics. Then we focus on the dynamics,

and discuss the behavior of the excess energy 2.3.2 as a function of the

quenching rate τ . We first consider the slow-quench region for small system

sizes and then concentrate on the scaling regime for larger sizes.

2.4.1 Dynamical gap

A great deal of understanding on the adiabatic dynamics derives from the

knowledge of the finite-size scaling of the first excitations gaps. As stated

before, since the dynamics of the system conserves the total z magnetization,

if we suppose to start from the zero-magnetization ground state, only excited

states with Sztot = 0 will be involved during the dynamics. Therefore, the

dynamical gap is defined as the first relevant gap for the dynamics, that is

the energy difference between the ground state and the first excited state

compatible with the integrals of motion.

As shown in figure 2.2, in the critical region D < Dc the dynamical gap

∆ scales approximately linearly as a function of the inverse system size L−1.

The same behavior also holds for relatively small values of D − Dc within

the gapped phase, as those considered in figure 2.2, so that the correlation

length is still larger than the size of the system, and a quasi-critical regime is

found [11, 12, 147]. On the other hand, we numerically checked that the lead-

ing term in finite-size corrections scale as L−2 for D & 2, when the system

is far from criticality. We extrapolated the value of ∆0 = ∆(L→ ∞) in the

thermodynamic limit by performing a fit of numerical data for L ≥ 50 which

includes both the leading linear behavior and smaller quadratic corrections.

Results are plotted in the inset of figure 2.2, as a function of D. According

to the phase diagram of the system, which predicts a closure of the gap for

D < Dc ≈ 0.44, the asymptotic value of the gap is found to be constant and

equal to zero for 0 ≤ D . 0.45 (up to values ∼ 2 × 10−4), while it suddenly

raises up as ∆0 ∼ exp(−c/√D −Dc) in the gapped phase close to criticality.

Thus the dynamical gap closes analogously to the gap between the ground

state and the first excited state with unconstrained magnetization, which is

called thermodynamical gap, in a BKT transition [28].

The excitation energies of the first three dynamical excited levels in

the subspace of zero magnetization and for a system of L = 100 sites are

displayed in figure 2.3, as a function of the anisotropy D. In the large-D
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Figure 2.2: Ground state excitation energy ∆ in the zero magnetization

sector as a function of the inverse system size L−1 (we show data ranging

from L = 6 to L = 200). The various curves are for different values of

the single-ion anisotropy D. In the inset we plot the asymptotic value ∆0

in the thermodynamic limit, as extracted from a quadratic fit of the data

in main panel for L ≥ 50 (black circles); the red line displays a fit ∆0 ∝
exp(−c/

√
D − 0.44) of data with c ≈ 2.977.

phase the dynamical gap ∆(1) ≡ ∆ is well above the zero; when decreasing

D it closes approximately linearly until D ∼ 2, then it continues closing as

far as it approaches a region for D . 0.5, where it becomes almost constant

and very small, as shown in the inset.

We point out that this type of behavior is quite different from the sce-

nario elucidated in the spin-1/2 Heisenberg model of Ref. [110]. In that

case two types of quenches involving the antiferromagnetic BKT isotropic

point were considered. While in the second quenching scheme the system

started from the critical region and advanced in the opposite direction with

respect to our case, the first quench started from the antiferromagnetic re-

gion and crossed both the BKT point and the ferromagnetic isotropic point.

Remarkably, the excess energy was found to be essentially characterized by
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Figure 2.3: Excitation energy ∆(i) of the three lowest excited dynamical

levels for L = 100 spins in the subspace Sztot = 0, as a function of D; the

first excitation energy coincides with the dynamical gap: ∆(1) ≡ ∆. The

inset shows a zoom for 0 ≤ D ≤ 1 of the same plot.

the features of the ferromagnetic critical point, where the gap closes faster

than in all the other points along the critical line. Therefore it was possible

to identify a dominant critical point which allowed for the applicability of a

LZ scaling argument in determining the defect density. On the other hand,

our quench involves the BKT transition line close to the antiferromagnetic

isotropic point, and there are no dominant critical points, thus leading to a

more complex scenario, as explained in the following.

2.4.2 Oscillations in the excess energy for slow quenches

Let us first consider systems of small sizes, as shown in figure 2.4 for L = 6

and L = 8 sites. We have evaluated the excess energy both with the t-

DMRG algorithm (filled circles), and with an exact diagonalization which

does not truncate the system’s Hilbert space (empty squares). As the figure

shows, data agree well.
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On increasing the rate τ , we can recognize two different regimes. For

very small values of τ the excess energy is close to its maximum, and the

dependence on the size and on τ is very small. These points correspond

to very fast quenches, where the system dynamics is strongly non-adiabatic

and the initial state is substantially frozen. As a consequence, the state

after the quench is found to be in a superposition of many excited states

of the final Hamiltonian. A second region is characterized by a dominant

power-law decay, according to Eexc ∼ τ−2 (see the straight lines in the two

insets of figure 2.4), that is superimposed to an oscillatory behavior. This

can be explained within a LZ approximation: for small values of D and L

the gap is large and proportional to 1/L, therefore at very small sizes only

the ground state and the first excited state participate to the evolution of

the system, while all the other excited states are not accessible. The power-

law decay, as well as the oscillations naturally arise when effects of finite

duration time are taken into account [150, 149]. Following the closing of the

gap, the frequency of the oscillations decreases at increasing sizes, as it can

be seen in the figure. The red curve displays a fit of numerical data obtained

by an effective LZ model in which the initial coupling time ti < 0 is finite,

and the final time is tf = 0 (see A for details on the fitting formula).

The oscillatory behavior can be drastically suppressed starting from a

larger value of Din, which corresponds, in the LZ model, to decreasing the

initial coupling time ti; for tf ≤ 0 and in the limit of ti → −∞ the oscillations

disappear and a pure power-law ∼ τ−2 decay survives [150, 149]. This is seen

to emerge from numerical data of figure 2.5, where we started quenching from

Din = 4. Notice also the substantial independence of Eexc on the system

size in the fast quenching limit.

2.4.3 Scaling regime

The analysis of the effects of the quantum phase transitions on the adi-

abatic quench dynamics demands sufficiently large system sizes. We now

concentrate on this aspect and study the excess energy as a function of τ for

considerably larger values of L. Due to the increasing computational diffi-

culty in simulating large systems, we restrict ourselves to quenching schemes

in which Din = 1.

In figure 2.6 we plot the final excess energy of the system after a quench

fromDin = 1 to Dfin = 0 of time duration τ . Starting from fast quenches and

going towards slower ones, we can now distinguish three different regimes:

the first strongly non-adiabatic regime at small τ is analogous to the one pre-

viously discussed for small sizes. In the opposite limit of very slow quenches
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Figure 2.4: Final excess energy after an adiabatic quench of D from Din = 1

to Dfin = 0, as a function of the quench velocity τ . Filled circles denote t-

DMRG data, empty squares are obtained with exact diagonalization, while

the continuous line is a numerical fit with the formula predicted by a LZ

model for finite initial and final coupling times. The left panel shows data

for L = 6 sites, while the right one is for L = 8. The insets show the same

data in a log-log scale (straight blue lines denote a ∼ τ−2 behavior). Note

the smaller frequency of the oscillations for L = 8.

τ ≫ 1, we also recover the power-law τ−2 behavior superimposed to oscilla-

tions coming from an effective LZ description with finite coupling duration.

Most interestingly, in between these two opposite situations, a characteristic

power-law regime emerges, where:

Eexc ∼ τ−α with α ∈ [1, 2] . (2.4.1)

This is dominated by transitions to the lowest dynamically accessible gap,

and it is crucially affected by the critical properties of the system. The

crossover time τ∗ at which this regime ends typically increases with the

size, as it can be qualitatively seen from the figure (arrows denote a rough

estimate of τ∗ for the different sizes), and diverges in the thermodynamic

limit; unfortunately we were not able to analyze the scaling with L, because

of the intrinsic difficulty in estimating the ending point of the τ−α behavior.

Nonetheless, even at asymptotically small quenching velocities, for very large

sizes the scaling of defects 2.4.1 ruled by criticality persists, thus meaning



28 2.4. Results

10
-2

10
-1

10
0

10
1

τ

10
-4

10
-3

10
-2

10
-1

10
0

E
exc

L = 6
L = 8
L = 12

Figure 2.5: Excess energy after an adiabatic quench of D from Din = 4 to

Dfin = 0, as a function of τ . The various data are for different system sizes

L = 6 (black circles), 8 (red squares), 12 (green diamonds). The straight

blue line indicates a behavior Eexc ∼ τ−2 and is plotted as a guideline.

that the system dynamics cannot be strictly adiabatic.

The scaling of the decay rate α with the size has been analyzed numer-

ically, for data corresponding to L ranging from 10 to 60 spins; at L < 10

this regime was not identifiable. Some representative cases are shown in fig-

ure 2.6, where each of the four panels stands for a given system size, while

straight continuous lines indicate the best power-law fits of the scaling re-

gions. In the case of L = 10 sites (upper left panel), we cannot give a reliable

estimate of α, since the width of the scaling region is narrow and the fit is

very sensitive to its actual starting and ending points. The straight line in

the plot corresponds to α ≈ 1.798 and has been obtained from a power-law

fit of numerical data from τ = 1 to τ∗ = 3. As one can see, this is hardly

distinguishable from the τ−2 power-law behavior of the slow-quench regime

(straight dashed line), thus meaning that the existence of the scaling region

itself is here in doubt. This is not the case for the other panels, where a

power-law behavior of the type in equation 2.4.1 is clearly visible. Namely,
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Figure 2.6: Final excess energy as a function of the quench rate τ . The

various panels stand for different system sizes. Symbols denote numerical

t-DMRG data, while the straight line is a power-law fit that has been per-

formed for τ < τ∗ (τ∗ is indicated by the vertical arrow). The two straight

dashed lines in the upper panels denote a τ−2 behavior, and are plotted as

guidelines. The oscillating dashed line at L = 10 is a fit of data with big τ ,

according to the LZ model for a finite coupling duration. The values of α

corresponding to the power-law fits are quoted in each panel. Here we set

Din = 1 and Dfin = 0.

we fitted our data until the τ∗ value, that is labeled in figure 2.6 by a vertical

arrow: as we could expect, the size of the scaling region increases with L.

Summarizing the results obtained for the various sizes, in figure 2.7 we

report the behavior of α as a function of L (in the inset we plot the same data

with 1/L on the x-axis). The uncertainty affecting the value of α extracted

from the power-law fits of numerical t-DMRG data is mostly due to the

inaccurate knowledge of the extremes of the scaling region. For each value

of L, we identified a trial power-law region and then computed several values

of α by progressively sweeping out the points from that region, starting from

the borders. We then evaluated error bars, that are displayed in the plot,

by performing a statistical analysis of the values of α thus obtained. In

order to give an estimate of the power-law decay rate in the thermodynamic
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Figure 2.7: Power-law decay rate α in the intermediate scaling region for the

excess energy, as a function of the system size L. The quench is performed

from Din = 1 to Dfin = 0. In the inset we plot the same quantity as a

function of 1/L. The blue line is a linear fit of data with L ≥ 30, and

predicts an asymptotic value of α∞ ≈ 1.28 in the thermodynamic limit.

limit, we supposed that, at large L, α scales inversely proportional with the

system size. In this way, performing a linear fit of data with L ≥ 30, we

extracted the asymptotic value α∞ ≈ 1.28 in the thermodynamic limit (see

straight blue line in the inset).

We would like to stress that, in this context, our numerical results seem

not to find a straightforward explanation with LZ or KZ arguments. One

could, for example, try to follow a standard LZ argument, that is based

on the assumptions that the dynamical gap scales linearly with the inverse

size, nearby and inside the critical region, and that the adiabaticity loss

is essentially due to the presence of a dominant critical point, where the

gap closes faster than elsewhere [157, 110]. In the LZ approximation, the

probability of exciting the ground state is a global function of the product

τ∆2
m, where ∆m is the minimum gap achieved by the system during the

quench. Assuming a critical scaling of the gap ∆m ∼ L−1, as shown in

figure 2.2, the density of defects can be estimated by evaluating the typical
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length Lε of a defect-free region, once the probability for this to occur is

ε. As a consequence, this would give Eexc ∼ 1/Lε ∝ τ−1/2, exactly as in

the Ising case, in contrast with numerical evidence. On the other hand, a

scaling argument based on the KZ mechanism can be adopted [157, 115];

this relies on the fact that the dynamical gap ∆0 seems to close with D−DC

as the thermodynamical gap in a BKT transition, that is, it depends on the

anisotropy parameter as ∆0 ∝ exp(−c/√D −DC) [28], so that the critical

exponent for the correlation length ν diverges. In this case, the KZ scaling

argument predicts a power-law scaling exponent α = (d + z)ν/(zν + 1), d

being the dimension of the system and z, ν critical exponents; in our specific

case d = z = 1, ν → ∞ thus leading to α = 2 (plus some logarithmic

corrections) [115, 36]. This again contrasts with our numerical evidence,

thus revealing that the presence of a critical line in which the gap closes

always in the same way seems to indicate that all the low-lying excitation

spectrum becomes necessary to predict the actual behavior. We notice that

the two above mentioned different dependencies of the dynamical gap on the

inverse size, like ∼ 1/L for L → ∞, and on the distance from the critical

point, as ∼ e−c/
√
D−Dc, are confirmed quite precisely by our data.

We checked the dependence of α on the final point of the quench: in

figure 2.8 we varied the ending point Dfin, while keeping Din and the system

size fixed (explicit data for the excess energy Eexc as a function of τ are

presented in the inset, at L = 60). For values of Dfin outside the critical

region we find that α depends on Dfin at finite sizes. Nevertheless, the

range of the scaling region shrinks with L and eventually disappears in the

thermodynamic limit, so we argue that the dependence of α on Dfin > Dc

should be entirely due to finite size effects. For Dfin < Dc we observe that

the dependence of α on Dfin weakens as the system size is increased. In

this case the scaling region is valid until a quench rate τ∗
L→∞−→ +∞; the

power-law decay rate tends to a value that is independent of Dfin < Dc and

has been extrapolated from numerical data of figure 2.7 to be α∞ ≈ 1.28.
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Chapter 3

Quantum quenches,

Thermalization and

Many-Body Localization

3.1 Introduction

We turn our attention to the possibility of thermalization following a sud-

den quench and to its interplay with integrability. In this chapter we will

show that a natural framework to characterize the effects of integrability

on thermalization is that of many-body localization [2, 6, 77], which we

briefly review in Sec. 3.4. A relation between integrability breaking and

many-body localization was hinted in a recent interesting work by Pal and

Huse [109], building on a series of seminal papers in disordered electron

systems [2, 6]. In this chapter localization will be intended in the space of

quasi-particles (and not necessarily in real space, as in Ref. [109]). More

specifically, in analogy to a construction originally conceived for disordered

electron systems [2, 6, 77], the quasi-particle space can be thought of as a

multidimensional lattice where each point is identified by the occupations

n(k) of the various quasi-particle modes |Ψα〉 = |{nα(k)}〉 (see Fig. 3.1).

As long as states are localized in quasi-particle space, the system behaves

as integrable: any initial condition spreads into few sites maintaining strong

memory of the initial state. Thermalization will not occur. At the same

time, the qualitative behavior of local and non-local operators in the quasi-

particles is naturally going to be different: locality in quasi-particle space

implies sensitivity to the localization/delocalization of states, while non-local

operators always display an effective asymptotic thermal behavior. Once

a strong enough integrability-breaking perturbation hybridizing the various

33
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Figure 3.1: (color online). A cartoon of the quasi-particle space, where in-

tegrability breaking leads to a localization/delocalization transition. For an

integrable model all states, represented by the occupations of quasi-particles

{n(k)}, are localized. An integrability breaking perturbation introduces

hopping matrix elements V among different sites, which hybridize provided

|E({n′(k)} − E({n′′(k)}| ≤ V . For strong enough perturbations, this may

lead to the delocalization of wave functions among all points in quasi-particle

space in a microcanonical energy shell.

states |nα(k)〉 is applied, the consequent delocalization in quasi-particle space

will lead to thermalization. An initial state is allowed to diffuse into all states

in a micro-canonical energy shell generating a cascade of all possible lower

energy excitations1. We investigate the validity of this scenario by studying

the dynamics of a quantum XXZ spin-1/2 chain after a sudden quench of

the anisotropy, in the presence of an integrability breaking term.

The chapter is organized as follows. First of all, in Section 3.2 we qualita-

tively recall the ideas of many-body localization transition, emphasizing the

concept of inverse participation ratio. After introducing a specific model in

Sec. 3.3, we characterize the deviations from integrability and the correspon-

dent delocalization in quasi-particle space by means of the level statistics and

of the properties of the many-body eigenstates in Sec. 3.4. We show that a

well defined transition from Poisson (integrable) to Wigner-Dyson statistics

(non-integrable) is closely associated to the localized/diffusive character of

1Notice that in general it is possible to have non-ergodic, but extended states (see

Ref. [2] and refs. therein).
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eigenstates in quasi-particle space. In Sec. 3.5 we turn to the study of the

dynamics after a sudden quench, defining and discussing the behavior of

the effective temperature. Keeping in mind the results of Sec. 3.4 charac-

terizing the integrability breaking crossover, we show in Sec. 3.6 that the

transition from non-thermal to thermal behavior in the dynamics of observ-

ables is directly connected to the localization/delocalization transition in

quasi-particle space. In particular, by looking at the asymptotics of spin-

spin correlation functions, we discuss how the emergence of thermalization

is linked to the emergence of diffusive eigenstates in quasi-particle space.

Finally, we study the sensitivity to integrability breaking of spin correla-

tors in different directions and discuss the relation between the locality of

observables in quasi-particle space and the corresponding behavior. In Ap-

pendix B we support the main findings of this Chapter performing the same

numerical analysis for models with different integrability breaking terms.

3.2 Many-body localization transition

We now sketch very qualitatively the concept of many-body localization,

originally introduced in the Refs. [2, 6], studying transport properties of

electrons in random potentials. Although here we are not dealing with such

kind of systems, it is nevertheless useful to recall them in order to understand

the role of quantities such as the inverse participation ratio, discussed below.

In absence of electron-electron interaction in a disordered potential, all

the physics is described by the phenomenon of Anderson localization: if one-

particle wave functions are spatially extended then the dc electrical conduc-

tivity has a finite zero-temperature limit, if instead they are localized the

conductivity vanishes for T → 0. So Anderson localization of electronic

states leads to the metal-to-insulator transition at zero temperature. Local-

ized and extended states in a random potential can not be mixed in the one

electron spectrum, so the latter is a combination of bands with extended

states and bands with localized states. The border between a localized and

an extended band is called mobility edge.

The presence of inelastic electron-electron interaction, i.e. collisions

which create or annihilate real electron-hole pairs, has deep consequences

on conductivity: Altshuler et al. [2, 6] show that electron-electron interac-

tion alone is not enough to give a finite conductivity under a certain critical

temperature Tc, but the conductivity is finite for T > Tc. Hence there exists

a phase transition that manifests itself by the emerging of a finite conductiv-

ity. This transition can be thought of as a many-body localization transition,

because it applies to the many-body eigenstates of the whole system: it does
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not occur in real space, but rather in Fock space.

Depending on the strength of the disorder potential, a one-particle wave

function φα(r) of an eigenstate α can be classified as localized if |φα(r)|2 ∝
exp(|r − ρα|/ζloc) or extended in the volume V of the system if |φα(r)|2 ∝
1/V . This asymptotic behavior can be translated into a property of the

matrix elements of given operator, whose spatial correlation funtion decays

exponentially if it is localized. In the situation in which all single-particle

states are localized, assumed here, and without many-body effects, the con-

ductivity is zero at any temperature.

If we now turn to the many-body system, its wave function Ψk({rj}Nj=1)

in coordinate representation depends on all the coordinates of the N parti-

cles, so a definition of localized state as for the one-particle functions is not

possible. Nevertheless, a definition of many body localization is feasible by

shifting the attention on observables: if the spatial correlation function of

the matrix elements of a local operator computed on some many-body wave

function falls exponentially with the distance, then those wave functions de-

scribe many-body localized states.

It can be shown that insulating or localized many-body states are found when

electron-electron interaction mixes a finite number of many-body eigen-

states. In this case, considering the creation of an electron-hole pair on

top of some eigenstate Ψk with eigenvalue Ek and expanding on the other

eigenstates:

c†αcβ |Ψk〉 =
∑

k′

Ckk
′

αβ |Ψk′〉;
∑

k′

|Ckk′αβ |2 = 1 (3.2.1)

the number of terms contributing to the sum is large but finite:

lim
V→∞

[

∑

k′

|Ckk′αβ |4
]−1

<∞. (3.2.2)

Conductivity can be different from zero only if the wavefunctions of the

excitations can be broken onto an infinite number of eigenstates:

lim
V→∞

[

∑

k′

|Ckk′αβ |4
]−1

= ∞. (3.2.3)

which corresponds to the metallic or extended many-body state. The metal-

lic states correspond to the case when electron-electron interaction mixes

the excited state with all the eigenstates in the system with close enough

energy |Ckk′αβ |2 ∝ “δ(Ek−Ek′ +ωαβ)
′′, where the δ-function is understood in

a thermodynamic sense: its width, although large enough to include many
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states, vanishes for V → ∞.

The crucial quantity is thus
[

∑

k′ |Ckk
′

αβ |4
]−1

, which is found in many dif-

ferent contexts and is known as inverse participation ratio (IPR). We will

study the IPR for our finite systems in Section 3.4.

The presence of the many-body localization transition inplies that there ex-

ists an extensive many-body mobility edge, which separates localized states

at sufficiently small energies from extended states at sufficiently high ener-

gies. The proof of the existence of the localized states goes through estab-

lishing a correspondence between the many-electron interacting system and

the Anderson model on a certain graph. For example, in the case of quan-

tum dots with a finite number of electrons, the Hamiltonian can be mapped

into the one-particle Hamiltonian on a lattice with the topology of a Cay-

ley tree and on-site disorder [2]. This problem has an exact solution that

contains the localization transition. The many-body localization transition

in the general d−dimensional case has been proved in Ref. [6].

3.3 The model

We consider the spin 1/2 anisotropic Heisenberg model with a random mag-

netic field, defined by:

H =
L−1
∑

i=1

[(

σxi σ
x
i+1 + σyi σ

y
i+1

)

+ Jzσ
z
i σ

z
i+1

]

+Bz

L
∑

i=1

hiσ
z
i . (3.3.1)

Here σαi (α = x, y, z) are the Pauli matrices, Jz is the anisotropy parameter,

while Bz controls the strength of a random on-site magnetic field and hi are

random numbers uniformly distributed in [−1, 1].

3.3.1 Relevant symmetries

In order to study the energy level statistics, we need to study the quantities

of interest for the statistical properties separately in each symmetry sector

of the Hamiltonian 3.3.1. For generic values of Bz, the model shows two

symmetries. First, the system is invariant under rotations in the xy plane,

so the z-component of the total spin Sz =
∑

i σ
z
i /2 is a conserved quantity.

If the number of sites L is even, the largest subspace corresponds to Sz = 0,

which has dimension n ≡
( L
L/2

)

. In the remainder of this chapter we will

restrict to this sector, whose simplest basis is the computational basis at

zero magnetization, given by the tensor products over the lattice sites of the

eigenstates of σzi .
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Second, although the Hamiltonian 3.3.1 does not commute with the time

reversal operator, it can be shown [3] that there exists an antiunitary op-

erator, often related to as the non-standard time reversal operator, under

whose action the Hamiltonian is invariant. This makes it possible to describe

the statistical properties of the energy levels of 3.3.1 through the Gaussian

Orthogonal Ensemble (GOE) and more precisely, since the model involves

only two-body interactions, through the two-body random ensemble [13],

embedded in the GOE.

3.3.2 Phase diagram

For Bz = 0 the model (3.3.1) is integrable by Bethe Ansatz [107], and

exhibits two gapped phases, ferromagnetic (Jz < −1) and antiferromagnetic

(Jz > 1). These phases are separated by a critical region −1 ≤ Jz ≤ 1,

with Jz-dependent critical exponents [82] and quasi-long-range-order in the

xy spin-plane.

The addition of the random term (Bz 6= 0) makes the system non-

integrable 2. The zero temperature phase diagram in presence of disorder

has been studied in Ref. [54]: it shows a transition from quasi-long range

order, typical of the pure XXZ model, on the line −1 < Jz < 1 with Bz = 0

and in a region with small Bz and −1 ≤ Jz ≤ −1/2, to a phase with a dis-

ordered ground state, rapidly decaying correlation functions and localized

excitations.

At infinite temperature, the onset of many-body localization and the

phase diagram have been studied in Refs. [108, 84, 103, 109]. In the first

of these works [108], Oganesyan et al. considered the model of Eq.3.3.1

with a small next-nearest neighbor term and conjectured the existence of a

localized phase at high magnetic fields from the exact diagonalization study

of the spectral properties, the uncertainty coming from the impossibility of a

finite-size scaling of the transition. Taking a different perspective, the onset

of localization for the same model of [108] has been confirmed by Monthus

et al. [103] with an exact renormalization procedure in configuration space.

Further confirmations of the many-body localization transition at strong

disorder for the model Eq. 3.3.1 came both from the emergence in real space

of the asymptotic exponential localization of correlation functions [84], and

recently from Ref. [109]. In the latter work the critical value Bcrit
z of the

magnetic field separating the non-ergodic many-body localized phase (in

real space) at Bz > Bcrit
z , from the ergodic one at B < Bcrit

z , has been

estimated to be at Bcrit
z ∼ 6 ÷ 8 for Jz = 1 (in our units). The results

2The effect of other integrability breaking terms is shown in Appendix B.
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presented below indicate the presence of a second non-ergodic localized phase

(in quasi-particle space) for Bz close to zero that crosses over to the ergodic

phase upon increasing Bz beyond B∗
z . The fate of this crossover in the

thermodynamic limit and the eventual value of the critical B∗
z are yet to be

determined 3.

3.4 Integrability and many-body localization

Having in mind the scenario sketched in Section 3.2, we now describe the

effect of the integrability breaking perturbation in terms of many-body lo-

calization in the space of quasi-particles. We start characterizing quantita-

tively the crossover from integrability to nonintegrability through the level

statistics indicator (LSI), in order to identify the range of magnetic fields

Bz suitable for observing the onset of delocalization. The LSI is a quantity

related to quantum chaos which depends on the energy spectrum, in partic-

ular on the energy spacing between neighboring levels.

Then we move to the study of the inverse participation ratio, properly de-

fined in this context, motivated by the fact discussed in Section 3.2 that the

many-body localization transition is in correspondence with a change in the

behavior of the IPR. The many-body localization transition can be captured

comparing the IPR in a given energy shell and the number of eigenstates in

the same energy range, as we show at the end of this section.

It should be mentioned that several numerical works can be found in litera-

ture on the spectral properties of both isotropic and anisotropic Heisenberg

chains [3, 13, 55, 92, 119, 136]: here we show the behavior of the LSI and

the IPR in our model as a function of the energy eigenvalues, obtained nu-

merically by exactly diagonalizing finite-size systems with up to 16 sites,

and draw special attention on the relation between statistical quantities and

many-body localization.

3.4.1 Level statistics indicator

We characterize the states involved in a quench by studying their spectral

properties, which allow to distinguish quantum integrable from fully chaotic,

non-integrable systems. Namely, defining P (s) as the probability distribu-

tion of the spacing between neighboring levels s ∼ |Ei+1−Ei| > 0 (modulo a

normalization factor), it has been known for a long time [81] that integrable

3While for the parameters used in this chapter the low lying eigenstates are localized

in the thermodynamic limit, in the following we will consider systems sizes smaller than

the localization length.
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systems show a Poisson (P) distribution:

PP (s) = exp(−s), (3.4.1)

while non-integrable systems with the same symmetries of Eq.3.3.1 have a

Wigner-Dyson (WD) distribution:

PWD(s) =
πs

2
exp(−πs

2

4
). (3.4.2)

The effect of an integrability-breaking perturbation with increasing weight

can be quantified by means of the level statistics indicator (LSI) η, intro-

duced in [87] and here specialized to a given energy shell:

η(E) ≡
∫∞
0 |P[E,E+W ](s) − PP(s)|ds
∫∞
0 |PWD(s) − PP(s)|ds , (3.4.3)

where P[E,E+W ](s) is the probability distribution of the level spacing com-

puted for the eigenvalues in the window [E,E+W ]. The LSI varies from zero

in the integrable case, to unity for a WD distribution of the spacings.4 A

remark about the numerical calculation of η is in order. The most “natural”

way to construct P (s) is to compute all the differences between neighboring

energies δi = Ei+1 − Ei, where Ei is the i-th eigenvalue, renormalize them

to the average value buiding the quantities si and then build a normalized

histogram. Although correct, this procedure gives large fluctuations in the

extreme regions of the energy spectrum. The usual solution of this problem

is to work with unfolded eigenvalues [81, 92]: they are renormalized values

whose local density of states is equal to unity everywhere in the spectrum.

In Fig. 3.2 we show η(E) for several Bz values: while at low energies the

statistics is always closely Poisson, in the center of the spectrum the statis-

tics is Poisson for very small Bz, while it approaches Wigner-Dyson for

Bz ≃ 1 [48]. For Bz ≥ 1, η decreases again towards small values, since for

Bz ≫ Jz the system turns into a trivial integrable model. This last result is

coherent with those of Ref. [108] about the level statistics. We also studied

the cumulative behavior of the LSI, computing η on states within a given

excitation energy cutoff E≤, see Fig. 3.3. With increasing cutoff energy,

the LSI approximately satures to a constant value, strongly dependent on

the magnetic field. The curve in the inset further confirms that for large

magnetic field the level spacing departs from the WD distribution.

4The definition used here for the level statistics indicator slightly differs from the

standard one, which is η =
R s0

0
[P (s)−PWD(s)]ds

R s0

0
[PP(s)−PWD(s)]ds

where s0 ≈ 0.4729 is the first intersection

point of PP(s) and PWD(s). We cheked that the two definitions agree very well, our choice

is due to numerical convenience.
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Figure 3.2: (color online). LSI η for a system of L = 14 sites in adjacent

microcanonical shells of width W . Data are obtained by taking W = 2 for

η; averages over 103 for η are taken. Here and in the following figures we

consider Jz = 0.5; we also shift energies so that the ground state corresponds

to E = 0. Units of ~ = kB = 1 are used throughout this chapter.

3.4.2 Inverse participation ratio

Besides the crossover in level statistics, on increasing disorder the eigen-

states delocalize in the quasi-particle space. A suitable indicator of this

delocalization is the Inverse Participation Ratio (IPR) [2, 86, 154]. We con-

sidered the IPR on two specific bases: the Integrable (I) basis consisting of

the eigenstates {|nI〉} of the model in absence of randomness (Bz = 0), and

the Site (S) basis |nS〉 = |σ1 · · · σL〉 (σi = ±1) composed of the eigenstates

of σzi . In these cases the energy-resolved IPR is defined as

ξI/S(E) =
1

N[E,E+W ]

∑

|ψ̃〉

(

∑

n

|〈nI/S |ψ̃〉|4
)−1

, (3.4.4)

where N[E,E+W ] is the total number of eigenstates |ψ̃〉 in the energy window

[E,E + W ]. Trivial particular cases of Eq.(3.4.4) happen when |ψ〉 is a

state of the basis {|n〉} or when it is a uniform superposition of exactly m

basis states: the inverse participation ratio is ξ = 1 and ξ = m respectively.
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Figure 3.3: (color online). Main panel: cumulative LSI η for the same

systems of Fig. 3.2 as a function of the energy cutoff. Inset: LSI of the full

spectrum as a function of the magnetic field.

It can be shown [7, 13, 80] that for a N -dimensional state vector, whose

components are randomly distributed according to a GOE, the expected

IPR is ξGOE = N+2
3 .

In Fig. 3.4 we show our numerical results for a system of L = 14 sites

as a function of energy, for different magnetic fields; at this size the zero

magnetization sector of the Hilbert space is composed of n = 3432 states.

As for the LSI, also here the extreme low and high energy regions of the

spectrum are almost not sensitive to the breaking of integrability and to

different magnetic fields. On the contrary, in the central part of the spec-

trum, the loss of integrability upon increasing Bz shows up as a progressive

delocalization of the eigenstates with respect to the I-basis, as witnessed by

the peak at ξI ∼ 800 ∼ N/3 in Fig. 3.4. Analogously to the LSI, also the

cumulative IPR has been analyzed: in Fig. 3.5 we show the IPR both in

the integrable and in the site basis. We see that in correspondence with the

delocalization in the integrable basis, a concomitant localization happens

with respect to the computational basis.
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Figure 3.4: (color online). IPR for the integrable basis ξI . for a system of

L = 14 sites, as a function of the energy window of the eigenstates. Data are

obtained by taking W = Bz for ξI ; averages over 102 disorder realizations

are taken.
5

3.4.3 Delocalizion in Fock space

Let us now study in more depth the qualitative difference between local-

ized and delocalized states in quasi-particle space. We compare the in-

verse participation ratio ξI(E) with the number of quasi-particle states

N(E) hybridized in a delocalized wave function. The quantity N(E) can

be roughly estimated by the number of states in the microcanonical en-

ergy shell [E,E + V ], where V ≈ 2Bz is the typical matrix element of the

integrability-breaking perturbation. This comparison clearly elucidates the

difference between quasi-integrable and non-integrable systems: in the first

case ξI ≪ N(E) (Fig. 3.6, left panel), indicating that eigenstates are still

close to those of the integrable system, while in the second case ξI ≈ N(E),

thus meaning that all quasi-particle states within the microcanonical en-

ergy shell do hybridize (Fig. 3.6, right panel). Notice that in this context

the low-lying eigenstates are rather peculiar: this part of the spectrum,

which contains very few states as compared to the center (Fig. 3.6, upper

left panel), has closely Poissonian statistics and is characterized by large
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Figure 3.5: (color online) Cumulative IPR for the integrable basis ξI (main

panel) and the site basis ξS (inset) for the same system of Fig. 3.4, as a

function of the cutoff energy of the eigenstates.

fluctuations of statistical quantities.

3.5 Quench dynamics

In order to relate many-body localization to thermalization we will present,

here and in the following section, some results for the dynamics following a

sudden quench of the anisotropy parameter according to:
{

Jz0, t < 0

Jz 6= Jz0, t ≥ 0.
(3.5.1)

We set the final value of Jz = 0.5 6 and restrict Jz0 > −1 (critical or

antiferromagnetic region, for Bz = 0), while the Bz and random fields are

kept constant throughout the evolution. The system is initially prepared in

the ground state |ψ0〉 of H(Jz0), so that its (conserved) energy with respect

to the final Hamiltonian H(Jz) is E0 = 〈ψ0|H(Jz)|ψ0〉. For growing values of

Jz0, the state |ψ0〉 tends towards the classical antiferromagnetic Néel state,

6We have checked explicitly that changing Jz to a different value within the critical

region does not qualitatively affect our conclusions.
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Figure 3.6: (color online). IPR in the integrable basis ξI at Bz = 0.1 (left

panels), Bz = 1 (right panel), compared to the number of states N in an

energy window of width W = 2Bz.

independent of Jz0. E0/L saturates to a constant value, see Fig. 3.7, thus

implying that a quench generally involves only a fraction of the eigenstates

of the final Hamiltonian.

Contrary to local quenches, the work done on the system by changing

the anisotropy from Jz0 to Jz is extensive. It is then interesting to ask, after

a quench involving an extensive injection of energy E0 −Egs ∝ L (Egs being

the ground state energy of H(Jz)), if the subsequent long-time evolution of

the system is effectively described by an equilibrium dynamics governed by

H(Jz). In view of a plausible equivalence between a microcanonical (fixed

E0) and a canonical equilibrium description of such a long-time dynamics,

it is meaningful to define, as in previous instances [129, 130], an effective

temperature Teff by equating E0 to the canonical average through the equa-

tion:

E0 =
Tr[e−H(Jz)/TeffH(Jz)]

Tr[e−H(Jz)/Teff ]
. (3.5.2)

For the quenches considered here, the effective temperature can reach at

most values of the order Teff ∼ 5 for large Jz0, see Fig. 3.8. For these

effective temperatures the states probed are located in the lower central

part of the band.



46 3.6. Thermalization of observables

0 0.5 1 1.5 2 2.5 3
E/L

0

0.05

0.1

0.15

0.2

N
(E

) 
/ n

L = 8
L = 10
L = 12
L = 14
L = 16

J
z0

=100

Figure 3.7: (color online) Curves with symbols: average fraction of states

in microcanonical shells of width W = 2Bz as a function of the energy per

particle, with Jz = 0.5 and magnetic field amplitude Bz = 1. For sizes

from L = 8 to L = 14 we average over ∼ 103 realizations, for L = 16 over

100. Vertical lines: intensive initial energies for a quench from Jz0 = 100

to Jz = 0.5 and Bz = 1. The data are obtained averaging on 1000 disorder

realizations for each size, same color code as the curves.

3.6 Thermalization of observables

In this section we enlight the relation between thermalization and delocal-

ization in quasi-particle space on the grounds of our numerical results.

Recalling the discussion in Chap.1, by thermalization we mean that the

long-time expectation value of an observable, given by the diagonal ensemble

average, equals the canonical expectation value. A word of caution about

the ensemble equivalence: in this context of very small sizes, it is not neces-

sarily true that the microcanonical expectation value corresponds with the

canonical one.

We study the behavior of the Fourier transform of two-spin correlators:

nαk ≡ 1

L

L
∑

j,l=1

ei(j−l)k/Lσαj σ
α
l α = x, z . (3.6.1)



3. Quantum quenches, Thermalization and Many-Body Localization 47

0 5 10 15 20
J

z0

0

2

4

T
ef

f
B

z
=0.1

B
z
=1.0

B
z
=1.6

B
z
=1.8

B
z
=2.0

L=14

Figure 3.8: (color online). Effective temperatures as a function of the initial

value of the anisotropy parameter Jz0, for a system of L = 14 sites. Averages

on 100 disorder realizations, different curves correspond to different magnetic

fields.

and compare the expectation value nαTeff
(k) ≡ 〈nαk 〉Teff

in the canonical en-

semble at the corresponding Teff , with the asymptotic value that is reached

after the quench, calculated from the diagonal ensemble [123, 124, 126]:

nαQ(k) ≡ lim
t→∞

〈ψ(t)|nαk |ψ(t)〉 =
∑

i

|ci|2〈φi|nαk |φi〉, (3.6.2)

where ci ≡ 〈φi|ψ0〉 and |ψ(t)〉 = e−iH(Jz)t|ψ0〉 is the state at time t. While

correlators in the x-direction are always well reproduced by an effective

thermal ensemble, correlators in the z-direction appear to be more sensitive

to integrability and its breaking. This difference is already evident at a

qualitative level by looking at nαQ(k) and nαTeff
(k) for α = x, z (insets of

Fig. 3.9). The discrepancies between thermal and diagonal ensemble x- and

z-correlators are best seen at k = π: defining δnαπ = |nαQ(π) − nαTeff
(π)|, we

observe that δnxπ is more than an order of magnitude smaller, indicating a

closely thermal behavior, while δnzπ shows a sharp decrease as integrability is

progressively broken by increasing Bz, towards a minimum value at Bz = 1,

which corresponds to fully delocalized states in quasi-particle space. Notice

that for Bz > 1, δnzπ increases again, in agreement with the fact that Bz ≃ 1
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Figure 3.9: (color online). Differences δnzπ and δnxπ as a function of the

random term Bz for a quench of the anisotropy parameter from Jz0 = 10 to

Jz = 0.5. Data are for L = 14 sites, averaged over 102 disorder realizations.

Insets: momentum dependence of nαQ/Teff
(k), for a given value of Bz = 0.4.

is the point where non-integrable behavior is most pronounced and that

for large magnetic fields the system tends towards another integrable limit.

In analogy with previous studies, the different sensitivity to integrability

of correlators in different spin directions can be understood qualitatively

as a consequence of the fact that σz is a local operator in quasi-particle

space while σx is a non-local one [129, 130]. However we stress that this

identification is here subtler than in the Ising chain, and is evident only in

the XX limit (Jz = 0) and/or at low energies in the critical phase [107].



Chapter 4

Quench dynamics in the

random Ising model.

4.1 Introduction

In this Chapter we present preliminary results [21] on the study of a random

Ising chain and its dynamics after a quantum quench.

The random Ising model has been widely studied: the phase diagram, the

critical exponents and the static properties are addressed in Refs. [98, 71,

72, 142, 153], while the dynamical correlations in imaginary time are nu-

merically investigated in Refs. [152, 85]. The slow dynamics of the random

Ising model crossing its quantum critical point through a linear time modu-

lation of the transverse field has been studied in Ref. [22], where the density

of defects and the residual energy are found to scale logarithmically with the

time scale of the quench. Here we concentrate on a sudden quench of the

transverse field, trying to elucidate the role of disorder in the asymptotic

behavior of integrable systems and in particular on the thermalization of ob-

servables which have a non-local representation in terms of quasi-particles.

The numerical results presented below, although at a very preliminary stage,

should be the extension to the disordered case of the results of Refs. [129,

130], concerning the dynamics of the ordered Ising model. In the latter

papers it is shown that the autocorrelation function of the order param-

eter, ρxx(t), undergoes thermalization after a quantum quench, while the

transverse magnetization does not. As we discussed in Chapter 1 and 3, at

the roots of this different behavior there is the different content of quasi-

particles of the two operators: the order parameter and the transverse mag-

netization are characterized by a non-local and local expression in terms of

quasi-particles respectively. In particular Rossini et al. [129, 130] find that

49
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at long times ρxxQ (t) ∼ e−t/τ
ϕ
Q decays exponentially with a time scale τϕQ,

which is shown to agree very well with τϕT , setting the exponential decay of

ρxxT (t) at thermal equilibrium. The decay rate after the quench is shown to

depend only on the effective temperature of the quench and on the gap of

the final Hamiltonian. Since both the ordered and random Ising models are

integrable, it is interesting to verify whether the generalized Gibbs ensemble

is able to predict the decay of ρxx, since the latter is a not an additive quan-

tity [118]. We try to address this issue presenting some numerical findings

limited to the ordered case, which turn out to be not completly conclusive

and compare our results to those of Ref. [130] where a semiclassical analy-

sis [132] is adopted.

This Chapter is organized as follows: in Section 4.2 we define the model

and describe the exact solution of the statics and the dynamics in terms

of fermions. Then in Section 4.3 we show the detailed calculation of the

autocorrelation function in the various cases of interest. In Section 4.4 we

show our numerical results for the autocorrelation function at equilibrium

in real time, emphasizing the relation with the imaginary time dynamics.

In Section 4.5 we show our numerical findings, starting from the ordered

case, where we investigate the predictions of the GGE, and then moving to

the disordered situation.

4.2 The model

We consider a quantum random Ising spin chain in one dimension, defined

by the Hamiltonian:

H(Γ) = −
∑

i

Jiσ
x
i σ

x
i+1 − Γ

∑

i

hiσ
z
i , (4.2.1)

where σαi (α = x, y, z) are the Pauli matrices for the ith spin of the chain, Ji
are random couplings between neighboring spins, hi are random transverse

fields, while Γ is a parameter setting the amplitude of the transverse mag-

netic fields. Hereafter we use units of ~ = kB = 1. We will consider finite

chains of length L, with open boundary conditions (so that the first sum in

Eq. (4.2.1) runs over i = 1, . . . , L− 1 and the second over i = 1, . . . , L).

We drive the system out of equilibrium with a quantum quench of the

transverse field, described by:

Γ(t) =

{

Γ0 t ≤ 0

Γ t > 0 .
(4.2.2)
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We initialize the system in the ground state |ψ0〉 of H(Γ0). At time t > 0

the system evolves with the new Hamiltonian H(Γ), according to:

|ψt〉 = e−iH(Γ)t|ψ0〉 . (4.2.3)

In one dimension and for nearest-neighbor couplings, there is no frustra-

tion associated to the random nature of the couplings Ji: by appropriately

performing spin rotations of π along the x-spin axis, we can always change

the desired σzi into −σzi and invert accordingly the signs of the couplings

in such a way that all Ji’s turn out to be non-negative. As the distribu-

tions for the random Ji’s and hi’s, we assume the same as in Ref. [22]: the

Ji’s are randomly distributed in the interval [0, 1] with a flat distribution

π[J ] = θ(J)θ(1 − J), where θ is the Heaviside function; we analogously as-

sume the distribution π[h] = θ(h)θ(1 − h) for the random magnetic fields.

This choice for the random distributions implies, by duality arguments [72],

that the critical point separating the large-Γ quantum paramagnetic from

the low-Γ ferromagnetic phase is known to be located at Γc = 1.

4.2.1 Fermion representation and Bogoliubov-de Gennes equa-

tions

The model in Eq. (4.2.1) is integrable and can be exactly solved in terms of

free fermionic quasiparticles [95]. The first step is mapping the spins into

hard-core bosons (a†j, aj):

{

σxj = a†j + aj

σzj = 2a†jaj − 1
(4.2.4)

which commute on different sites and satisfy the hard-core constraint (a†i )
2 =

0. Then one applies the Jordan-Wigner transformation of the hard-core

bosons into fermions (c†j , cj):

aj ≡ eiπ
P

l<j nlcj =

[

j−1
∏

l=1

(1 − 2nl)

]

cj , (4.2.5)

where nj = c†jcj is the fermionic number operator. With this transforma-

tion, Hamiltonian (4.2.1) with open boundary conditions is mapped into a

quadratic form:

H = −
L−1
∑

i=1

Ji

(

c†i c
†
i + c†i ci+1 + h.c.

)

− 2Γ

L
∑

i=1

hic
†
ici . (4.2.6)
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The system is then diagonalized by means of a Bogoliubov rotation [95,

112, 153], introducing the new fermionic operators (γ†µ, γµ):

γµ =
L
∑

j=1

(u∗jµcj + v∗jµc
†
j) ; (4.2.7)

[conversely one has ci =
∑L

µ=1(uiµγµ + v∗iµγ
†
µ)]. The L-dimensional vectors

uTµ = (u1µ, u2µ, . . . , uLµ) and vTµ = (v1µ, v2µ, . . . , vLµ), for µ = 1, . . . , L,

satisfy the Bogoliubov-de Gennes coupled equations:

H̃

(

uµ

vµ

)

= ǫµ

(

uµ

vµ

)

, (4.2.8)

where H̃ is a 2L× 2L real symmetric matrix of the form

H̃ =

(

A B

−B −A

)

(4.2.9)

and A, B are L × L real matrices whose nonzero elements are given by

Ai,i = −Γhi, Ai,i+1 = Ai+1,i = −Ji/2, Bi,i+1 = −Bi+1,i = −Ji/2. In the

general disordered case it is necessary to diagonalize this 2L×2L eigenvalue

problem numerically; the vectors uµ and vµ can be always chosen to be real.

The spectrum of Eqs. (4.2.8) is given by ±ǫµ, with ǫµ ≥ 0 and, in terms of

the new fermion operators (γ†µ, γµ), H becomes diagonal:

H =

L
∑

µ=1

2ǫµ

(

γ†µγµ −
1

2

)

. (4.2.10)

The ground state of H is the Bogoliubov vacuum state |ψ0〉 annihilated by

all the γµ’s: γµ|ψ0〉 = 0, with an energy E0 = −∑L
µ=1 ǫµ.

4.2.2 Dynamics at T = 0: Heisenberg equations

The dynamics of model (4.2.1) can be suitably described within the Heisen-

berg formalism. Due to the particularly simple quadratic form of Eq. (4.2.6)

in terms of the c-fermions, the Heisenberg equations of motion for the c op-

erators are linear and are given by:

i
d

dt
ci,H(t) = 2

L
∑

i=1

[Ai,j(t)cj,H(t) +Bi,j(t)c
†
j,H(t)] (4.2.11)

(the subscript H stands for Heisenberg representation). These can be solved

with a time-dependent Bogoliubov theory, obtained as follows. If we denote
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with γµ,0 the Bogoliubov operators that diagonalize H(t = 0) at the initial

time, and u0
µ,v

0
µ the corresponding initial eigenvectors, it is simple to verify

that the Ansatz:

ci,H(t) =

L
∑

µ=1

(uiµ(t)γµ,0 + v∗iµ(t)γ
†
µ,0) (4.2.12)

does indeed solve the Eqs. (4.2.11), provided the time-dependent coefficients

ui,µ and vi,µ satisfy the following system of first order differential equations:

i
d

dt

(

uµ

vµ

)

= 2H̃(t)

(

uµ

vµ

)

. (4.2.13)

Equations (4.2.13) can be easily solved in our specific case, where the

time dependence of the model is given by Eq. 4.2.2. Indeed the evolution

at t ≥ 0 can be thought of as the time-independent evolution of H̃(Γ) but

with non trivial initial conditions. More precisely one can define UΓ as the

matrix of the eigenvectors of H̃(Γ):

UΓ =

(

uΓ
1 · · · uΓ

L (vΓ
1 )∗ · · · (vΓ

L)∗

vΓ
1 · · · vΓ

L (uΓ
1 )∗ · · · (uΓ

L)∗

)

(4.2.14)

and UΓ0 as the matrix of the eigenvectors of H̃0:

UΓ0 =

(

u
Γ0
1 · · · u

Γ0
L (vΓ0

1 )∗ · · · (vΓ0
L )∗

vΓ0
1 · · · vΓ0

L (uΓ0
1 )∗ · · · (uΓ0

L )∗

)

(4.2.15)

Since both UΓ and UΓ0 are unitary real matrices, one has the simple relation:

UΓ(UΓ)T = UΓ0(UΓ0)T (4.2.16)

where T stands for transpose matrix. By defining1 M ≡ (UΓ0)T UΓ the

relation at time t = 0 between UΓ and UΓ0 is simply UΓ0 = UΓMT . So the

solution of the Heisenberg equations of motion is given by:

UΓ0
jl (t) =

2L
∑

m=1

UΓ
jmMlme

−2iǫmt, (4.2.17)

which can be easily evaluated numerically. Notice that solving the system’s

dynamics in this way has a computational cost which increases only linearly

with the size L, thus sensibly reducing the a-priori exponential complexity

of a generic many-body quantum system; this makes it feasible to study

quite large Ising chains.

1This is the definition we implement numerically
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4.3 Autocorrelation function of the order param-

eter

The order parameter of the transverse field Ising model is given by σx. In

what follows we are interested in the autocorrelation function of the order

parameter in real time, i.e. the expectation value of σxL/2(t)σ
x
L/2(0) on the

central site of the chain. We will now show the detailed evaluation in three

cases:

1. evolution starting from the ground state |ψ0〉 of a given H(Γ0) at

T = 0,

2. equilibrium, in the canonical ensemble,

3. equilibrium, in the generalized Gibbs ensemble (GGE).

for which we have implemented the numerical computation.

4.3.1 Evolution starting from the ground state

Let us consider the case in which at time t = 0 the system is initialized in

the ground state |ψ0〉 of an initial Hamiltonian H(Γ0) and evolves at t > 0

according to a constant Hamiltonian H(Γ). The autocorrelation function of

the order parameter on site j given by:

ρxxj (t) ≡ 〈ψ0|σxj,H(t)σxj,H(0)|ψ0〉 (4.3.1)

= 〈ψ0|eiH(Γ)tσxj e
−iH(Γ)tσxj |ψ0〉

In particular we study the average value [ρxx]av over many disorder realiza-

tions of the Hamiltonian in Eq. 4.2.1. Since the quantity in Eq. 4.3.1 is in

general a complex number, we separately perform the average of its real and

imaginary part:

[ρxxj (t)]av ≡ [ℜ(ρxxj (t))]av + i [ℑ(ρxxj (t))]av . (4.3.2)

The correlation function in Eq. (4.3.1) on a generic site j can be computed

taking advantage of the analytical solution of the random Ising model de-

scribed above. The first step is to write the time dependent x-spin oper-

ator on site j, σxj (t), in terms of Jordan-Wigner c-fermions, according to

Eqs. (4.2.4)-(4.2.5) (hereafter time dependent operators are always meant



4. Quench dynamics in the random Ising model. 55

to be in Heisenberg representation), so that

ρxxj (t) = 〈ψ0|
j−1
∏

l=1

[

1 − 2nl(t)
]

(c†j(t) + cj(t)) (4.3.3)

j−1
∏

l=1

[

1 − 2nl(0)
]

(c†j(0) + cj(0))|ψ0〉

By introducing the operators Aj = c†j + cj and Bj = c†j − cj , and using the

identity AjBj = e−iπc
†
jcj , we can rewrite the autocorrelation function as:

ρxxj (t) = 〈ψ0|
j−1
∏

l=1

[

Al(t)Bl(t)
]

Aj(t)

j−1
∏

l=1

[

Al(0)Bl(0)
]

Aj(0)|ψ0〉 . (4.3.4)

Wick’s theorem allows to evaluate the above expression. If Γ0 = Γ it is triv-

ial. When Γ0 6= Γ at t = 0 the Hamiltonian H(Γ0) is diagonalized in terms

of some γΓ0
µ and γ†Γ0

µ , |ψ0〉 being the vacuum state of such operators. At

t > 0 the evolution is simply given in terms of the eigenvectors of H(Γ), but

the state |ψ0〉, constant in the Heisenberg picture, is not the instantaneous

vacuum state of the operators γΓ
µ and γ†Γµ which diagonalize H(Γ). So, in

order to apply Wick’s theorem, one must rewrite the operators A(t) and

B(t) in Eq. 4.3.4 in terms of the operators γΓ0
µ and γ†Γ0

µ and their evolution.

Wick’s theorem for fermions requires the sum over all possible products of

pair averages, with a sign 1 or -1 depending on whether an even or odd per-

mutation of the operators is necessary to get the operators in the product

back to the original order. This is called a Pfaffian, see i.e. the book [98].

If the number of operators 2n is too large (here n = 2j − 1), evaluation of

the Pfaffian is intractable because the number of terms (2n− 1)!! grows too

fast. However, the Pfaffian is also the square root of the determinant of an

antisymmetric matrix (of order 2n) formed by pair averages. If A,B, . . . , Z

are Fermi operators one has:

〈ABC . . . Z〉 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 〈AB〉 〈AC〉 · · · 〈AZ〉
−〈AB〉 0 〈BC〉 · · · 〈BZ〉
−〈AC〉 −〈BC〉 0 · · · 〈CZ〉

...
...

...
. . .

...

−〈AZ〉 −〈BZ〉 −〈CZ〉 · · · 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1/2

(4.3.5)

Let us write explicitly the determinant for a chain of L = 3 sites and j = 2.

For lightening the notation we use the notation 〈. . . 〉 ≡ 〈ψ0| . . . |ψ0〉. The

autocorrelation function is given by:

ρxx2 (t) = 〈A1(t)B1(t)A2(t)A1(0)B1(0)A2(0)〉 (4.3.6)
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which as a determinant looks like:

ρ
xx
2

(t) =

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

0 〈A1(t)B1(t)〉 〈A1(t)A2(t)〉 〈A1(t)A1(0)〉 〈A1(t)B1(0)〉 〈A1(t)A2(0)〉

−〈A1(t)B1(t)〉 0 〈B1(t)A2(t)〉 〈B1(t)A1(0)〉 〈B1(t)B1(0)〉 〈B1(t)A2(0)〉

−〈A1(t)A2(t)〉 −〈B1(t)A2(t)〉 0 〈A2(t)A1(0)〉 〈A2(t)B1(0)〉 〈A2(t)A2(0)〉

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

−〈A1(t)A2(0)〉 −〈B1(t)A2(0)〉 −〈A2(t)A2(0)〉 −〈A1(0)A2(0)〉 −〈B1(0)A2(0)〉 0

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

1/2

(4.3.7)

Let us compute explicilty one of matrix elements in Eq. 4.3.7, for example

〈Bj(t)Al(0)〉.

〈Bj(t)Al(0)〉 = 〈c†j(t)c
†
l (0)〉+〈c†j(t)cl(0)〉−〈cj(t)c†l (0)〉−〈cj(t)cl(0)〉. (4.3.8)

It is now necessary to write the ci operators in terms of the γΓ0
µ :

ci(t) =
∑L

µ=1

(

uΓ0
iµ (t)γΓ0

µ + v∗Γ0
iµ (t)γ†Γ0

µ

)

=
∑L

µ=1

([

∑2L
ν=1 U

Γ
iνMµνe

−2iǫνt
]

γΓ0
µ +

[

∑2L
ν=1 U

Γ
iνMµ+L,νe

2iǫν t
]

γ†Γ0
µ

)

(4.3.9)

where we used Eq. 4.2.17. An equation analogous to Eq. 4.3.9 can be written

for c†i (t). It is worth noting that the above equation is valid generically for

|ψ0〉 ground state H(Γ0) with an arbitrary Γ0. The situation Γ0 = Γ is a

trivial particular case, M being the identity matrix. With these expressions

we can evaluate for example the last term in the sum taking into account

that only terms of the form 〈γµγ†µ〉 are nonzero:

〈ψ0|cj(t)cl(0)|ψ0〉 =
∑

µ

uΓ0
jµ(t)v∗Γ0

lµ (0) (4.3.10)

and putting all the terms together one finds:

〈ψ0|Bj(t)Al(0)|ψ0〉 =
∑L

µ=1

(

u∗Γ0
lµ (t)vΓ0

jµ(0) + v∗Γ0
lµ (t)vΓ0

jµ (0)

−uΓ0
jµ(t)u∗Γ0

lµ (0) − uΓ0
jµ(t)v

∗Γ0
lµ (0)

) (4.3.11)

In a similar fashion one can build up the whole matrix of Eq. 4.3.7. It is

composed of four blocks:







Bt,t Bt,0

B0,t B0,0






(4.3.12)

whereBt1,t2 is a square matrix composed of correlators of the kind 〈Ak(t1)Bl(t2)〉,
〈Ak(t1)Al(t2)〉, 〈Bk(t1)Bl(t2)〉. The off-diagonal blocks Bt,0 and B0,t are not

antisymmetrical individually.
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4.3.2 Autocorrelation function in the canonical ensemble

In Refs. [129, 130] for the ordered Ising model, the evolution of ρxxQ after

a quantum quench from Γ0 to Γ is compared to the canonical expectation

value ρxxTeff
= 〈σxL/2(t)σxL/2(0)〉Teff

, where Teff is the effective temperature. It

is obtained from the equation:

〈H(Γ)〉Teff
= E0 , (4.3.13)

where E0 = 〈ψ0|H(Γ)|ψ0〉 is the initial energy of the system given a quench.

We perform the same calculation in the presence of disorder. So given a

temperature T , the system is described by a density matrix Z−1e−H/T con-

stant in time, Z = Tr(e−H(Γ)/T ) being the partition function. The canonical

expectation value of the autocorrelation function is defined by:

〈ρxxj (t)〉T ≡ Z−1 Tr
(

e−H(Γ)/T ρxxj (t)
)

. (4.3.14)

Using the same expressions as in the T = 0 case we can write:

〈ρxxj (t)〉T =
Tr
(

e−H(Γ)/T
∏j−1
l=1

[

Al(t)Bl(t)
]

Aj(t)
∏j−1
l=1

[

Al(0)Bl(0)
]

Aj(0)
)

Tr(e−H(Γ)/T )
(4.3.15)

The quantity in Eq. 4.3.15 can be evaluated by means of the Wick’s theorem

generalized to the canonical ensemble [69]. The basic contraction γ·µγ
†·
ν is

not unity but instead related to the Fermi function nµ:

γ·µγ
†·
ν ≡ 〈γµγ†ν〉T = δµν(1 − nµ) , nµ =

1

1 + exp(2ǫµ/T )
(4.3.16)

After applying the Wick’s theorem, we obtain the same matrix as in the case

T = 0, but with the contractions defined as above. So the same arguments

bring us to write the determinant in Eq. 4.3.5. Let us write explicitly one

matrix element, for example 〈Bj(t)Al(0)〉T :

〈Bj(t)Al(0)〉T = 〈c†j(t)c
†
l (0)〉T + 〈c†j(t)cl(0)〉T − 〈cj(t)c†l (0)〉T − 〈cj(t)cl(0)〉T .

(4.3.17)

Since the Hamiltonian is constant each instantaneous eigenvector of the

Hamiltonian is constant up to a trivial phase and thus we have a simple

expression for the time evolution of ci and c†i :

ci(t) =
∑L

µ=1

(

uΓ
iµ(t)γ

Γ
µ + v∗Γiµ (t)γ†Γµ

)

=
∑L

µ=1

(

uΓ
iµe

−2iǫµtγΓ
µ + v∗Γiµ e

2iǫµtγ†Γµ
) (4.3.18)
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So we can evaluate all the terms:

〈c†j(t)c
†
k(0)〉T =

∑

µ

(

vjµ(t)u
∗
kµ(0)(1 − nµ) + u∗jµ(t)vkµ(0)nµ

)

〈c†j(t)ck(0)〉T =
∑

µ

(

vjµ(t)v
∗
kµ(0)(1 − nµ) + u∗jµ(t)ukµ(0)nµ

)

〈cj(t)c†k(0)〉T =
∑

µ

(

ujµ(t)u
∗
kµ(0)(1 − nµ) + v∗jµ(t)vkµ(0)nµ

)

〈cj(t)ck(0)〉T =
∑

µ

(

ujµ(t)v
∗
kµ(0)(1 − nµ) + v∗jµ(t)ukµ(0)nµ

)

(4.3.19)

and, for example, we find:

〈Bj(t)Al(0)〉T =
∑

µ

([

vjµ(t)u
∗
lµ(0) + vjµ(t)v

∗
lµ(0)

− ujµ(t)u
∗
lµ(0) − ujµ(t)v

∗
lµ(0)

]

(1 − nµ)

+
[

u∗jµ(t)vlµ(0) + u∗jµ(t)ulµ(0)

− v∗jµ(t)vlµ(0) − v∗jµ(t)ulµ(0)
]

nµ

)

(4.3.20)

4.3.3 Autocorrelation function in the GGE

As we discussed in Chapter 1, the asymptotic state of integrable systems

after a quantum quench may often be described by means of the generalized

Gibbs ensemble. For the model considered here the conserved quantities

are the populations of quasi-particles, i.e. the number of excitations in each

mode:

pµ ≡ 〈ψ0|γ†Γµ γΓ
µ |ψ0〉 , for µ = 1, L . (4.3.21)

The density matrix of the generalized ensemble is:

ρG ≡
exp

(

−∑µ βµγ
†Γ
µ γΓ

µ

)

Tr exp
(

−∑µ βµγ
†Γ
µ γΓ

µ

) (4.3.22)

where βµ is a Lagrangian multiplier. The ensemble average is taken analo-

gously to the more familiar the canonical ensemble, tracing over ρG. Fixing

the number of excitations for each µ at a given value pµ amounts to fixing

a set of effective βµ,eff according to:

〈γ†Γµ γΓ
µ 〉G ≡ Tr

(

ρGγ
†Γ
µ γ

Γ
µ

)

=
1

(eβµ,eff + 1)
= pµ (4.3.23)

which must be solved to extract the {βµ,eff}. The population pµ is simply

computed expressing the operators γΓ
µ and γ†Γµ in terms of the operators γΓ0

µ

and γ†Γ0
µ , for which |ψ0〉 is the vacuum state. Indeed both the expressions

are true:
{

ci =
∑

µ(u
Γ
iµγ

Γ
µ + v∗Γiµ γ

†Γ
µ )

c†i =
∑

µ(v
Γ
iµγ

Γ
µ + u∗Γiµ γ

†Γ
µ )

{

ci =
∑

µ(u
Γ0
iµ γ

Γ0
µ + v∗Γ0

iµ γ†Γ0
µ )

c†i =
∑

µ(v
Γ0
iµ γ

Γ0
µ + u∗Γ0

iµ γ†Γ0
µ )

(4.3.24)
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Inverting the first pair of equations, see Eq. 4.2.7, and inserting the second

pair we find:

pµ = 〈ψ0|γ†Γµ γΓ
µ |ψ0〉

=
∑

jlν

(

vΓ
jµu

∗Γ
lµ u

Γ0
jν v

∗Γ0
lν + vΓ

jµv
∗Γ
lµ u

Γ0
jνu

∗Γ0
lν

+ uΓ
jµu

∗Γ
lµ v

Γ0
jν v

∗Γ0
lν + uΓ

jµv
∗Γ
lµ v

Γ0
jν u

∗Γ0
lν

)

(4.3.25)

Let us now consider the ensemble average of the autocorrelation function

(in order to avoid confusion with the density matrix ρG we write ρxx(t) in

terms of the Pauli matrices):

〈σxL/2(t)σxL/2(0)〉G ≡ Tr
(

ρGσ
x
L/2(t)σ

x
L/2(0)

)

= Tr
(

ρG
∏j−1
l=1

[

Al(t)Bl(t)
]

Aj(t)
∏j−1
l=1

[

Al(0)Bl(0)
]

Aj(0)
)

(4.3.26)

In order to evaluate this product we can still use a generalization of the

Wick’s theorem, which can be proven following exactly the same steps lead-

ing to the generalization to the canonical ensemble[69] defining the contrac-

tion as:

Â·B̂· ≡ 〈AB〉G = Tr (ρGAB) (4.3.27)

for two fermionic operators A and B. The basic contractions in order to

prove Wick’s theorem are:

γ†Γ·µ γΓ·
µ = 〈γ†Γµ γΓ

µ〉G =
1

1 + eβµ
γΓ·
µ γ

Γ†·
µ = 〈γΓ

µγ
Γ†
µ 〉G =

1

1 + e−βµ
.

(4.3.28)

Once we have the Wick’s theorem properly generalized, as in the previous

cases we can build up the block matrix whose determinant is the square of

〈σxL/2(t)σxL/2(0)〉G. Proceeding in a similar fashion as for T > 0 we have:

〈Bj(t)Al(0)〉G = 〈c†j(t)c
†
l (0)〉G + 〈c†j(t)cl(0)〉G − 〈cj(t)c†l (0)〉G − 〈cj(t)cl(0)〉G.

(4.3.29)

Again the time evolution of the ci(t) and c†i (t) is trivial because, being the

Hamiltonian constant, the eigenvectors evolve only with a phase according

to:

uΓ
iµ(t) = uΓ

iµe
−2iǫµt v∗Γiµ (t) = v∗Γiµ e

2iǫµt . (4.3.30)
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The only difference with the finite temperature case is that the ensemble

averages are taken over ρG, so we find:

〈c†j(t)c
†
k(0)〉G =

∑

µ

(

vjµ(t)u
∗
kµ(0)(1 − pµ) + u∗jµ(t)vkµ(0)pµ

)

〈c†j(t)ck(0)〉G =
∑

µ

(

vjµ(t)v
∗
kµ(0)(1 − pµ) + u∗jµ(t)ukµ(0)pµ

)

〈cj(t)c†k(0)〉G =
∑

µ

(

ujµ(t)u
∗
kµ(0)(1 − pµ) + v∗jµ(t)vkµ(0)pµ

)

〈cj(t)ck(0)〉G =
∑

µ

(

ujµ(t)v
∗
kµ(0)(1 − pµ) + v∗jµ(t)ukµ(0)pµ

)

(4.3.31)

and the effective populations associated to the quench are computed via

Eq. 4.3.23.

4.4 Evolution in real time

We now concentrate on the autocorrelation function ρxx(t) in the presence of

disorder at T = 0 with a constant (i.e. without quench) Hamiltonian H(Γ),

focussing on the real time evolution. This is different from what is found

in literature [152, 85] where the imaginary time evolution for a constant

Hamiltonian is considered. Nonetheless our choice is mandatory in order

to study the non-equilibrium dynamics: a quench in imaginary time would

cause the autocorrelation function to develop divergent terms, as one can

see writing ρxxQ (τ) in Lehmann representation.

Let us briefly recall the known results about the average autocorrelation

function in imaginary time [ρxxj (τ)]av for a constant Hamiltonian (Γ = Γ0)

in the off-critical case. The key advantage of computations in imaginary

time is a smoother behavior of observables, where oscillating terms raising

from imaginary phases are suppressed. A first observation is that [ρxxj (τ)]av
is always real. By scaling arguments [85] one can show that it behaves like:

[ρxxj (τ)]av ∼ τ−1/z(δ), (4.4.1)

where δ = | ln Γ|/2 (with the distributions π[J ] and π[h] above) measures

the distance from the critical point and z(δ) is the dynamical exponent [71,

72, 153]:

z(δ) =

{

1
2δ + const. for |δ| ≪ 1

→ ∞ for |δ| → 0
(4.4.2)

The autocorrelation function at the critical point depends on the logarithm

of the imaginary time [122].

Rigorously speaking, one should always consider the connected part of

the autocorrelation function:

ρxxj (τ)conn = ρxxj (τ) − 〈σxj 〉2 , (4.4.3)
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that is the difference between the autocorrelation function and the square

of the residual magnetization at the thermodynamic limit. Indeed in the

ferromagnetic phase (Γ < 1) the longitudinal field magnetization 〈σx〉 is

non-zero, while it vanishes in the paramagnetic phase (Γ > 1), so in the

latter case ρxxj (τ)conn = ρxxj (τ).

For a constant Hamiltonian, the behavior of the order-parameter auto-

correlator in imaginary time can be of interest also for our purposes, since,

in principle, one can switch to real time through an analytic continuation.

Unfortunately this is not in general a trivial operation. In fact, defining the

spectral function as:

A(ω) =
∑

n

δ(ω − (En − E0))|〈φΓ
0 |σxj |φΓ

n〉|2. (4.4.4)

one can show that ρxxj (τ) is the Laplace transform of A(ω), while ρxxj (t)

is its Fourier transform. So formally one could perform an inverse Laplace

transform from ρxxj (τ) to get the spectral function A(ω), and then Fourier

transform the result to get the autocorrelation function in real time ρxxj (t).

Unfortunately the inverse Laplace transform requires the knowledge of the

correlation function in a general complex time:

A(ω) =

∫ γ+i∞

γ−i∞
ds eωsρxxj (s) , (4.4.5)

γ being a real number, which is not trivial at all.

We now show our numerical results in real time. In the following we

will always compute ρxxj on the central site of the chain j = L/2, in order

to reduce boundary effects, therefore hereafter we drop the site index sub-

script L/2. Let us first consider the paramagnetic case. In the main panel

of Fig. 4.1 we show our numerical findings for the modulus of [ρxx(t)]av for

several values of Γ > Γc. After an initial transient time t . 1, the au-

tocorrelation function exhibits a power-law decay [ρxx(t)]av ∼ t−α that is

superimposed to damped oscillations. An interpolation in the power-law

regions leads to exponents α which are shown in the inset of Fig. 4.1. These

rates are compatible with those found by Igloi and Rieger [85] after an anal-

ogous analysis in imaginary time. In their case the autocorrelation function

is always real and has a smooth behavior instead of an oscillatory one.

For Γ < Γc the chain develops a ferromagnetic order (in the limiting

Γ = 0 case all the spins are aligned with each other, either in the +x̂ or in

the −x̂ direction). Hence the residual magnetization in the x̂ direction on

each site is finite for t→ ∞. Therefore in this case we compute the connected

autocorrelation function ρxxconn in real time, that is defined according to the
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Figure 4.1: Modulus of the average autocorrelation function [ρxx(t)]av on

the central site, for different values of Γ > 1, for a chain of L = 20 sites.

Averages are performed over 105 disorder realizations. In the inset red

squares are the power law rates relative to the curves in the main panel,

while blue diamonds are the rates extracted from the imaginary-time data,

quoted from Fig.14 of Ref. [85].

formula in Eq. (4.4.3). The residual magnetization m ≡ 〈σx〉 in a chain with

open boundary conditions is given by [85]:

mobc = 〈1|σx|0〉 , (4.4.6)

where |0〉 is the ground state and |1〉 = γ†1|0〉. This quantity can be evaluated

in an analogous way as ρxx(t), by taking into account that the operator σx

changes the parity of the γj fermion quasiparticles. In Fig. 4.2 we show the

absolute value of [ℜ (ρxxconn)]av. Differently from the paramagnetic case, here

it is much more difficult to observe a power law behavior at long times. We

argue that more disorder instances are needed to get a smoother curve at t &

1, since we are averaging much smaller quantities than in the paramagnetic

phase. Nevertheless, with a large enough number of disorder realizations, we

expect ρxxconn to display a power law behavior at long times, in tight relation

with what happens in imaginary time, superimposed to damped oscillations.
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Figure 4.2: Real part of the connected part of the autocorrelation function

[ℜρxxconn(t)]av for different values of Γ < 1 for a chain of L = 20 sites, averaged

over 105 disorder realizations.

4.5 Quenches and thermalization

4.5.1 Numerical findings in the ordered case

As we discussed in Chapter 1 the generalized Gibbs ensemble (GGE) is

expected to predict the asymptotic value of observables in several situations.

An interesting question is whether the GGE gives correct predictions on the

behavior of ρxx(t). Some results concerning the validity of the GGE in the

ordered Ising model are shown in Ref.[129, 130]. We briefly recall some

results of those papers and then show our numerical findings.

In Refs. [129, 130] the autocorrelation function of the order parameter

after a quench is shown to decay exponentially in time, according to ρxxQ (t) ∼
e−t/τ

ϕ
Q . Defining the effective temperature Teff from Eq. 4.3.13, one can

compare the behavior of ρxxQ with that at thermal equilibrium at T = Teff ,

which is exponential too, with a time scale τϕTeff
. Actually Rossini et al. do

not perform the exact calculation of ρxxTeff
but instead take advantage of the

semiclassical analysis of Sachdev [132] , leading to τ̃ϕTeff
. In particular τ̃ϕT can

be expressed as:

τ̃ϕT =

(
∫

dk

π
e−ǫk/T |vk|

)−1

(4.5.1)

where vk = ∂kǫk is the velocity of the thermally excited quasi-particles

and e−ǫk/T is their Boltzmann weight. In particular Eq. 4.5.1 gives τ̃ϕT ≈
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Figure 4.3: (color online). Ordered case. Comparison between ρxxQ after the

quench (black), exact thermal ρxxT (red, continuous line), exact GGE ρxxG
(green, continuous line), Sachdev approximation e−t/τ̃

ϕ
T (red, dash-dotted

line) and e−t/τ̃
ϕ
GGE (green, dashed line) expectation values. Main panel:

quench from Γ0 = 0.8 to Γ = 0.9, inset: Γ0 = 1.6, Γ = 1.0. Data for

L = 300.

π
2T e

∆/T for T ≪ ∆, while at criticality τ̃ϕT = 8
πT for T ≪ J , where J

is the ordered nearest neighbor coupling in Eq. 4.2.1. The comparison of

τϕQ and τ̃ϕT gives a satisfactory agreement. Nevertheless the decay rates τϕQ
are better reproduced modifying Equation 4.5.1 substituting the Boltzmann

weight with the occupation numbers of quasi-particles fk after the quench,

namely:

τ̃ϕGGE =

(∫

dk

π
fk|vk|

)−1

(4.5.2)

This is very reminescent of the GGE but we stress that it is an approxi-

mation. Here we would like to compare the approximated results coming

from Eqs. 4.5.1 and 4.5.2 with the exact results of ρxxT and ρxxG ∼ e−t/τ
ϕ
GGE .

If we consider the main panel of Fig. 4.3 we find that the semiclassical ap-

proximations are excellent and in particular the GGE predicts correctly the

decay of ρxxQ . Nevertheless we find that for quenches ending at the critical

point Γ = 1 the agreement is much worse, as shown in the inset of Fig. 4.3.

Since finite-size effects are very relevant at criticality, we perform a finite-size

scaling of τϕ(L). In Fig. 4.4 we show ρxxG in the GGE for different system

sizes for a quench from Γ0 = 1.6 to Γ = 1.0. The time scale τϕGGE strongly
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Figure 4.4: (color online). Main panel: autocorrelation function ρxxG in the

GGE for a quench from Γ0 = 1.6 to Γ = 1.0 in the ordered case, for different

system sizes. Inset: comparison between the time scales: τϕGGE (black dots),

found from the curves in the main panel, and τϕQ (red squares), from the

quench dynamics.

depends on the size of the system. This is more evident comparing the time

scale τϕGGE in the GGE with the one found from the quench dynamics, which

is basically independent of the size. From the inset of Fig. 4.4 we are not

able to draw a conclusive statement on the convergence of τϕGGE(L) to τϕQ(L)

for L→ ∞. In Fig. 4.5 we try to change the initial value of Γ0, with Γ fixed

to the critical value. From the inset of Fig. 4.5 we see that the discrepancy

between the decay rates found in the GGE and in the quench dynamics is

significant if Γ0 > 1.

4.5.2 Preliminary results about the disordered case

In Fig. 4.6 we show our results for the dynamics after a quench in the pres-

ence of disorder. The qualitative picture that emerges from the main panel of

Fig. 4.6 is analogous to the one described in Fig. 4.1 in the time-independent

case: after a short transient there is a power-law decay superimposed to os-

cillations. Nevertheless the power-law exponents α involved here are much

smaller, as shown in the inset. We find that the algebraic decay is present

for large times, independently of the width of the quench |Γ − Γ0|. Due to

the very large number of disorder instances on which we average (∼ 105),
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ϕ
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system sizes. Left panel: time scale τϕQ of ρxxQ after a quench, right panel:

time scale τϕG of ρxxG . Inset: comparison of τϕQ and τϕG for a system of L = 200.

we considered only times up to t = 100. Since at present we do not have

analytical arguments explaining the algebraic decay, in principle we cannot

rule out the possibility that a different decay establishes in the asymptotic

regime. The comparison with what happens in the ordered case is very

interesting, because there the decay is exponential and here the numerics

suggests a power-law decay. If in the ordered case it is possible to identify a

time-scale which depends on the quench, here we can only find an exponent

α.

As for the ordered case, an effective temperature can be associated to

each quench. In particular we compute the effective temperature from

Eq. 4.3.13 for each disorder instance and then take the average. We find

the curves of Fig. 4.7, which, despite the small number of disorder realiza-

tions, have a clear profile. For the random chain, the effective temperature

does not seem to have a cusp for Γ = Γ0, in close analogy to what happens

for the critical case in the ordered chain (see for example the inset of Fig.2

in Ref. [129]).

The following step is verifying whether a finite temperature is able to de-

stroy the power-law decay. In Fig. 4.8 we show the real part of ρxxT evaluated
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at Γ = 0.8 for different temperatures. Also in this case we find power-law

decays at long times, superimposed to oscillations. Apart from high tem-

perature, where maybe some finite size effect is going on, the decay rates

seem to increase with growing temperatures, which is reasonable.

As for the ordered case, we are not able at present to establish the validity of

the predictions of the GGE in general, we can nevertheless show an example

where it does seem to work, as in Fig. 4.9.
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Conclusions

The quench dynamics of many-body systems has been the focus of this

thesis. We tried to enlight some of the relations linking the various aspects

of the problem, quantum phase transitions and the loss of adiabaticity on

one side, integrability, thermalization and disorder on the other. In this

conclusive section, the main results achieved are summerized chapter by

chapter.

We first considered a case of slow quench, i.e. a situation in which

the Hamiltonian of a quantum system has a parameter with a continuous

time dependence. As we described in Chapter 1, this kind of problems

becomes extremely interesting when, during its evolution, the system crosses

a quantum critical point. In this case the evolution cannot be adiabatic. The

precise characterization of the critical point in terms of critical exponents

turns out to be fundamental to understand the out-of-equilibrium dynamics

resulting from the quench in terms of scaling laws, as originally proposed

in Refs. [157, 115]. As an example of slow quench, in Chapter 2 we have

analyzed the quench dynamics of a quantum anisotropic spin-1 XY chain,

when it crosses a Berezinskii-Kosterlitz-Thouless quantum phase transition.

The quench has been performed on the uniaxial single-spin anisotropy, and

has been chosen to vary linearly in time with a given velocity. We focused

on the residual excess energy of the system after the quench, and studied

its dependence on the velocity of the quench. For very slow quenches and

finite system sizes we were able to describe the properties of the system

in terms of an effective Landau Zener model, where the system can only

get excited to its first excited state. Most interestingly, we pointed out the

emergence of an intermediate region where the excess energy drops as a

power-law with the quench rate, and exhibits a non trivial scaling behavior.

At least for the finite sizes considered there, the decay rate depends on the

size of the crossed critical region, and cannot be explained in terms of usual

scaling arguments, such as the standard Kibble-Zurek mechanism and its

generalization to critical surfaces [110, 141, 45, 49]. In the thermodynamic

71
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limit the system obeys a non-trivial scaling behavior Eexc ∼ τ−α, with

1 < α < 2, even when τ → ∞ (i.e., for very slow quenches).

Then we turned our attention to the problem of sudden quenches. In

particular in Chapter 3 we have discussed the relation between thermaliza-

tion and integrability breaking. We considered the dynamics of a quantum

XXZ Heisenberg spin chain following a quantum quench of the anisotropy

parameter, in presence of a random on-site magnetic field which breaks inte-

grability. We first studied in detail the breaking of integrability for different

values of the disorder strength. To this aim we investigated the level spac-

ing statistics and the inverse participation ratio as functions of the energy

eigenvalues. The former is a spectral property capturing the crossover from

a Poisson distrubition of the spacing, typical of integrable systems, to a

Wigner-Dyson distribution, describing nonintegrable systems. The latter

quantity characterizes the delocalization of the eigenstates in the presence

of disorder with respect to an arbitrary basis, in particular we chose the

integrable basis, composed of the eigenstates of the system in absence of

disorder, and the computational basis. We found that at finite sizes there is

a range of disorder in which the system shows a clear Wigner-Dyson distri-

bution, while for small or very large magnetic fields the system tends to two

integrable limits: the ordered XXZ and a classical spin system respectively.

Then we suggested a way to trace the many-body (de)localization transition

in Fock space [2, 6] by comparing the density of states with the inverse par-

ticipation ratio in the integrable basis in a given microcanonical shell. We

have shown that thermalization of observables happens in correspondence

with the above transition and finally we have discussed the relation between

the locality of observables in quasi-particle space and the corresponding

behavior. Building on these results we have argued in general that if one

wants to know when and how an interacting many-body system thermalizes,

one should study the corresponding many-body localization/delocalization

transition in quasi-particle space. Further numerical analyses of this sce-

nario were shown in the Appendix B. We think that it would be very useful

to find systems which allow to support our findings analitically.

In Chapter 4 we illustrated some preliminary results about the quantum

Ising model in the presence of random couplings and random magnetic fields.

This model is integrable, because it is equivalent to a system of free fermions.

We focused on the dynamics following a quantum quench of the transverse

fields. The idea behind the choice of this problem is understanding the

effect of disorder on thermalization. For example, for the Ising model with

no disorder, it has been shown [129, 130] that the autocorrelation function

of the order parameter ρxx thermalizes after a quantum quench. Recalling
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the discussion of Chapter 1 and the findings of Chapter 3, this result can be

understood reminding that the order parameter in this case has a non-local

expression in terms of quasi-particles. Does the presence of disorder change

significantly the relaxation of ρxx? Although this work is at its initial stage,

our numerical results suggest that the behavior of ρxx drastically changes

if disorder is introduced. If in the ordered case ρxx decays exponentially

and it is therefore possible to identify a time scale of the relaxation, in the

disordered situation the decay is only algebraic. The autocorrelation ρxx

evaluated at thermal equilibrium shows an analogous behaviour, passing

from an exponential to a power-law decay. Another aim of the work in

Chapter 4 would be to investigate the validity of the generalized Gibbs

ensemble predictions for ρxx in the long-time limit, which is not a priori

guaranteed, both with and without disorder. Unfortunately, on the grounds

of our numerical results we are not able to draw a conclusive statement on

this issue.

In this Thesis we addressed some problems concerning closed quantum

systems out of equilibrium and tried to fit them into the theoretical frame-

works developed in recent years. Nonetheless, the deep motivation mov-

ing this work lies in the amazing experimental possibilities offered by the

rapidly growing field of cold atoms. The future perspective in the study

of non-equilibrium systems, like the ones considered here, is having theory

and experiment advancing hand in hand, with a direct comparison between

theoretical predictions and ad-hoc engineered experiments.





Appendix A

Landau-Zener model for

finite coupling times

The Landau-Zener (LZ) model consists in a two level system describing an

avoided level crossing: two energy levels moving in time are widely separated

at first, then they approach each other with time, and finally part away

again [94, 155]. When the two levels are well separated, each eigenstate

preserves an individual character; on the other hand, when levels are close

together, they mix due to their interaction. The Hamiltonian is given by:

HLZ =

(

−∆(t) Ω

Ω ∆(t)

)

, (A.0.1)

with a detuning ∆(t) = β2t (where β2 > 0), and a time independent coupling

Ω that, in the original LZ model, is supposed to last from ti = −∞ to

tf = +∞ [94, 155]. Here we review the general case where the coupling is

turned on at ti and off at tf [150, 149]. The equation A.0.1 is written in the

basis of the two eigenstates of the Hamiltonian in absence of interaction Ω.

The probability amplitudes ~C(ti) = [C1(ti), C2(ti)]
T for the two levels at

the beginning are connected to the ones at the final time tf by the unitary

evolution matrix U(tf , ti), so that: ~C(tf ) = U(tf , ti) ~C(ti). The elements of

U are given by:

U11(Tf , Ti) =
Γ(1− 1

2
iω2)√

2π
[Diω2/2(Tf

√
2e−iπ/4) (A.0.2)

×D−1+iω2/2(Ti
√

2ei3π/4) +Diω2/2(Tf
√

2ei3π/4)

×D−1+iω2/2(Ti
√

2e−iπ/4)] ,
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U12(Tf , Ti) =
Γ(1− 1

2
iω2)

ω
√
π

eiπ/4[−Diω2/2(Tf
√

2e−iπ/4) (A.0.3)

×Diω2/2(Ti
√

2ei3π/4)

+Diω2/2(Tf
√

2ei3π/4)Diω2/2(Ti
√

2e−iπ/4)] ,

where we have introduced the rescaled time T = βt and the dimensionless

coupling strength ω = Ω/β, while Dν(z) denotes the parabolic cylinder

functions. If we suppose that the system is initialized in its ground state,

i.e., ~C(ti) = [1, 0]T , the transition probability to the excited state at the

final time is given by P (d)(tf , ti) = |U21(tf , ti)|2.
It is useful to write the excitation probabilities also in the adiabatic

basis, composed of the instantaneous system eigenstates. The basis used

in the previous expression and the adiabatic basis are related by a unitary

transformation. If ~A(t) = [A1(t), A2(t)]
T are the probability amplitudes for

the two levels in the adiabatic basis, then ~A(t) = R(t) ~C(t), where R(t) is

the rotation matrix

R(T ) =

(

cos ϑ(t) − sinϑ(t)

sinϑ(t) cos ϑ(t)

)

, (A.0.4)

with tan[2ϑ(t)] = Ω(t)/∆(t). Therefore, the evolution matrix in the adia-

batic representation is given by Ua(tf , ti) = RT (tf )U(tf , ti)R(ti), and the

adiabatic-following solution for the transition probability is P (a)(tf , ti) =

|U (a)
21 (tf , ti)|2.
For the original LZ model, where the coupling is supposed to last from

ti → −∞ to tf → +∞, the expression for the excitation probability at the

end of the quench simplifies to an exponential form:

P (a)(+∞,−∞) = e−πω
2
. (A.0.5)

In the case of a finite coupling duration, that ends before or exactly at the

crossing (i.e., tf ≤ 0), we have a much involved expression, which predicts

a leading power-law behavior P (a) ∼ τ−2 superimposed to an oscillating

behavior. Eventually oscillations are damped for long lasting couplings: in

the limiting case where the quench ends at the critical point and is infinite

lasting (ti = −∞, tf = 0), the probability is given by

P (a)(0,−∞) =
1

16ω4
∼ 1

τ2
. (A.0.6)

The scaling with the quench velocity τ follows from the fact that the times

t ∝ τ , while β2 ∝ 1/τ (this implies that ω ∝ √
τ).

We used the explicit formula for the adiabatic transition probability

P (a)(0, ti < 0) in order to fit t-DMRG data for the excess energy of our
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system in the regime of large τ , where defects still do not form and the

quench dynamics can be considered adiabatic. While it is clear that ti < 0

in our case, it is not obvious a priori whether tf < 0 or tf = 0, since LZ

relies on the assumption that there is only one point of closest approach

of the energy levels; on the contrary, in our model we have a whole critical

line. We actually chose tf = 0 and used ti < 0 as a fitting parameter, having

not a rigorous criterion at our disposal, but following the qualitative picture

suggested from figure 2.3: the gap closes monotonically during the quench,

reaching the minimum at Dfin. The red curves in figure 2.4 have been

obtained by fitting numerical data with the theoretical prediction given by

P (a); we admitted a global rescaling prefactor φ and imposed the following

constraints: Ti = −T0
√
τ , Tf = 0, ω = ω0

√
τ . The fitting parameters are

T0, ω0, φ. For the left panel (N = 6) we chose T0 ≈ 0.8, ω0 = 0.84, φ = 1.72,

while for the right one (N = 8) T0 ≈ 0.735, ω0 = 0.7, φ = 0.9.





Appendix B

Additional material on

Many-Body Localization and

Thermalization

B.1 Models and quantities of interest

We support the findings of Chapter 3 (and also Ref. [26]) with disordered

XXZ models containing different integrability breaking terms, namely a ran-

dom anisotropy Rz (defined below in Eq. B.1.4) or a random next-nearest

neighbor hopping Jn (Eq. B.1.5). Although disorder is in general not strictly

necessary to break integrability, we choose to use disordered models because

they allow a better statistical analysis. In this section we define the models

and the quantities of interest, the results are shown in Sec. B.2.

The general structure of the disordered Hamiltonians considered here is:

H = HInt(Jz) + ∆
∑

i

Oihi (B.1.1)

where HInt is integrable, ∆ is the amplitude of disorder, Oi is a few-body

term defined on site i, {hi} are random numbers uniformly distributed in

[−1, 1]. The integrable part of the Hamiltonian is the anisotropic Heisenberg

chain:

HInt(Jz) ≡ HH =

L−1
∑

i=1

[

J
(

σxi σ
x
i+1 + σyi σ

y
i+1

)

+ Jzσ
z
i σ

z
i+1

]

(B.1.2)
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Hereafter we will take J = 1 and express all the couplings in units of J . The

non-integrable models [54, 48] are given by:

HH,Z = HH+ Bz
∑L

i=1 hiσ
z
i (B.1.3)

HH,A = HH+ Rz
∑L−1

i=1 hiσ
z
i σ

z
i+1 (B.1.4)

HH,N = HH+ Jn
∑L−2

i=1 hiσ
z
i σ

z
i+2 (B.1.5)

where {σαi }, α = x, y, z are Pauli matrices on site i. With the notation of

Eq. B.1.1, we have for example ∆ = Bz, Oi = σzi in Eq. B.1.3. We consider

a sudden quench of Jz:

Jz(t) =

{

Jz,i for t < 0

Jz,f for t ≥ 0 .
(B.1.6)

The results shown here are obtained numerically by means of exact diago-

nalization for systems with open boundary conditions.

For the models considered below we have performed the same analysis of

Chapter 3 computing the same quantities, whose definition we now recall.

We refer to Chapter 3 for a theoretical justification of their choice.

We study the level statistics by means of the level statistics indicator (LSI)

η:

η ≡
∫∞
0 |P (s) − PP(s)|ds

∫∞
0 |PWD(s) − PP(s)|ds . (B.1.7)

where P (s) is the probability distribution function of the level spacing be-

tween neighboring levels.With this definition1 the LSI is zero for systems

with a Poisson distribution PP of the spacings and is unity if the distribu-

tion is Wigner-Dyson PWD. The LSI is characterized as a function of the

energy eigenvalues in individual microcanonical shells according to:

η(E) ≡
∫∞
0 |P[E,E+W ](s) − PP(s)|ds
∫∞
0 |PWD(s) − PP(s)|ds , (B.1.8)

where P[E,E+W ](s) is the level statistics computed in the window [E,E+W ],

and cumulatively:

η(E≤) ≡
∫∞
0 |P[E≤](s) − PP(s)|ds
∫∞
0 |PWD(s) − PP(s)|ds , (B.1.9)

1The definition used here for the level statistics indicator slightly differs from the

standard one, which is

η =

R s0

0
[P (s) − PWD(s)]ds

R s0

0
[PP(s) − PWD(s)]ds

where s0 ≈ 0.4729 is the first intersection point of PP(s) and PWD(s). We cheked that the

two definitions agree very well, our choice is due to numerical convenience.
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where P[E≤] is the level statistics of eigenvalues with excitation energy less

than E≤ with respect to the ground state energy.

We study the inverse participation ratio (IPR) ξ defined for a state |ψ〉 by:

ξ(|ψ〉) ≡
(

∑

n

|〈n|ψ〉|4
)−1

(B.1.10)

where {|n〉} is a basis of states whose choice is arbitrary. In our calculations

|ψ〉 are the eigenstates of the disordered model Eq. B.1.1 and the basis {|n〉}
is the site (S) basis |nS〉 = |σ1 · · · σL〉 (σi = ±1), composed of the eigenstates

of σzi , and the integrable (I) basis, composed of the eigenstates |nI〉 of the

model in absence of randomness (∆ = 0). Analogously to LSI, also the IPR

is computed both in microcanonical shells and cumulatively, averaging on

the eigenstates |ψ〉 and then on disorder.

Considering now the dynamics following the quantum quench, we first com-

pute the effective temperature for each disorder realization from the equa-

tion:

E0 ≡ 〈H(Jz,f )〉Teff
= Tr (ρ(Teff )H(Jz,f )) (B.1.11)

and then average over disorder. In Eq. B.1.11 ρ(Teff) is the canonical den-

sity matrix of the final Hamiltonian at the effective temperature ρ(Teff ) =

1/Z exp(−H(Jz,f )/Teff ).

We study the following observables:

nα(k) ≡ 1

L

L
∑

j,l=1

ei(j−l)k/L〈σαj σαl 〉 α = x, z. (B.1.12)

We compare their expectation value in the canonical ensemble at the effective

temperature nαTeff
(k) ≡ 〈nα(k)〉Teff

with the expectation value in the diagonal

ensemble nαQ(k), see Eq. 3.6.2. We study the thermalization in terms of the

absolute discrepancies:

δnα(k) ≡ |nαQ(k) − nαTeff
(k)| (B.1.13)

B.2 Numerical results.

B.2.1 Level statistics

In Fig. B.1 we show the level statistics indicator η for a system of L = 14

sites. While for ∆ = Bz a clear crossover from Poisson to Wigner-Dyson is

visible, in the other two cases the statistics does not reach a Wigner-Dyson

distribution, the maximum value of LSI being η ∼ 0.4.
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Figure B.1: Data for L = 14 with different values of the disorder ∆. Top

panels: LSI in a microcanonical shells of width W = 2, lower panels: cumu-

lative LSI. Average over 500 disorder instances for Rz and Jn, and ∼ 1000

for Bz).

In Fig. B.2 we show the inverse participation ratio both in the integrable

(top) and in the site basis (bottom). The IPR in the integrable basis in all

the three cases shows that the eigenstates delocalize with increasing values

of the disorder. This is more evident for the case ∆ = Bz, similarly to what

happens for the LSI. The IPR in the computational basis has the opposite

behavior, decreasing for larger values of the disorder. This is coherent with

the fact that for all of the three cases the states of the computational basis

are the eigenstates of the system for ∆ ≫ Jz. In Fig. B.3 we quantify the

delocalization in quasi-particle space induced by the integrability-breaking

term. As expected from the study of the LSI and the IPR, in the cases
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Figure B.2: Data for L = 14 with different values of the disorder ∆. Top

panels: IPR in the integrable basis in a microcanonical shell of width W =

2∆, lower panels: IPR in the site basis. Average over 100 disorder instances.

∆ = Rz, Jn with ∆ = 0.9 the disorder term hybridized less states than the

∆ = Bz term.

B.2.2 Effective temperature

In Fig. B.4 we show the effective temperature as a function of the initial

value of the anisotropy for a system of L = 12 sites. In all the three cases

the effective temperature satures for large values of Jz, because the ground

state tends to the antiferromagnetic Néel state. For Jz ≫ 1 and ∆ . 1 the

effective temperature is Teff ∼ 5 in the three situations.
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Figure B.3: Data for L = 14 with different values of the disorder ∆. Com-

parison between IPR in the integrable basis and number of states in micro-

canonical shells of width 2∆. Upper panels ∆ = 0.1, lower panels ∆ = 0.9.

B.2.3 Thermalization of observables

An example of the different behavior of nx(k) and nz(k) is shown in Fig. B.5.

The difference is best seen at k = π. The absolute discrepancy between

the diagonal and the canonical ensemble prediction as a function of the

initial value of the anisotropy are shown in Fig. B.6 for a system of L = 12

sites. The discrepancies between the diagonal and the canonical ensemble

prediction as a function of the disorder amplitude are shown in Fig. B.7.
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Figure B.5: Comparison between the diagonal and canonical expectation

value of the momentum dependence nα of the two-spin correlation function.

Data for a quench from Jz,i = 20 to Jz,f = 0.5 and disorder intensity

∆ = 0.4. Upper panels: nxQ(k) versus nxT (k), lower panels nzQ(k) versus

nzT (k). From left to right column: ∆ = Bz, ∆ = Rz, ∆ = Jn.
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for a quench to Jz,f = 0.5 for different values of the disorder amplitude in

the three cases. Data for L = 12, average on 200 disorder instances.
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[139] R. Schützhold, M. Uhlmann, Y. Xu, and U. R. Fischer. Sweeping from

the superfluid to the mott phase in the bose-hubbard model. Phys.

Rev. Lett., 97(20):200601, 2006.

[140] D. Sen, K. Sengupta, and S. Mondal. Defect production in nonlinear

quench across a quantum critical point. Phys. Rev. Lett., 101:016806,

2008.

[141] K. Sengupta, D. Sen, and S. Mondal. Exact results for quench dy-

namics and defect production in a two-dimensional model. Phys. Rev.

Lett., 100(7):077204, 2008.

[142] R. Shankar and G. Murthy. Nearest-neighbor frustrated random-bond

model in d=2: Some exact results. Phys. Rev. B, 36(1):536–545, 1987.

[143] S. Sotiriadis, P. Calabrese, and J. Cardy. Quantum quench from a

thermal initial state. Europhys. Lett., 87(2):20002, 2009.

[144] M. Srednicki. Chaos and quantum thermalization. Phys. Rev. E,

50(2):888–901, 1994.

[145] B. Sutherland. Beautiful Models. World Scientific, 2004.

[146] A. K. Tuchman, C. Orzel, A. Polkovnikov, and M. A. Kasevich.

Nonequilibrium coherence dynamics of a soft boson lattice. Phys.

Rev. A, 74(5):051601, 2006.

[147] L. C. Venuti, C. D. E. Boschi, E. Ercolessi, G. Morandi, F. Ortolani,

S. Pasini, and M. Roncaglia. Stable particles in anisotropic spin-1

chains. Eur. Phys. J. B, 53(1):11–18, 2006.

[148] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev. Entanglement in

quantum critical phenomena. Phys. Rev. Lett., 90(22):227902, 2003.



BIBLIOGRAPHY 101

[149] N. V. Vitanov. Transition time in the landau-zener model. Phys. Rev.

A, 59:988, 1999.

[150] N. V. Vitanov and B. M. Garraway. Landau-zener model: Effects of

finite coupling duration. Phys. Rev. A, 53:4288, 1996.

[151] J. von Neumann. Beweis des ergodensatzes und des h-theorems in der

neuen mechanik. Z. f. Physik, 57:30–70, 1929.

[152] A. Young. Finite-temperature and dynamical properties of the random

transverse-field ising spin chain. Phys. Rev. B, 56:11691, 1997.

[153] A. P. Young and H. Rieger. Numerical study of the random transverse-

field ising spin chain. Phys. Rev. B, 53:8486, 1996.

[154] V. Zelevinsky, B. Brown, N. Frazier, and M. Horoi. The nuclear shell

model as a testing ground for many-body quantum chaos. Phys. Rep.,

276:85–176, 1996.

[155] C. Zener. Non-adiabatic crossing of energy levels. Proc. Royal Soc. A,

137:696, 1932.

[156] W. H. Zurek. Cosmological experiments in superfluid-helium. Nature,

317:505, 1985.

[157] W. H. Zurek, U. Dorner, and P. Zoller. Dynamics of a quantum phase

transition. Phys. Rev. Lett., 95:105701, 2005.




	Introduction
	Quantum quenches in many-body systems
	Adiabatic dynamics close to a quantum phase transition
	Dynamics thorugh a quantum phase transition.
	Kibble-Zurek mechanism and its generalizations.
	Landau Zener approximation
	Adiabatic perturbation theory
	Cases eluding the KZM or APT

	Thermalization after a sudden quench
	Ergodicity
	Generalized Gibbs ensembles
	Eigenstate thermalization hypothesis


	Adiabatic dynamics in a spin-1 chain with uniaxial single-spin anisotropy
	Introduction
	The Model
	Adiabatic dynamics
	Results
	Dynamical gap
	Oscillations in the excess energy for slow quenches
	Scaling regime


	Quantum quenches, Thermalization and Many-Body Localization
	Introduction
	Many-body localization transition
	The model
	Relevant symmetries
	Phase diagram

	Integrability and many-body localization
	Level statistics indicator
	Inverse participation ratio
	Delocalizion in Fock space

	Quench dynamics
	Thermalization of observables

	Quench dynamics in the random Ising model.
	Introduction
	The model
	Fermion representation and Bogoliubov-de Gennes equations
	Dynamics at T=0: Heisenberg equations

	Autocorrelation function of the order parameter
	Evolution starting from the ground state
	Autocorrelation function in the canonical ensemble
	Autocorrelation function in the GGE

	Evolution in real time
	Quenches and thermalization
	Numerical findings in the ordered case
	Preliminary results about the disordered case


	Conclusions
	Landau-Zener model for finite coupling times
	Additional material on Many-Body Localization and Thermalization
	Models and quantities of interest
	Numerical results.
	Level statistics
	Effective temperature
	Thermalization of observables


	Bibliography

