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“Le cose fuori del loro stato naturale né vi si adagiano, né vi durano1.”

Gian Battista Vico, Principi D’una Scienza Nuova

1Things do not settle or endure out of their natural state.





Introduction

The coherent evolution of a quantum many body system is a topic that has
attracted a lot of attention in the last few years (see [3] for a recent review
on this topic). The reasons for this interest are several.

First of all, there is an experimental motivation. Recent progresses with
experimental techniques, in particular in the field of cold atomic gases [4],
allow to manipulate quantum systems with an unprecedented degree of
accuracy. On the one hand, it is possible to tune (and also change in time)
the parameters of these systems. On the other hand, these systems are well
isolated from the external environment, therefore it is possible to observe
their unitary quantum evolution. This is in contrast with the usual solid
state experimental setup, where there is a unavoidable coupling with the
environment that introduces dissipation and decoherence.

A second motivation is of theoretical nature. Out of equilibrium physics
is one of the yet unexplored frontiers of modern physics. While we have
a lot of tools to understand equilibrium physics, as well as mean field
theory and the renormalization group, non equilibrium physics is not so
well understood. Due to the complexity of the problem, it seems an apt
strategy to focus our efforts on some simple realizations of out of equilibrium
physics. In this thesis, we will study the paradigm of (sudden) quantum
quenches. In this protocol an extended quantum systems is prepared in
a pure state, typically the ground state of its Hamiltonian. Then, we
suddenly change the Hamiltonian tuning some parameters and we observe
its coherent evolution. While for a finite size system we expect recurrence,
it is conceivable that a large system could decay towards a stationary state.
The thermodynamical characterization of this (eventual) stationary state is
one of the most intriguing puzzles of this field. It has been conjectured that
in this regard integrable quantum system could be very special: as they
classical counterparts they could not thermalize, i.e. the stationary state of
the system cannot be described by a standard thermodynamical ensemble,
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e.g. the canonical one. Instead, it has been suggested that a proper
description of the stationary state for integrable systems is provided by the
“generalized Gibbs ensemble”, that takes into account all the integrals of
motion. These points will be discussed more thoroughly in body of this
thesis. Here, we would like only to emphasize that how to describe the
stationary state of such systems and the mechanism behind this relaxation
are still open problems, also in the non integrable case, even if a lot of nice
ideas have been put forward in order to understand these issues. Moreover,
this is a problem that can be investigated experimentally: as we have
stressed before, it is nowadays possible to experimentally realize systems
very close to integrability, to change their parameters in time and to observe
their coherent evolution.

Finally, there is also a technological motivation for this field of research.
It is very plausible that the coherent quantum dynamics will play a major
role in future experimental set up and technologies. An example could be
provided by a quantum computer, that will definitely require the capability
of manipulate interacting system in time. Therefore, a better understanding
of out of equilibrium quantum physics could be crucial for the developing of
new technologies.

During these last few years, our research work has been focused on
the development of two analytical tools to analyze quantum quenches in
integrable systems. While it is difficult to overestimate the importance of
numerical simulations in order to develop a physical intuition for the out of
equilibrium coherent dynamics of extended systems, many of the interesting
phenomena we would like to analyze (e.g. the long time behavior of large
systems) are quite difficult to grasp with the current numerical techniques.
Moreover, as we have discussed, the physics of integrable systems could
exhibit an intriguing behavior, qualitatively different from the one of non
integrable systems, and still not well understood, that hopefully could be
addressed analytically.

This thesis is organized as follows. In chapter 1, we present an introduc-
tion to quantum quenches: we discuss some of the most interesting problems
in the field as well as some simple solvable model.
In chapter 2, we provide an introduction to integrable quantum field
theories, one of the central techniques used in this thesis. Even if we explain
the technics used in integrable field theories in a quite detailed way, the
emphasis of this chapter is more on the qualitative physical properties that
make integrable systems different from the non integrable ones.
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Then, in chapter 3, we analyze quantum quenches in integrable field theories,
showing that for a certain class of quantum quenches, we can argue that the
long time behavior can be described by a generalized Gibbs ensemble. This
result is quite interesting, because it shows explicitly that the GGE could
play an important role also in interacting integrable systems.
Finally, in chapter 4 we present some progresses on the intriguing idea
about the transformations of the Zamolodchikov-Fadeev operators. These
operators create and annihilate particles in integrable field theories and
satisfy a non trivial algebra involving the S matrix. So, we explore what
happen when we change a parameter of the theory and hence the S matrix:
can we express the new creation operators in terms of the old ones? This
problem, while interesting in itself, has a clear connection with quantum
quenches and constitutes a fascinating line of research.

The material presented in this thesis is based on the following papers:

• Fioretto Davide and Mussardo Giuseppe, Quantum quenches in inte-
grable field theories, New Journal of Physics. 2010;12:055015

• Sotiriadis Spyros, Fioretto Davide and Mussardo Giuseppe, On the
Initial States of an Integrable Quantum Field Theory after a Quantum
Quench, in preparation.
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Chapter 1

An Introduction to Quantum
Quenches

In this chapter, we would like to provide a introduction to quantum quenches
and thermalization. First of all (sec. 1.1) , we define the problem and explain
some of the conjectures that have been put forward to deal with it, both for
integrable and non integrable systems. In the same section, we briefly sketch
the experimental motivations that spurred the interest towards the coherent
dynamics of integrable systems and thermalization. Finally, in sec. 1.2 , we
study some exactly solvable models.

1.1 Quantum Quenches and Thermalization

1.1.1 Definition of the Problem

Quantum quenches are one of the simplest possible realization of out of equi-
librium physics. Let us consider an extended quantum system in d dimension
at zero temperature. Therefore, the system will be in the ground state |ψ0〉
of the Hamiltonian H0. Then, at time t = 0, we suddenly change the Hamil-
tonian from the initial one to a different one, and then we study the coherent
dynamics governed by the new Hamiltonian H. We emphasize that, from the
theoretical point of view, the initial Hamiltonian H0 is simply a way to select
a proper initial state, whose dynamics is non trivial. The quantum evolution
is always dictated by the post-quench Hamiltonian H. Sure enough, there will
be some transient effect for this sudden change of the Hamiltonian. However,
we are mainly interested in what happens for large times. First of all, does
the systems reach a stationary state? Clearly, this is not a possibility for a
finite system, where we are bound to have quantum recurrence. However, our
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intuition suggests that for large systems (i.e., in the thermodynamic limit),
if we focus our attention on a finite portion of the system, the rest will act
as a bath and a stationary state will be reached. A natural question is if it
is possible to characterize this stationary state in a simple way. It is quite
natural to propose that, after a long time, the system will thermalize: this
means that the stationary state can be described by a thermodynamical en-
semble, e.g. the canonical one.
Therefore, we have thermalization if, for local operators O(x), we have

〈ψ0(t)|O(x)|ψ0(t)〉 −−−−→
t→+∞

〈O(x)〉can =
Tr
[
e−βHO(x)

]
Z

, (1.1)

where Z = Tr
[
e−βH

]
, while the effective temperature β is implicitly defined

by the constrain that the expectation value of the energy is constant in time,
so

E = 〈ψ0(t)|H|ψ0(t)〉 =
Tr
[
e−βHH

]
Z

. (1.2)

Alternatively, we could define thermalization in terms of the microcanonical
ensemble, investigating if

〈ψ0(t)|O(x)|ψ0(t)〉 −−−−→
t→+∞

〈O(x)〉mic =
∑

E≤Eα<E+∆

1

N
〈Eα|O(x)|Eα〉, (1.3)

where the sum is over the N eigenstates of the Hamiltonian contained in the
microcanonical energy shell [E,E + ∆). Of course, in the thermodynamic
limit these two definition of thermalization are equivalent. We will elaborate
more on thermalization in the next subsections. Here, we would like to stress
that

• the locality of the operators plays a major role: we cannot expect that
(1.1) holds for any operator

• even if it is quite natural, (1.1) is indeed a very strong statement: it
means that, from the point of view of local operators, the only thing
that the system remembers of its initial condition is its energy.

On the other hand, our experience with classical systems suggests that in-
tegrable systems could be very peculiar and do not thermalize. Their ther-
malization (or lack thereof) is the issue we would like to investigate in this
thesis. Before analyzing in a more careful way thermalization in isolated
quantum systems, we believe that it could be helpful to briefly consider the
experimental situation of the problem.
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Figure 1.1: Collapse and revival of a matter wave function of a Bose Einstein
condensate (from [5])

1.1.2 Experimental Motivations

In this subsection, we would like to briefly present the experimental moti-
vations behind these studies. Since we will not attempt to explain quanti-
tatively the datas of any experiment, in this subsection we do not consider
in details any experiment. Instead, we would like to convince the reader,
with a couple of examples, that the study of out of equilibrium coherent
dynamics in extended systems is a very timely problem, and provides a nice
interplay between theory and experiments. For many decades, the unitary
evolution of an extended system has been seen an academic topic. Indeed,
in solid state physics it is usually not possible to decouple a system from it
environment, and therefore dissipation and decoherence occur, spoiling the
unitary evolution. This point of view is no more legitimate now, since exper-
iments, in particular in cold atomic gases [5–9], have shown that it is possible
to minimize the coupling of the system with the environment and therefore
observe the coherent evolution of a many body system. This is nicely shown,
for example, in figure (1.1), where it is possible to see the revival of a many
body wavefunction of a Bose Einstein condensate in an optical lattice.
Moreover, for decades, exactly solvable models have been seen essentially as

a low-energy approximation of complex systems. However, the recent tech-
nological improvements in the area of cold atomic gases allow the study of
systems that are very close to the idealized, exactly solvable ones. These new
experimental possibilities make us wonder if it is maybe possible to observe
a qualitatively new physics. This possibility is nicely exemplified by the in-



8 An Introduction to Quantum Quenches

Figure 1.2: Absence of thermalization in a 1 d Bose gas with delta-like in-
teraction, from [6]

fluential work of Kinoshita et al [6]. In this work, they studied the out of
equilibrium evolution of a one dimensional system with delta-like interaction,
placing the atoms in a superposition of ±k momentum states and observing
their evolution. It turns out that that the system does not equilibrate (fig.
1.2) in the experimentally available time scales, a fact that the authors sug-
gested could be linked to the quasi-integrable nature of the system at hand.
This experiment spurred a great deal of interest about the coherent dynam-
ics of many body systems: do quantum integrable systems reach thermal
equilibrium or not? And, what do we know about non integrable systems?
Is their thermalization always guaranteed and well understood?

1.1.3 Thermalization in Non Integrable Systems

After this excursus on the experimental motivations behind this field of re-
search, let us go back to the issue of thermalization. For a classical systems,
the key concept behind thermalization is ergodicity. A system with N de-
grees of freedom in d spatial dimensions can be represented by a point in
the 2dN dimensional phase space. Given an initial condition X0 = (p0, q0),
the Hamiltonian is ergodic if the trajectory of the system in the phase space
covers uniformly the constant energy hypersurface selected by the initial con-



Quantum Quenches and Thermalization 9

dition, for almost every X0. This condition allows to replace time averages
with phase space averages weighted with the microcanonical ensemble, hence
for any operators O(p, q) and almost any1 initial condition X0, we have

〈O〉time := lim
T→+∞

1

T

∫ T

0

dtO(p(t), q(t)) =

= 〈O〉mic :=

∫
ddNp ddNqO(p, q)δ [H(p, q)−H(p0, q0)] . (1.4)

However, translating the concept of ergodicity to the quantum domain is a
non trivial task. For example, let us consider a non degenerate Hamiltonian
with eigenvalues Eα. We select a microcanonical shell S = [Eα, Eα + ∆) and
we choose as the initial state a superposition of eigenstates in this energy
shell, i.e.

|ψ0〉 =
∑
S

cα|Eα〉. (1.5)

The time averaged density matrix is expressed by the so-called diagonal en-
semble

ρdiag = lim
T→+∞

1

T

∫ T

0

dt|ψ0(t)〉〈ψ0(t)| =
∑
S

|cα|2|Eα〉〈Eα|, (1.6)

that coincides with the microcanonical density matrix only for the very spe-
cial case where all the |cα|2’s are equal. Therefore, quantum ergodicity in
a strict sense is almost never realized. This simple result shows us that we
should focus our attention not on the density matrix of the whole system,
but on the expectation values of observables. A strong and nice result among
these lines dates back to Von Neumann [10–12]. The idea is the following: let
us consider a set of macroscopic coarse grained observable {Ml}: these are
commuting operators the define a macroscopic state. The idea behind these
macroscopic observables is that in quantum mechanics we cannot measure
with arbitrarily high precision two observables that do not commute, as the
position and momentum. However, the indetermination principle plays no
role for macroscopic bodies: therefore, from the mathematical point of view,
we could imagine that when we are measuring the position and momentum
of a macroscopic body, we are not really measuring the position and mo-
mentum quantum operators but coarse-grained commuting operators build
from the quantum ones. The statement of Von Neumann’s quantum ergodic
theorem is that, under suitable assumptions (e.g. the Hamiltonian has no
resonances-that means that the energy level differences are non degenerate),

1“Almost any” means: a part for a set of measure zero.
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for any state |ψ0〉 in the energy shell S, for most of the choices of the set of
the macroscopic observables {Mν} and most of the times t, thermalization
occurs, i.e.

〈ψ0(t)|Ml|ψ0(t)〉 = 〈Ml〉mic. (1.7)

Here most is used in the technical sense that the appropriate measure of the
set of the elements for which the statement of the theorem does not hold is
bounded from above and small for realistic systems, even if it is not neces-
sarily zero. For a careful statement of the hypothesis of the theorem and of
these bounds we refer the reader to the original literature. As a side remark,
we notice that the concept of ergodicity that emerges for this theorem is
quite different from the classical counterpart, since there is no time average.
Therefore, it has been introduced the nomenclature of normal typicality to
refer to the statement of Von Neumann theorem. While the statement of
the theorem is quite general, its application to realistic systems is not so
straightforward. Indeed, looking at a concrete many-body system, it is of
primary interest not just to find out whether in principle a set of macro-
scopic observables that behave ergodically exists, but whether specific and
natural observables, such as the magnetization for spin chains, density for
cold atomic gases, or various correlation functions thermalize or not.
Another intriguing way to understand thermalization is the eigenstate ther-
malization hypothesis [13–15] . The objects of this hypothesis are the expec-
tation values of observables on the basis of the eigenstates of the Hamiltonian
〈Eα|O|Eα〉, and the statement is that for natural, physically interesting ob-
servables (whatever it means) these expectation values are a smooth and
quite flat function of the energy, with the possible exception of the extremes
of the spectrum. Therefore, if the initial state is peaked around an energy
(i.e. the |cα|2 are peaked around an energy Ê, and outside a neighborhood of
Ê they are essentially zero), the eigenstate thermalization hypothesis implies
the equivalence of the diagonal (1.6) and the microcanonical ensemble. Re-
cently, the connection between this hypothesis and Von Neumann’s theorem
have been emphasized in [16].
So, summarizing

1. Even if quantum thermalization is quite a natural concept, there is still
no conclusive evidence of the physical mechanism behind it, and what
are the most general hypotheses under which it occurs.

2. Thermalization cannot hold in general, but only for a class of states (e.g.
states that are sufficiently peaked in the energy space) and observables.

3. Even if thermalization has been observed in many numerical simula-
tions, some violations of it are also known. A very clear one was pointed
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out in a simulation of an infinite long Ising spin chain with parallel and
transverse field [17], whose Hamiltonian is

H = −
∑
i

σzi σ
z
i+1 − h

∑
i

σzi − g
∑
i

σxi (1.8)

The authors of [17] studied the long times behavior of the reduced den-
sity matrix, up to three sites. If this reduced density matrix tends to a
thermal one, then for any local observable (i.e. for any observable that
acts on up to three sites) thermalization occurs; otherwise, it means
that there exist local observables that do not thermalize. It turns out
that if the initial state is |y+〉, i.e. all the spins are aligned in the posi-
tive y direction, then the reduced density matrix tends to the canonical
one, while if the initial state is |z+〉 there is no strict convergence for
t → +∞ since oscillations persist even at large times. However, if we
take a time average (as in the classical case), we get rid of these oscil-
lations in time and we have a convergence to the thermal distribution.
More interestingly, if the initial state is |x+〉, we see convergence to
a density matrix that is different from the thermal one and therefore
thermalization does not occur. Of course, since these results are nu-
merical, it is not possible to reach infinite long times and it may be
that actually thermalization does occur but at a time scale beyond the
ones reached by the simulation. However, we believe that this result
is very interesting, in particular because these different behaviors are
exemplified by very simple initial states.

1.1.4 Integrability and Thermalization

Let us now consider integrable systems. In the classical case, integrable
systems are a very well known example of non ergodic behavior: they possess
as many integrals of motion as the number of the degrees of freedom and
therefore they cannot explore the full hypersurface of constant energy. The
experiment of Kinoshita et al. [6] drew the attention of the community to
the quantum case: does quantum integrability prevent thermalization? An
interesting conjecture on this regard was made by Rigol et al. [18] . Their
idea, supported by numerical simulations for a lattice hard core boson gas
in one dimension, was that the long times behavior of integrable systems
is not described by a canonical density matrix, but by a generalized Gibbs
ensemble that takes into account the extra integral of motion Il, i.e.

ρ̂gen ∼ e−
P
l αl Il , (1.9)
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where αl are Lagrange multipliers fixed by the the initial state |ψ0〉 through
the condition

〈ψ0|Il|ψ0〉 = Tr [ρ̂genIl] . (1.10)

This conjecture is indeed quite appealing, since it reminds the classical idea
that the dynamics of integrable models is constrained by their conserved
quantities. However, it turns out that quantum integrability is quite a subtle
concept, and its relation with the existence of conserved quantities is not so
simple as in the classical case. We will discuss extensively the difficulties in
the definition of quantum integrability in sec. 2.2. For example, one point is
that we cannot ask for functional independence of commuting operators-they
are always functional dependent. So, the best we could achieve is algebraic
independence, but a set of algebraic independent commuting conserved quan-
tities is constituted by the powers of the Hamiltonian, or the projectors over
the energy eigenstates: should we conclude that all the Hamiltonian are in-
tegrable?And, in the spirit of this conjecture, should we include the powers
of the Hamiltonian in the canonical ensemble? However, we should keep in
mind that in statistical mechanics we demand that two large (macroscopic)
portion of the same system are statistically independent, i.e. the state of
one subsystem does not affect the probabilities of various states of the other
subsystems. This implies that the only conserved quantities that can enter
in (1.9) are the ones that are local2 hence additive. This explain why in
the canonical ensemble H2 doesn’t appear, and suggests that only local con-
served quantities should enter in (1.9).
At the same time, the relation between quantum integrability and conserved
quantities is not so clear, as in the classical case. We will discuss this dif-
ficulties in section 2.2. Here we would like to stress that the best available
definition of integrability refer to the absence of diffraction in scattering
and, at least in the continuum, it is probably connected to the existence of
a suitable number of local conserved quantities: as Sutherland writes [19],
“Nondiffraction could probably be insured by the existence of a complete set
(as many operators as the number of particles) of independent local operators
that commute with the Hamiltonian H, and with each other ”. This idea is
essentially the one used in the early arguments for the integrability of rel-
ativistic field theories (see sec. 2.3), and the word independent should be
understood as follows. We have a set of conserved quantities Qs that are
diagonal on one-particle plane waves:

Qs|p〉 = ωs(p)|p〉. (1.11)

2More precisely, we should say that they are integrals over the whole space of local
a density. However, we will sometimes call these conserved quantities local,with a slight
abuse of language.
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In this contest, independence means that the one particles eigenvalues ωs(p)
are independent function of p [20]. Therefore, Rigol et al.’s conjecture is
at least well posed and physically sound. Its validity has been the subject
of several studies, mostly done by using specific models [21–28], and also
investigated for initial thermal distributions [29]. An important step forward
was taken in the work of Barthel and Schollwöck [30] in which they general-
ized a previous result by Calabrese and Cardy [31], proving rigourosly that
for Gaussian initial states and quadratic (fermionic or bosonic) systems the
conjecture does hold: a finite subsection of an infinite system indeed relaxes
to a steady state described by a generalized Gibbs ensemble where the extra
integrals of motions are simply the occupation numbers of each eigenmode3.
Moreover, they stated (postponing the proof to a future paper) that a simi-
lar result holds also for Bethe-ansatz solvable models, even if in this case the
extra integrals of motions appearing in the density matrix do not have such
a simple physical interpretation.
We will come back to the generalized Gibbs ensemble in chapter 3 , where
we will analyze the thermalization of integrable field theories.

1.2 Quantum Quenches in Solvable Models

In this section, we would like to analyze quantum quenches in some solvable
model. In this way, we introduce some of the ideas that will play a major
role in the next chapters.

1.2.1 Conformal Field Theories

Quantum quenches could be seen as the analytical continuation at real times
of a statistical physics problem in a strip. In order to illustrate this point,
let us consider the expectation value of an operator O at time t on a state
|ψ0〉, i.e.

〈O(t)〉 = 〈ψ0|O(t)|ψ0〉 = 〈ψ0|eiHtOe−iHt|ψ0〉. (1.12)

First of all, let us introduce a parameter τ0 > 0, that is useful to regularize the
divergencies that may arise in the previous expression. So, |ψ0〉 → e−Hτ0|ψ0〉.
Of course, τ0 could be an useful tool in the intermediate steps of the calcu-
lations, but at the end of the day we would like to set τ0 = 0 or at least give
a physical meaning to τ0. So, if we do an analytical continuation it = τ , we

3As a matter of fact, even if local conserved quantities should play a major role, as we
have emphasized in the text, it is often simpler to derive the generalized Gibbs ensemble
in terms of occupation numbers.
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have that

〈O(t)〉 → 〈ψ0|e−H(τ0−τ)Oe−H(τ0+τ)|ψ0〉
〈ψ0|e−2Hτ0|ψ0〉

. (1.13)

So, we have mapped the original out of equilibrium quantum problem in d+1
dimension in a statistical physics equilibrium problem in a slab in d+1 spatial
dimensions: the initial state |ψ0〉 plays the role of a boundary condition, while
e−Hτ is the transfer matrix in the imaginary time direction. Incidentally, 2τ0

is the width of the slab, and this explain why we introduced a regulator τ0.
So, this mapping suggests that we could translate the results of statistical
physics in a confined geometry into quantum quench ones. Even if for sake
of simplicity we have considered only one operator O(t), this mapping holds
also for products of operators at different times O(t1) . . .O(tn) .
This mapping is particularly useful if the Hamiltonian H is at a critical point
of a 1+1 quantum system [31,32]. Indeed, this means that the corresponding
bulk Hamiltonian in the strip will flow, under the renormalization group, to a
conformal field theory. Moreover, any translational invariant boundary con-
ditions will flow to one of the conformal invariant boundary conditions [33].
Therefore, we can exploit the conformal invariance of the theory and of the
boundary to compute correlation functions. However, we should emphasize
that, if we put τ0 = 0 at the end of the calculations, we obtain divergencies.
This is a well know phenomenon in the physics of boundary critical phenom-
ena: the correlators at the critical point do not depend only on the universal
property of the theory (bulk conformal field theory and conformal invariant
boundary state). Instead, they depend also on a non universal length scale
(in our case time scale) τ0, known as the extrapolation length, that is deter-
mined by the original boundary conditions. In the quench problem, τ0 can
be associated to the correlations of the initial state.
Conformal invariance simplifies a lot the computation of the correlators of
primal operators, that are the operators that, under a conformal mapping
w(z) transform as

ϕ(w) = w′(z)−xϕ(z), (1.14)

where x is the scaling dimension of the operator. Under the conformal trans-
formation w = 2τ0

π
Log(z), the strip of width 2τ0 is mapped conformally into

the upper half plane (fig.1.3). The one point correlation function in the upper
half plane is known and quite simple. Indeed, conformal invariance implies
that

〈ϕ(z)〉UHP = Aϕψ0
[2Im(z)]−x , (1.15)
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Figure 1.3: The conformal mapping between the strip and the upper half
plane.

where Aϕψ0
is a (known, at least for diagonal minimal models) constant, that

depends on the operator and the boundary condition. Therefore, we have

〈ϕ(t)〉 = Aϕψ0

[
4τ0

π
cosh

[
πt

2τ0

]]−x
∼

t→+∞
Aϕψ0

[
π

2τ0

]x
e
−πx t

2τ0 . (1.16)

So, we see that the expectation value of primary operators has a well defined
long time limit, and the approach to this value is exponential in time. The
decay rate of this approach is non universal: this is not a surprise, since it is
not dimensionless. However, the ratio of two decay rates is universal, and it
is given by the ratio of the scaling dimensions.
The two point function is a little more complicated, since conformal invari-
ance do not fix univoquely its structure. Indeed, we have

〈ϕ(z1)ϕ(z2)〉 =

[
z12z21

z12z12z11z22

]x
F (η), (1.17)

where z12 = |z1 − z2| and z12 = |z1 − z2| (the overline denotes the complex
conjugate), while F is an arbitrary function of the ratio

η =
z11z22

z12z12

. (1.18)

Even if the conformal symmetry does not fix the form of the function F, in
order to study 〈ϕ(x1, t)ϕ(x2, t)〉 at large distances r = |x1 − x2| and long
times t, (respect to τ0) it is sufficient to know the behavior of F (η) for small
η (close to the surface) and for η = 1 (deep in the bulk). When η = 1, we
should obtain the two point function in the bulk, hence F (1) = 1. Instead,
for small η, we have

F (η) ∼
(
Aϕψ0

)2
ηxb , (1.19)
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where xb is the boundary scaling dimension of the leading boundary operator
to which ϕ couples. Notice that if 〈ϕ〉 6= 0, xb = 0. So, we have

〈ϕ(r, t)ϕ(0, t)〉 ∼
{

[〈ϕ(t)〉]2 if 〈ϕ(t)〉 6= 0, τ0 � t < r
2

e
−πx r

τ0 if τ0 � r
2
< t

. (1.20)

So, if 〈ϕ〉 6= 0, we have that the first term in the expansion of the connected
correlator is simply zero for t < r

2
. This is know as the horizon effect, and

it can be understood in the following way. The boundary state is an highly
excited state (respect to the ground state) and therefore it is a source of
quasiparticles. For τ0 ≈ 0, quasiparticles created at two different points are
essentially uncorrelated: therefore, correlations are mediated only by quasi-
particles created at the same point. But in a conformal field theory these
quasiparticles must travel at the speed of light ( that is 1 in our units).
Therefore, no correlation is possible for t < r

2
.

Instead, for t > r
2

the (leading term of the) two point function is time in-
dependent: this shows that the correlations saturate immediately at t = r

2
.

Notice that the decay is exponential and not power law.

1.2.2 Free Many Body Systems

In this subsection, we would like to analyze free systems. We will focus
our attention not only on the physical properties of these systems (i.e. the
behavior of correlators), but also on the form of the initial state for the
simplest kind of quenches (a change of the frequencies). Indeed, this form
will inspire us some of the ideas of chapters 3 and 4.

First of all, let us consider a single particle quantum harmonic oscillator,
whose Hamiltonian is

H0 =
p2

2m0

+
1

2
m0 ω

2
0x

2. (1.21)

It is well know that the eigenstates of this problem can be constructed by
introducing the ladder operators a0 , a

†
0(

x
p

)
=

1√
2

(
λ0
− 1

2 λ0
− 1

2

−i λ0

1
2 i λ0

1
2

)(
a0

a†0

)
= V (λ0)

(
a0

a†0

)
, (1.22)

where λ0 is the a dimensional parameter λ0 = m0 ω0. We assume that, at
time t = 0−, the system is prepared in the ground state |ψ0〉 univocally
determined (up to a phase factor) by the equation

a0 |ψ0〉 = 0. (1.23)
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Then,at time t = 0+,we quench our Hamiltonian by suddenly varying the pa-
rameters (m0 , ω0)→ (m,ω). Since the position and the momentum operator
are continuous at t = 0,we have(

x
p

)
= V (λ0)

(
a0

a†0

)
= V (λ)

(
a
a†

)
, (1.24)

hence we can determine the relation between the old ladder operators a0 , a
†
0

and the new ones a , a†

a = ca0 + da†0, a† = ca†0 + da0 (1.25)

a0 = ca− da†, a†0 = ca† − da, (1.26)

where

c =
λ+ λ0

2
√
λλ0

, d =
λ− λ0

2
√
λλ0

. (1.27)

We see that this is simply a Bogoliubov transformation and the condition

c2 − d2 = 1 (1.28)

is a direct consequence of the algebra satisfied by the ladder operators

[a0, a
†
0] = [a, a†] = 1. (1.29)

The transformation (1.25) provides us with a simple way to calculate the
evolution of any operator O(t) that can be expresses as a polynomial of
a(t), a†(t). First of all, the time evolution of the ladder operators is trivial,
since a(t) = e−iωta. Therefore, the only non trivial step in order to compute
the expectation values of O(t) is the calculation of the expectation values of
a, a† (and their products) over the initial state |ψ0〉, but this can be easily
accomplished using (1.25).
Otherwise, we could try to express the initial state |ψ0〉 in terms of the basis
of the new Hamiltonian, constructed by acting with the a† operator on the
new ground state |0〉 (a|0〉 = 0 ). Since |ψ0〉 satisfies the equation

(ca− da†)|ψ0〉 = 0, (1.30)

we have

|ψ0〉 = N exp

[
λ− λ0

λ+ λ0

a†
2
]
|0〉, (1.31)

as it can be proved by using the identity [a, f(a†)] = f ′(a†). This is a general
property of the Bogoliubov transformation: the old ground state written in
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the new basis has always the form (1.31), the so-called squeezed vacuum.
These arguments can be straightforwardly generalized to free bosonic or
fermionic systems.

Free Bosonic System. Following [31], we analyze a chain of N coupled
harmonic oscillator

H0 =
1

2

N−1∑
n=0

[
π2
n + (m0)2 ϕ2

n +
N−1∑
j=0

(ω0
j )

2 (ϕn+j − ϕn)2

]
. (1.32)

This system can be diagonalized in momentum space. If we introduce the
Fourier transform ϕk = 1√

N

∑
n exp(2πi k n

N
)ϕn , we have

H =
N−1∑
k=0

[
Ω0
kA

0†
k A

0
k +

1

2

]
, (1.33)

(Ω0
k)

2 = (m0)2 + 2
N−1∑
j=0

(ω0
j )

2

[
1− cos

(
2π k j

N

)]
, (1.34)

A0
k =

1√
2Ω0

k

(
Ω0
kϕk + iπk

)
, (1.35)

A0†
k =

1√
2Ω0

k

(
Ω0
kϕ−k − iπ−k

)
, (1.36)

(1.37)

and the ground state |ψ0〉 is characterized by the equation

A0
k|ψ0〉 = 0. (1.38)

Let us prepare the system in its ground state and quench the frequency
Ω0
k → Ωk. The relation between the pre-quench ladder operators A0

k, A
0†
k and

the the post-quench ones A0
k, A

0†
k is a Bogoliubov transformation

Ak = ckA
0
k + dkA

0†
−k, A†k = ckA

0†
k + dkA

0
−k,

A0
k = ckAk − dkA†−k, A0†

k = ckA
†
k − dkA−k, (1.39)

ck =
Ωk + Ω0

k

2
√

ΩkΩ0
k

, dk =
Ωk − Ω0

k

2
√

ΩkΩ0
k

. (1.40)

Therefore,the state |ψ0〉 is a coherent state

|ψ0〉 = N exp

[
N−1∑
k=0

Kboson(k)A†kA
†
−k

]
|0〉, (1.41)
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where

Kboson(k) =
Ω0
k − Ωk

Ω0
k + Ωk

(1.42)

This quantity can be written in a suggestive way going to the continuum
limit, where Ω(k) =

√
k2 +m2, Ω0(k) =

√
k2 +m2

0 and the process can
be interpreted as a quench of the mass of the particle excitation. Let us
now introduce the rapidities of the particle relative to the initial and final
situations, i.e.

Ω0 = m0 cosh ξ , k = m0 sinh ξ (1.43)

Ω = m cosh θ , k = m sinh θ

From the equality of the initial and final momenta, we have the relation
which links the two rapidities

m0 sinh ξ = m sinh θ ⇒ m0

m
=

sinh θ

sinh ξ
(1.44)

Therefore, the amplitude Kboson(k) of eq. (1.42) can be neatly written as

Kboson(θ, ξ) =
m0 cosh ξ −m cosh θ

m0 cosh ξ +m cosh θ
=

m0

m
cosh ξ − cosh θ

m0

m
cosh ξ + cosh θ

= (1.45)

=
sinh θ cosh ξ − sinh ξ cosh θ

sinh θ cosh ξ + sinh ξ cosh θ
=

sinh(θ − ξ)
sinh(θ + ξ)

.

Free Fermionic System. One can easily work out the Bogoliubov trans-
formation relative to the quench of the mass of a free fermionic system [34].
Consider, in particular, a free Majorana fermion in (1+1) dimension, with
the mode expansion of the two components of this field given by

ψ1(x, t) =

∫ +∞

−∞
dp
[
α(p)A(p)e−iEt+ipx + α(p)A†(p)eiEt−ipx

]
(1.46)

ψ2(x, t) =

∫ +∞

−∞
dp
[
β(p)A(p)e−iEt+ipx + β(p)A†(p)eiEt−ipx

]
where

α(p) =
ω

2π
√

2

√
E + p

E
, α(p) =

ω

2π
√

2

√
E + p

E
(1.47)

β(p) =
ω

2π
√

2

√
E − p
E

, β(p) =
ω

2π
√

2

√
E − p
E
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with ω = exp(iπ/4). At t = 0, i.e. at the instant of the quench, we can
extract the Fourier mode of each component of the Majorana field

ψi(x, 0) =

∫
dp ψ̂i(p)e

ipx , (1.48)

given by

ψ̂1(p) = α(p)A(p) + α(−p)A†(−p) (1.49)

ψ̂2(p) = β(p)A(p) + β(−p)A†(−p)

Suppose now that the mass of the field is changed from m0 to m at t = 0
and let’s denote by (A0(p), A†(p)) and (A(p), A†(p)) the sets of oscillators
before and after the quench. The proper boundary condition associated to
such a situation is the continuity of the field components before and after
the quench

ψ0
i (x, t = 0) = ψi(x, t = 0) , (1.50)

which implies
ψ̂0
i (p) = ψ̂i(p) . (1.51)

This gives rise to the Bogoliubov transformation between the two sets of
oscillators

A0(p) = u(p)A(p) + iv(p)A†(−p) (1.52)

A†0(p) = u(p)A†(p)− iv(p)A(−p)

where

u(p) =
1

2E

[√
(E0 + p)(E + p) +

√
(E0 − p)(E − p)

]
(1.53)

v(p) =
1

2E

[√
(E0 − p)(E + p)−

√
(E0 + p)(E − p)

]
Notice that these functions satisfy the relations u(p) = u(−p) and v(p) =
−v(−p) together with u2(p) + v2(p) = E/E0, which refers to the normaliza-
tion of the respective set of oscillators.

The boundary state corresponding to this quench can be written as

| B〉 = exp

[∫ ∞
−∞

dp Kfermion(p)A†(p)A†(−p)
]
| 0〉 , (1.54)

where

Kfermion(p) = −Kfermion(−p) = i

√
(E0 − p)(E + p)−

√
(E0 + p)(E − p)√

(E0 + p)(E + p)−
√

(E0 − p)(E − p)
(1.55)
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As in the bosonic case, this quantity can be expressed in a more net form by
introducing the rapidities of the particle before and after the quench, i..e

E0 ± p = m0e
±ξ , E ± p = me±θ . (1.56)

Substituting these expressions in (1.55), we get

Kfermion(θ, ξ) = i
sinh

(
θ−ξ

2

)
sinh

(
θ+ξ

2

) . (1.57)
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Chapter 2

Integrable Field Theories and
Boundary Conditions

In this chapter, we would like to review the main properties of integrable field
theories in 1+1 dimensions. After a brief exposition of the basic concept in
quantum theory (sec. 2.1), in sec. 2.2 we critically consider the different
proposed definitions of quantum integrability. In general, quantum integra-
bility is not a consequence of the existence of a suitable number of conserved
quantities. However, in sec. 2.1 we show that for relativistic field theory in
1+1 dimension this is the case: quantum integrability is implied by the exis-
tence of (countable) infinite many local conserved quantities. In the sec. 2.4,
we will discuss how such a theory can be solved (i.e. a proper quasi particle
basis can be constructed) studying the analytical properties of the S matrix
in the complex plane. In the same section we will show that it is also possible
to compute the matrix elements of local operators in the quasiparticle basis
through the form factors program. Finally, in sec. 2.5 we discuss integrable
field theories in presence of a boundary, a physical situation that has a clear
link with quantum quenches.

The aim of this chapter is to provide a self consistent introduction to
the general and universal properties of integrable field theories. After this
exposition, the reader should be able to appreciate both the motivations of
our work both the quite sophisticated techniques involved. Therefore, we
will not focus our attention on any specific theory, and we will not discuss
peculiar (or pathological) properties of a given theory, since they play no role
in our subsequent analysis. For these topics, we refer the interested reader
to the literature cited in the text.
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Figure 2.1: The scattering of a classical particle off a fixed target.

2.1 Basic Concepts of Quantum Scattering

Theory

In this section we would like to review the basic concepts of quantum scatter-
ing theory, setting up the notation for the next sections. Our exposition will
be necessarily quite brief: a more thoughtful analysis can be found in [35].
Since the emphasis of this section is on the general ideas rather than on the
computational tools, we will focus our attention on the simplest example of
scattering: the one of a probe particle (of mass m) off a fixed target. If the
interaction between the probe and the scatterer is sufficiently short-ranged,
we can safely assume that the classical trajectory of the particle will be a
straight line far away from the target, and it will be significantly different
from a free trajectory only in a small region near the scatterer (see fig. 2.1).
In formulas, if x(t) is the trajectory of the particle, we have:

x(t) ∼ qin + tvin t→ −∞ , (2.1)

x(t) ∼ qout + tvout t→ +∞ . (2.2)

The scattering trajectories just described are not the only possible orbits of
the systems. In general there will be also some bounded orbits, where the
particle never escape from the potential of the target. The scattering orbits
and the bounded ones make up all the possible orbits of the system. As a
matter of fact, in many experimental set up we are not able to follow the
trajectory of the particle in the interacting region.This is particularly true
when we approach the quantum physics, where the interacting region could
be of the size of few atomic diameters. Therefore, it is quite natural to look
for a theory of scattering that focus its attention on the asymptotic properties
of the orbit far from the scatterer (the asymptotic region) rather than on the
precise details of the trajectory near the target.
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Let us analyze the quantum case. The probe is described by a wave function
|ψ(t)〉 obeying the(one particle) Schrödinger equation

i
d

dt
|ψ(t)〉 = H|ψ(t)〉, (2.3)

where H is the sum of the free Hamiltonian H0 = p2

2m
and the interaction

potential V . Let us assume that at time t = 0 the wave function is |ψ〉 : this
condition will fix univoquely the orbit. The asymptotic condition now reads
as:

U(t)|ψ〉 ∼ U0(t)|ψ〉in, t→ −∞, (2.4)

for some in state |ψ〉in, and

U(t)|ψ〉 ∼ U0(t)|ψ〉out, t→ +∞, (2.5)

for some vector |ψ〉out. Here U(t) is the evolution operator of the full Hamilto-
nian H, U(t) = exp [−i tH] , while U0(t) is the evolution operator associated
to the free Hamiltonian H0 , U0(t) = exp [−i tH0]. To any in state |ψ〉in ∈ H,
as well as to any out state it corresponds an orbit |ψ〉. However, as in the
classical case, not all the state |ψ〉 in the Hilbert space H have an in (or out)
asymptote, since there can exist bound states. Nevertheless, if the poten-
tial is sufficiently nice, all the states with an in asymptote will have also an
out one, and these scattering states together with the bound states span the
whole Hilbert space. It is convenient to introduce the Møller wave operators
Ω± such that:

Ω± = lim
t→∓∞

U †(t)U0(t). (2.6)

These operators map a given in (out) state into the unique correspondent
scattering state. More precisely,

|ψ〉 = Ω+|ψ〉in , |ψ〉 = Ω−|ψ〉out. (2.7)

As we have previously emphasized, usually we are not experimentally inter-
ested in the precise trajectory of the system at all times, but we would like to
understand its asymptotic properties. In particular, if the collimator prepare
the system in the state |ψ〉in, we would like to compute the outgoing state
|ψ〉out. This state is give by the action on the initial state of the S matrix

|ψ〉out = S|ψ〉in = Ω†−Ω+|ψ〉in. (2.8)

The S matrix is clearly an unitary operator, hence

S†S = 1. (2.9)



26 Integrable Field Theories and Boundary Conditions

The matrix elements of the S matrix gives us the transition amplitudes, so
from the knowledge of the S matrix we can compute any interesting exper-
imental quantity, e.g. the cross section. A natural basis to use in order to
compute the matrix element of the S matrix is the momentum one. Notice
that the Møller wave operators obey an interwinding relation:

HΩ± = Ω±H0, (2.10)

as it can be proved from

U(τ)Ω± = e−iτH lim
t→∓∞

e+itHe−itH0 = lim
t→∓∞

e+i(t−τ)He−itH0 =

= lim
t′→∓∞

e+it′Heit
′H0e−iτH0 = Ω±U

†
0(τ). (2.11)

Therefore, the states
|p±〉 = Ω±|p〉 (2.12)

are actually eigenstates of the full Hamiltonian H with eigenvalue

E(p) =
p2

2m
. (2.13)

We know that, for proper normalized states, |ψ±〉 is the state of the system
at time t = 0,that is evolved from (or will evolve to) the asymptotic in (or
out) condition |ψ〉. Since the states (2.12) are stationary states, this is not
strictly true, but holds only when we consider a normalized superposition of
these states. So, if

|ψ〉 =

∫
dpψ(p)|p〉 (2.14)

is the asymptotic condition, the state at time t = 0 will be:

|ψ±〉 =

∫
dpψ(p)|p±〉 (2.15)

Nevertheless, with this caveat in mind, we will sometimes refer to |p+〉 as
the state the in the long past was a planewave |p〉, and in a similar way of
|p−〉.
So, there are (at least) two way to look at a scattering experiment. One way
(the time-dependent one) is to imagine that in a far past we have prepared our
system in an incoming state |ψ〉in, and the corresponding outgoing state will
be determined by the action of the S operator on the in state. Otherwise,
we could devote our attention to the study of the stationary state of the
Hamiltonian |p±〉. Since S = Ω†−Ω+ (2.8) the matrix elements of S are
simply the inner product of these stationary states, i.e.

〈q|S|p〉 = 〈q − |p+〉. (2.16)

In our arguments we will rely on both these approaches.
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2.2 What is quantum integrability?

In classical mechanics (see for example [36,37]) integrability is a well defined
and established concept. Let us consider an autonomous system with n
degrees of freedom: its motion is thus described by a set of 2n equations

ṗ = −∂H
∂q

, q̇ =
∂H

∂p
, (2.17)

where H(p,q) is the Hamiltonian of the system. Generally speaking, in
order to integrate a system of 2n differential equations we should know 2n
integral of motions. However, the canonical structure of the equations of
motions implies a much stronger result: if the system admits n integrals of
motion, it can be explicitly integrated by quadratures. More precisely, we
have the following theorem (by Liouville and Arnol’d). Let us assume that
we are given n functions F1(p,q), . . . , Fn(p,q) in involution, that means their
Poisson brackets1 are vanishing

{Fi, Fj} = 0. (2.18)

Let us consider a level set of these of these functions:

Mf = {(p,q) : Fi(p,q) = fi, i = 1, . . . , n}, (2.19)

and let us further assume that these functions Fi are independent on Mf , i.e.
the linear forms dFi are linearly independent on each point of Mf . Then, we
have that:

1. Mf is a smooth manifold, invariant under the phase flow with Hamil-
tonian F1.

2. If the manifold is compact and connected, then it is diffeomorphic to
the n-dimensional torus

T n = {(ϕ1, . . . , ϕn)mod 2π}. (2.20)

3. The phase flow determines a conditionally periodic motion, i.e. in
angular coordinates (ϕ1, . . . , ϕn):

dϕ

dt
= ω, ω = ω(f). (2.21)

1We remind that the Poisson bracket of two functions of the phase space is
{f, g} =

∑
i

∂f
∂qi

∂g
∂pi
− ∂f

∂pi

∂g
∂qi
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4. The canonical equations can be integrated by quadratures.

The last point can be achieved since, under the hypotheses of the theorem,
we can pass through a (time independent) canonical transformation to the
action-angle variables (I,ϕ) , where the action variables I are functions
of the n integrals of motion Fi and thus constant in time, while the angle
variables ϕ describe the motion on the torus:

I(t) = I(0), ϕ(t) = ϕ(0) + ωt. (2.22)

Notice that if the manifold Mf is compact but not connected, the theorem
holds for every connected component.
So, summarizing, we have that in the classical case the existence of n
independent integrals of motion in involution provides us with a constructive
way (the action-angle variables) to integrate explicitly the equations of
motion. Moreover, this property characterized qualitatively the motion of
the system, since it spans the invariant manifold Mf and not the whole
hypersurface with constant energy. Finally, all the known examples of
dynamical systems that have been integrated to the present day have a
number of independent constants of motion in involution equal to the
number of the degrees of freedom.

However, a proper definition of integrability in the quantum case is more
subtle. A nice discussion of this point can be found in [19, 38]. Naively, one
would be tempted to generalized the classical definition substituting Poisson
brackets with quantum commutators. Therefore, a system would be called
integrable if there exist as many independent commuting operators Fi as
the number of the degrees of freedom. However, what is the number of the
degrees of freedom for a quantum systems without a classical analog, as a
chain of N spins? Should we assume that it is the dimension of the Hilbert
space D, that scales exponentially in N, or should we suppose that the number
of the degrees of freedom is proportional to N? Moreover, it is not so clear
what is a proper definition of independence. One would assume that, as in
the classical case, a suited definition is the functional one. However, let us
assume that F1, one of the commuting operators, is non degenerate. Since
commuting operators can be simultaneously diagonalized, i.e.

Fi =
D∑
j=1

λjiPj, (2.23)
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where Pj is a set of orthogonal projectors, it is not so surprising that any Fi
can be written as a polynomial of F1:

Fi =
D∑
j=1

λji
∏
k 6=j

F1 − λk1
λj1 − λk1

. (2.24)

Indeed, the non degeneracy of F1 allow us to invert (2.23)

Pj =
∏
k 6=j

F1 − λk1
λj1 − λk1

. (2.25)

So, a more sound definition of independence is the algebraical one: therefore,
a maximal set of independent integrals of motion in involution will contain
D elements (the number of diagonal entries of a D ×D matrix). Examples
of such a set would be the power of the Hamiltonian Hj, j = 1, . . . , D, or
the projectors Pj-but these constants of motion exist for every quantum
Hamiltonian!
Moreover, the explicit knowledge of a (maximal) set of integral of motion
doesn’t allow us to solve the system, i.e. determine the eigenvalues and the
eigenfunctions of the Hamiltonian.

Therefore, it seems that a proper definition of quantum integrability can-
not be obtained by a straightforward generalization of the classical one. So,
let us adopt a different strategy: instead of trying to extend the classical defi-
nition of integrability, let us focus our attention directly on solvable quantum
many body systems and let us try to identify the physical property that en-
able us to write down such a solution. From now on, we will consider only
one dimensional systems that support scattering. For simplicity, let us start
by focusing our attention on a non-relativistic system with only one kind
of particle with mass m -we will relax these assumptions in the next few
pages. The particles interact through a short distance two body potential
V (|x1−x2|)l and we assume that the total number of particle is conserved. If
we have only one particle, the eigenfunctions of our system are simply plane
waves

ψk(x) = eikx, (2.26)

with momentum k and energy

E(k) =
k2

2m
. (2.27)

Let us consider the two particle problem. At time t = −∞, the particles
(with an almost well defined momentum k1 and k2, as well as position x1



30 Integrable Field Theories and Boundary Conditions

and x2) are far apart, hence they can be described by plane waves - in the
spirit of the discussion at the end of sec. 2.1. So, the asymptotic energy and
momentum of the state is simply:

P = k1 + k2,

E = E(k1) + E(k2). (2.28)

Let us assume now that the x1 < x2 while k1 > k2. Since the faster particle is
“behind” the slower one, the two particles will collide. So, at time t = +∞,
the two wavepackets will be far apart, but with asymptotic momentum and
energy

P = k′1 + k′2,

E = E(k′1) + E(k′2), (2.29)

where k′1k
′
2 are the outgoing (asymptotic) momenta of the two particles.

However,the only possible solution to these two equations is that the outgoing
momenta are equal to the incoming ones. Notice that this is true only in 1+1
dimensions: if the number of the spatial dimensions is greater then one the
momentum and the energy conservations do not imply the identity of the
incoming and outgoing momenta. We would like also to emphasize that a
crucial role is played by the locality of the momentum and energy operators,
that imply that their spectrum is the sum of the single particle contributions.
As we have discussed in sec. 2.1, from the plane waves |k1k2〉 , that are the
eigenfunctions of the free Hamiltonian, we can build a stationary state for the
interacting Hamiltonian H |k1 + k2+〉. In the asymptotic region, x1 � x2,
the corresponding wavefunction is

ψ(x1, x2) = exp[i(k1 x1 + k2 x2)] + S(k1, k2) exp[i(k2 x1 + k1 x2)], x1 � x2,
(2.30)

while the wavefunction in the region x2 � x1 is determined by the quantum
statistics of the particles (bosonic or fermionic). In eq. (2.30) appears the
(two particles) S matrix

S(k1, k2) =
〈k2k1|S|k1k2〉
〈k2k1|k1k2〉

, (2.31)

where 〈k2k1| is the dual vector to |k1k2〉2 . S(k1, k2) will be a central object
in our investigation, and we will analyze its properties in much more details
in the following sections. Here, we would like to emphasize only that, in

2Since the particles are identical, we cannot distinguish a reflection amplitude and a
transmission one.
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this simplified case, the S matrix S(k1, k2) is simply a complex number of
modulus one (due to the unitarity of S ), and that its dependence from the
asymptotic momenta is actually restricted by the symmetry of the potential.
For example, Galilean invariance implies that S = S(k1−k2). Let us consider
now the case of three particles. As usual, we imagine to prepare our system
in a incoming state with wavepackets of almost well defined momentum far
apart. The total momentum and energy are now

P = k1 + k2 + k3,

E = E(k1) + E(k2) + E(k3), (2.32)

where k1 > k2 > k3 are the incoming asymptotic momenta, while the
wavepackets are spatially ordered in the opposite way. However, in this
case, the outgoing momenta are not uniquely determined by the the energy
and momentum conservation. Therefore, the stationary wavefunction in the
asymptotic region x1 � x2 � x3 will be the sum of two pieces

ψ(x1, x2, x3) = ψBETHE(x1, x2, x3) + ψDIFF (x1, x2, x3). (2.33)

The first part, the Bethe wavefuction, is simply a linear combination of plane
waves

ψBETHE(x1, x2, x3) =
∑
P

ψ(P ) exp[i(kp1x1 + kp2x2 + kp3x3)], (2.34)

where the sum runs on all the permutations of three objects. First of all,
let us clarify that this Bethe wavefuction is always present. Indeed, we can
imagine to realize a scattering experiments where the particles collides only
in pairs: this physics is described by the Bethe wavefunction. The amplitudes
ψ(P ) are related by the two particles S matrix, e.g.

ψ(213) = ψ(123)S(k1 − k2). (2.35)

However, we will have also a diffractive wave function, that describes the
genuine three body collisions

ψDIFF (x1, x2, x3) =

∫
k′1<k

′
2<k

′
3

P,E

dk′1 dk
′
2 dk

′
3 S3(k′1, k

′
2, k
′
3) exp[i(k′1x1+k′2x2+k′3x3)],

(2.36)
where the 3 body scattering amplitude S3(k′1, k

′
2, k
′
3) appears. This diffrac-

tive term is physically important, since it leads to the relaxation of momenta.
However, it may happen that this diffractive terms is absent: in this case the
eigenfunctions of the Hamiltonian (in the asymptotic region) are simply given
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by the Bethe wavefunction. We can repeat this analysis for the 4, 5, . . . par-
ticles wavefunctions: energy and momentum conservations do not rule out
the possibility of having a diffractive term. However, for some very special
potential, it may happen that this diffractive term is always absent. In this
case, every scattering event can be factorized in a sequence of two body col-
lisions, and therefore the eigenfunctions in the asymptotic region are of the
Bethe form (2.34). In this case it is possible to“solve” the model, determining
e.g. its spectrum and its thermodynamical properties. Therefore, the fac-
torizability of the scattering seems to be a very sound definition of quantum
integrability, and this is the definition we will adopt in the following. Even
if this definition is the best one available, we would like to emphasize that
the search for more general definitions of integrability is still a quite active
area of research (see for example [38] and [39]).
Finally, let us consider briefly a multi-component system: is our analysis
still valid? The answer is yes, but with an important caveat . If we have
more than one species of particles, the (two particles) S matrix will have also
indices labeling the incoming and outgoing particles

Sb1b2a1a2
(k1, k2) =

〈b2(k2)b1(k1)|S|a1(k1)a2(k2)〉
‖|a(k1)a2(k2)〉‖ ‖|b1(k1)b2(k2)〉‖

, (2.37)

where a and b distinguish between different kinds of particles. So, if we have
d different species of particles, the S matrix (2.37) at assigned momenta is a
d×d matrix. Analyzing the Bethe wavefunction, we have stated that the its
amplitude are related by the two particles S matrix (2.35). However, there
are several ways to go from the configuration 123 to 321 by transpositions:
for example, 123 → 213 → 231 → 321 or 123 → 132 → 312 → 321. One
could wonder if these two different ways lead to the same relation between
ψ(123) and ψ(321), as they should. For a system with only one kind of
particle this is always the case, since the S matrices are commuting numbers.
Instead, for multicomponent systems, the S matrix, hence it must satisfy a
commutation equation

Sc1c2a1a2
(k1, k2)Sb1c3c1a3

(k1, k3)Sb2b3c2c3
(k2, k3) = Sc2c3a2a3

(k2, k3)Sc1b3a1c3
(k1, k3)Sb1b2c1c2

(k1, k2).
(2.38)

These equation is know as the Yang-Baxter equations (fig. 2.2), and it’s
physical meaning is quite transparent: it implies that it is possible to factorize
any 3 body collision in a sequence of two-particle scattering events, and the
order of this factorization doesn’t matter. We will discuss in more details
multi-components systems in the next section.
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2.3 Integrable Field Theories

In the previous section, we have discussed extensively the concept of
quantum integrability. We have seen it is not a naive translation of the
classical concept, but it is instead related to the factorizability of the
scattering processes. For two particles, energy and momentum conservation
implies that the set of the final momenta is equal to the set of the initial
ones. Instead, for three body scattering, these conservations laws are not
sufficient to rule out diffraction. An insightful reader could guess that, if
we have additional non trivial local (hence additive) conserved quantities,
diffraction could be forbidden. These is actually what happens for integrable
field theories, as we will argue in the next few pages.

Integrable field theories are a very special class of 1+1 dimensional rela-
tivistic field theory that can be solved exactly (see [20, 40, 41] for a review).
These theories are characterized by an infinite set of local conserved currents

∂µJ
µ
s (x) = 0, (2.39)

where s is a spin index that assumes infinite many values. Therefore, inte-
grating the spatial component of these currents, we obtain a set of nontrivial
conserved quantities in involution

Qs =

∫
dx1J

1
s (x0, x1),

d

dt
Qs = 0, [Qs, Qs′ ] = 0. (2.40)

Since these conserved quantities commute, they can be simultaneously diago-
nalized: this is realized on the particle basis. Instead of using the momentum
as a quantum number, it is convenient to introduce the rapidity θ, related to
the (single particle) energy and momentum in the following way:

E = ma cosh(θ), p = ma sinh(θ). (2.41)

Notice that we will always consider massive field theory, hence the interaction
is short-range. The simplest example of conserved quantities are the spin one
light-cone momenta P and P , whose action on the single particle states is

P |a(θ)〉 = mae
θ|a(θ)〉, P |a(θ)〉 = mae

−θ|a(θ)〉. (2.42)

Instead, the action of the conserved quantities Qs is

Qs|a(θ)〉 = q(s)
a esθ|a(θ)〉, (2.43)

hence Q|s| transform as s copies of P , while Q−|s| transform as s copies of P .
We are now ready to discuss the consequences of the existence of these non
trivial quantities on the scattering properties of the theory. Nicely, it turns
out that:
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• All the scattering events are elastic: the number of particles is con-
served, the set of the initial masses coincides with the final one, and
the set of the incoming momenta is equal to the set of the outgoing
ones.

• Scattering is factorizable: any n particle scattering event can be decom-
posed in a sequence of 2 particle collisions. Since the S matrix obey the
Yang-Baxter equations (fig.2.2), the order of this decomposition does
not matter.

Let’s now argue why these remarkable properties are true. Since the con-
served quantities Qs comes from local conservation laws, they are additive:
if we take a n particles state composed by wavepacket of almost well defined
momentum and far apart from each other, the action of the operator Qs on
this state will be the sum of the action on each wavepacket. So:

Qs|a1(θ1) . . . an(θn)〉 =

(
n∑
j=1

q(s)
aj
esθj

)
|a1(θ1) . . . an(θn)〉. (2.44)

We prepare the system in such a state and we let it evolve. At time t = +∞
the system will be in another asymptotic state, with wavepackets of almost
well defined momentum far apart form each other. So, we will have:

Qs|b1(θ′1) . . . bm(θ′n)〉 =

(
m∑
j=1

q
(s)
bj
esθ
′
j

)
|b1(θ1) . . . bm(θm)〉. (2.45)

But since Qs is a conserved quantities, we have that:

n∑
j=1

q(s)
aj
esθj =

m∑
j=1

q
(s)
bj
esθ
′
j . (2.46)

These equations must hold for infinite many s: therefore, we are forced to
conclude that:

n = m, {θi} = {θ′i}, {q(s)
aj
} = {q(s)

bj
}. (2.47)

These conservation laws are often called an infinite set of “close to free” con-
servation laws, in the sense that in the asymptotic states these conservation
laws tend to the ones of free theory, that impose the conservation of the
individual momentum of each particle.
Let us discuss now the factorization property. Here, the crucial point is to
understand that the action exp(−iαQs), with |s| > 1, on a single particle
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wavepacket, translate the center of the wavepacket of an amount that de-
pends on its momentum. Indeed, let’s consider a Gaussian wavepacket of
almost well defined momentum p1 and position x1

ψ(x) ∼
∫
dp e−a

2(p−p1)2eip(x−x1). (2.48)

If we act with an operator giving a momentum dependent phase factor e−iφ(p),
the wavefunction becomes

ψ(x) ∼
∫
dp e−a

2(p−p1)2eip(x−x1)−iφ(p). (2.49)

The main contribution to this integral come from the region where p ≈
p1.Therefore, we conclude that the “momentum” of the wavepacket doesn’t
change, while the center is shifted to x̃1

x̃1 = x1 + φ′(p1). (2.50)

So, if we apply the operator exp(−iαQs), |s| > 1 to an asymptotic wavepacket
with 3 particles with different momenta, we will translate each particle by
a different amount. In this way,we can actually alter the temporal order in
which these particles collide. But Qs is a conserved quantity, hence

〈out|S|in〉 = 〈out|eiαQsSe−iαQs|in〉. (2.51)

So, this argument lead us to the the Yang Baxter equation

Sc1c2a1a2
(θ)Sb1c3c1a3

(θ + θ′)Sb2b3c2c3
(θ′) = Sc2c3a2a3

(θ′)Sc1b3a1c3
(θ + θ′)Sb1b2c1c2

(θ), (2.52)

whose pictorial representation is shown in fig. 2.2. Here the argument of the
S matrix is the difference of the incoming rapidities. Relativistic invariance
implies that the S matrix can depend only on Lorentz invariant quantities,
such as the difference of the two incoming rapidities, since after a Lorentz
boost each rapidity is shifted by a constant. We will come back to this point
in the next section. Of course, our argument supporting the Yang-Baxter
equation is quite heuristic, but it can be refined in a rigorous proof [42]. It
turns out that we do not actually need an infinite set of additive conserved
quantities Qs: two additive quantities Qs with spin greater than one are
sufficient to derive the Yang Baxter equations. Interestingly, the existence
of these two non trivial integrals of motion is also sufficient to prove the
elasticity of the scattering. The argument is quite different from the one
we gave before and it is based on the “momentum dependent translation”
operators exp(−iαQs). Essentialy, if the scattering is not elastic, we can act
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Figure 2.2: A graphical representation of the Yang-Baxter equations.

with these operators on the initial and final state and violate macrocausality.
This result could be quite surprising: it turns out that only two non trivial
conserved quantity are enough to guarantee the integrability of the theory.
Nevertheless, it has a nice counterpart in higher dimension quantum field
theories. Indeed, it was proved by Coleman and Mandula [43] in the 1967
that in three spatial dimensions the existence of just one non trivial conserved
quantity transforming as a tensor of second or higher order forces the S
matrix to be the identity. This fact can be grasped in the following way: in
1 + 1 dimension, even if I reshuffle the positions of the particles acting with
the operators exp(−iαQs) , their trajectories will always cross somewhere.
Instead, if we have more dimensions to play with, we could always translate
the particles in such a way they never become so close to feel their mutual
interaction.

2.4 Analytical Structure of Integrable Field

Theories

2.4.1 Analytical Properties of the S matrix

In the previous section, we have shown that in 1+1 dimensions it is possible
to have (non trivial) relativistic field theories that are integrable, in the
sense that scattering is factorizable. In this section, we would like to shows
how we can exploit integrability to solve the theory, computing exactly
the S matrix as well as the matrix elements of local operators. Quite
nicely, this solution is based on the analytical properties of the S matrix
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in the complex plane. This set of ideas dates back to the S matrix school
in particle physics. Pioneered by Heisenberg in 1941, this approach was
very popular in the ’50s and ’60s, due to the difficulties of the study of
strong interactions in a quantum field theories framework. The advocates
of the S matrix theory rejected quantum field theories, proposing to predict
scattering datas from the analytical properties of the S matrix. Actually,
this approach was not very successful, due to the technical difficulties of
the problem, and it was abandoned in the ’70, when QCD provided a
faithful description of strong interactions. However, this vaste programe
turned out to be solvable in integrable field theories in 1+1 dimensions, no
more in opposition to quantum field theory but as a complimentary approach.

In a relativistic field theory, the amplitude of a 2→ 2 particle scattering
is usually parametrized in terms of the Mandelstam variables:

s = (p1 + p2)2, t = (p1 − p′1)2, u = (p1 − p′2)2, (2.53)

where p1 and p2 are the incoming momenta, while p′1 and p′2 are the outgoing
ones3. However, in 1 + 1 dimension only one of this variable is independent
and it is customary to choose s, the energy of the center of mass. In a collision
between two particles of mass m1 and m2, s is of course real and greater than
(m1 + m2)2. However, it is useful to continue analytically Sb1b2a1a2

(s) to the
complex plane: its analytical properties are shown in fig. 2.3.
First of all, S in a singlevalued, meromorphic function on the complex plane

2
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Figure 2.3: Analytical properties of the S matrix in the physical sheet.

with cuts on the real axis for s < (m1−m2)2 and s > (m1 +m2)2 -the reason
of these cuts will be clear in a few moments. The physical values of S(s) are
found just above the right hand cut (we use the obvious notation s+) , while

3Here the square symbol denotes the relativistic norm.
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the first sheet of the full Riemann surface for S is called the physical sheet.
Moreover, S is real analytic, i.e.

Sb1b2a1a2
(s∗) =

[
Sb1b2a1a2

(s)
]∗
. (2.54)

We know that S is an unitary operator, hence

S†S = 1. (2.55)

Let us evaluate this operatorial identity on two particles asymptotic states,
i.e.

〈b2(p2)b1(p1)|S†S|a1(p1)a2(p2)〉 = δb1a1
δb2a2
. (2.56)

In order to evaluate this expression, we should insert a multiparticle resolu-
tion of the identity between S† and S. If the energy available for the scattering
s is not too large, energy conservation will forbid the creation of (real) par-
ticles in the intermediate state. However, for a generic theory, for s greater
than a threshold determined by the masses of the particles of the theory, par-
ticle production will be allowed and unitarity becomes a quite complicated
condition involving a sum of a large number number of scattering amplitudes.
Nevertheless, integrability rules out this possibility, hence unitarity reads as[

Sb1b2c1c2
(s+)

]∗
Sc1c2a1a2

(s+) = δb1a1
δb2a2
, (2.57)

or,in virtue of (2.54),

Sc1c2a1a2
(s−)Sc1c2a1a2

(s+) = δb1a1
δb2a2
. (2.58)

This equation shows the presence of the cut for s > (m1 + m2)2: for non
integrable field theories we would have also other cuts on the real axis corre-
sponding to the the other production thresholds.
Let us consider now the left-hand cut, that starts at (m1 −m2)2. What is
its physical meaning? This can be understood by appealing to the cross-
ing symmetry, a property of any relativistic invariant field theory. Let us
consider the two particle S matrix represented in fig. 2.4. If time flows ver-
tically, this amplitude represents a collision between two incoming particles
a1, a2, with momenta p1, p2, while the outgoing particles are b1, b2 with mo-
menta p1, p2. However, we can imagine that time flows horizontally in this
picture, and the arrows that flow backward in time represents the charge-
conjugated antiparticle. The energy available for the the scattering is now
t = (p1 − p2)2 = 2 [m2

1 +m2
2] − s. The crossing symmetry implies that the

scattering amplitude in the crossed channel (time flows horizontally) can



Analytical Structure of Integrable Field Theories 39

2 1

a
1

a
2

b b

Figure 2.4: A pictorial representation of the two particle S matrix

be obtained by analytical continuation from the amplitude of the forward
channel (time flows vertically), hence

Sb1b2a1a2
(s+) = Sb1a2

a1b2
(2
[
m2

1 +m2
2

]
− s+), (2.59)

where the overline denotes the charge conjugated antiparticles.
Therefore, there should be also a left-handed cut that starts at (m1−m2)2.

It is possible to show these are square root branch points. Finally, if the
theory has bound states with mass mk ∈ (|m1−m2|,m1+m2), our experience
in perturbative field theory, as well as the quantum-mechanical theory of
scattering, suggests the S(s) should have poles for s = m2

k. A part for the
cuts (due to unitarity) and the poles for s ∈ (|m1−m2|,m1+m2), we require
that the S matrix has no other singularities: therefore, we are requiring the
most analytical behavior consistent with the physical requirements discussed
before.
In 1 + 1 dimensions, it is consistent to study the analyticity of the S matrix
not as a function of s, but instead as a function of the difference of the two
incoming rapidities θ = θ1 − θ2, whose relation with S is

s = (p1 + p2)2 = m2
a1

+m2
a2

+ 2ma1 ma1 cosh(θ). (2.60)

In this way the cuts are opened up, while the physical strip is mapped in the
region 0 ≤ Imθ ≤ π . The analytical structure of the S matrix in the θ plane
is shown in fig. 2.5.

So, let us discuss how the previous relations translate in the θ plane:

• Real Analiticity The amplitudes Sb1b2a1a2
(θ)are meromorphic functions

of θ, real at Re(θ) = 0 . The only poles of the S matrix in the physical
strip lies on the imaginary axis.

• Crossing Symmetry The physical scattering amplitude of the direct
channel a1a2 → b1b2 is given by the values of the functions Sb1b2a1a2

(θ) at
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Figure 2.6: A graphical representation of the unitarity condition.

Im(θ) = 0, Re(θ) > 0. This amplitude is related to the cross-channel
one a1b2 → b1a2 by the relation

Sb1b2a1a2
(θ) = Sa1b2

b1a2
(iπ − θ). (2.61)

• Unitarity The unitarity of the S matrix is expressed by the condition

Sc1c2a1a2
(θ)Sb1b2c1c2

(−θ) = δb1a1
δb2a2
, (2.62)

whose pictorial representation is shown in fig. 2.4.1

Moreover, we remind from the previous section that the S matrix must satisfy
the

• Yang Baxter Equations

Sc1c2a1a2
(θ)Sb1c3c1a3

(θ + θ′)Sb2b3c2c3
(θ′) = Sc2c3a2a3

(θ′)Sc1b3a1c3
(θ + θ′)Sb1b2c1c2

(θ), (2.63)

whose pictorial representation is shown in 2.2.
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2.4.2 The Zamolodchikov-Fadeev Algebra

We are now finally ready to introduce a convenient quasi particle basis that
diagonalizes the Hamiltonian. In sec.2.1 we have discussed how it is possible
to construct a basis of eigenstates of the interacting Hamiltonian from the
plane waves, by the action of the Møller operators Ω±. (eq. 2.12). Moreover,
we know that the inner product of these stationary states is related to the ap-
propriate scattering amplitude (2.16). We denote with |a1(θ1) . . . a1(θn)〉0 the
eigenstate of the free Hamiltonian where the particle ai has rapidity θi, and let
us assume that θi > θj for i > j. The stationary state Ω+|a1(θ1) . . . a1(θn)〉0
is called an in state, while the stationary state Ω−|a1(θ1) . . . a1(θn)〉0 is called
an out state. In 1 + 1 dimension we can distinguish an in state from the
out state with the same particles and rapidity simply by the ordering of the
rapidities: in an in state the rapidities are ordered (from left to right) in a
decrescent way, while for the out state the order is the opposite, i.e.

IN STATE |a1(θ1) . . . an(θn)〉 := Ω+|a1(θ1) . . . a1(θn)〉0,
OUT STATE |an(θn) . . . a1(θ1)〉 := Ω−|a1(θ1) . . . a1(θn)〉0, (2.64)

where θ1 > θ2 > . . . > θn. This definition remind us that, before that any
collisions happen, the fastest particle is to the left while the slowest one is to
the right, while for t→ +∞ the order will be reversed. Clearly, this notation
is convenient only in 1 spatial dimension. Now, we wonder if it is possible
to have a set of creation/annihilation operators Za(θ), Z†a(θ) such that, both
for in and out states,

|a1(θ1) . . . an(θn)〉 = Za
1 (θ1) . . . Za

n(θn)|0〉, (2.65)

where the vacuum |0〉 is the state annihilated by all the Za(θ) operators. The
answer is that is indeed possible, provided that the operators Za(θ), Z†a(θ)
satisfy the Zamolodchikov-Fadeev algebra:

Zb1(θ1)Zb2(θ2) = Sb1b2a1a2
(θ1 − θ2)Za2(θ2)Za1(θ1), (2.66)

Z†a1
(θ1)Z†a2

(θ2) = Sb1b2a1a2
(θ1 − θ2)Z†b2(θ2)Z†b1(θ1), (2.67)

+2πδ(θ1 − θ2)δb1a1
δb2a2
. (2.68)

So, these operators do not simply commute or anticommute. Instead, every
time we exchange two of them we pick up an S matrix. Heuristically, we could
say that this is a reminder of the fact that in one spatial dimension we cannot
exchange two particles without bringing them close, hence the two particle
interact. So, is this algebra self consistent? We have to check two things.
First of all, if we exchange two operators two times in a row, do we return to
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the initial situation?This fact is guaranteed by the unitarity condition (2.62).
The other thing that we should check is the following: any permutation can
be decomposed as a sequence of transpositions, but thise decomposition is
not unique.Therefore, we could wonder: if we do a permutation of a sequence
of Z operators in two different way, do we get the same result? The answer
to this question is yes, thanks to the Yang Baxter equation. (2.63). Finally,
it is clear that the in state are transformed into the out ones by the S matrix4

. Of course, we can also have states |a(θ1) . . . a(θn)〉 where the rapidities are
not ordered in a decrescent or crescent way. These stationary states are not
in or out states in the sense defined before, but instead correspond to the
situation where some particles have already scattered and some not yet.

2.4.3 Poles Structure in Diagonal Theories and The
Bootstrap Principle

Unitarity (2.62) and crossing (2.61) are not sufficient to determine univoquely
the S matrix. They should be supplemented also by an analysis of the poles
and by the bootstrap principle, or nuclear democracy: it states that bound
states are on the same footing of all the other particles of the theory. In order
to briefly discuss the main conceptual points of this theoretical framework,
we will consider only diagonal scattering theories, where all the masses are
different hence any scattering process is simply a reshuffling of the momenta.
In this case, the S matrix is diagonal hence the Yang-Baxter equations are
trivially satisfied. Since the set of the outgoing particles is equal to the
ingoing one, the S matrix depends only on two indices Sa1a2(θ). Unitarity
and crossing now read as

Sa1a2(θ)Sa1a2(−θ) = 1, (2.69)

Sa1a2(θ) = Sa1a2(iπ − θ). (2.70)

These two conditions prove that Sa1a2(θ+2iπ) = Sa1a2(θ), hence the Riemann
surface of the S matrix is simply a double cover of the complex plane. Now,
let us assume that the Sa1a2(θ) has a pole for θ = iU b

a1a2
, U b

a1a2
∈ [0, iπ] .

This pole can be interpreted as the presence of a bound state b ,in the direct
or in the crossed channel, whose propagator becomes on shell for θ = iU b

a1a2

(fig. 2.7) As a consequence of the presence of this pole, we have:

• The vertex function Ca1a2b is non zero when a1, a2 and b are on shell.

• Nuclear Democracy For θ = i U b
a1a2

, the intermediate particle b is on
shell and survive for macroscopic times. The bootstrap principle (or

4This definition of the S matrix is actually slightly different from the one used in sec.2.1
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Figure 2.7: The two particle S matrix Sa1a2(θ), for θ ≈ iU b
a1a2

, is dominated
by the contribution of the on shell propagator.

nuclear democracy) implies that this bound state is expected to be one
of the other particles of the model.

• Since s = m2
b when θ = iU b

a1a2
, we have the following relation between

the masses
m2
b = m2

a1
+m2

a1
+ 2ma1ma2 cos(U b

a1a2
). (2.71)

A geometrical interpretation of this formula is shown in fig.2.8: the
“fusion angle” U b

a1a2
is the external angle of a mass triangle whose sides

are the masses ma1 ,ma2 and mb . Since Cb
a1a2

, poles are also present in
Sa1b and Sba2 . The mass triangle shows immediately that the sum of
the fusion angle, as well as the sum of the external angles of a triangle,
is equal to 2π, i.e.

U b
a1a2

+ Ua1
a2b

+ Ua1
b a2

= 2π. (2.72)

We are now in the position to discuss more deep consequences of the presence
of the pole. First of all, let us consider the scattering processes shown in
fig.2.9, where two particle a1 and a2 fuse in a bound state b and scatter with
an external particle c. As it is shown in the picture, there are two equivalent
way to have such a process.The particles a1 and a2 could form a bound state
and then interact with the particle c, or the scattering with the external
particle could happen before the formation of the bound state. Following
the line of reasoning we use for the derivation of the Yang-Baxter equation,
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Figure 2.8: The mass triangle.
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Figure 2.9: Scattering between two particles a1, a2, that fuse in a bound state
b, and an external particle c. The scattering amplitudes for the two processes
shown are equal, hence the S matrix bootstrap equation holds.

we could argue that this two amplitudes are equal. Therefore, we obtain
theS matrix bootstrap equation

Ca1a1b 6= 0⇒ Scb(θ) = Sca1(θ − iU
a2

a1b
)Sca1(θ + iU

a1

a2b
), (2.73)

where U = π − U . Similarly, the fact that the particles a1 and a2 can form
a bound state b has consequences on the conserved charges: the eigenvalues
of the conserved charges relative to the bound state must be equal to the
eigenvalues of the two particle states, so

Ca1a1b 6= 0⇒ q
(s)

b
= q

(s)
a1
eisU

a2
b a1 + q

(s)
a2
e−isU

a1
a2b (2.74)

This sets of equation constitutes the conserved charge bootstrap. Given a
set of masses and three-point couplings, the fusing angles are determined by
the mass triangle. Therefore, the conserved charge bootstrap equations are
an overdetermined set of conditions for q

(s)
a . If the only solution for a given

spin s is the trivial one q
(s)
a = 0 ∀a , then it mean that the charge with spin
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s is absent in the theory under consideration.

So, the unitarity, crossing symmetry and the bootstrap principle greatly
constrain the structure of the S matrix. Indeed, it is sometimes possible,
by trial and error, to obtain the exact S matrix. One starts with an initial
guess for the S matrix, search for poles, infer three-particles vertex functions,
apply the bootstrap principle to deduce further S matrix elements and so on.
If the process closes on a finite set of particles, then we have obtained the S
matrix a part for the so-called CDD ambiguity, i.e. the multiplication of the
S matrix for a function Φ(θ) that satisfies

Φ(θ) = Φ(iπ − θ), Φ(θ)Φ(−θ) = 1. (2.75)

The physically meaningful S matrix is identified with the “minimal solution”,
i.e. the one that has the less number of singularity in the complex plane.
Moreover, since the charge bootstrap equations provide a set of of spins s for
which we have non trivial conserved charges, we can often use this informa-
tion to identify the corresponding field theory, described by a Lagrangian or
by a perturbed CFT.
As a final remark, we would like to emphasize that the pole structure of
a generic (i.e. non diagonal) integrable field theory could be much more
complex, since in 1 + 1 dimension not all the poles have an interpretation
as bound states. However, on the one hand this phenomenon is quite un-
derstood [44]. On the other hand, in this thesis we will never consider non
diagonal integrable field theories, so this extra complication will play no role
in the subsequent chapters.

2.4.4 Form Factors

Nicely, the analytical structure of integrable field theories not only allow us
to compute the S matrix, but also the matrix elements of local or semi-local
operators. A thoughtful analysis of these matrix elements could be found
in [45]. Here, we would like only to summarize briefly their main properties.
For simplicity, let us consider a theory with only one particle. The basic
objects of the theory are the form factors

FOn (θ1, . . . , θn) = 〈0|O(0, 0)|θ1, . . . , θn〉. (2.76)

First of all, we would like to emphasize that these form factors are equiva-
lent to the more general matrix elements, thanks to the crossing symmetry.
Indeed,

〈θ′m . . . θ′1|O(0, 0)|θ1 . . . θn〉 = FOn+m(θ1, . . . , θn, θ
′
1 − iπ, θ′m − iπ), (2.77)
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S

=

Figure 2.10: A graphical representation of the symmetry property (2.79)

if θ′i 6= θ′j ∀i, j. Otherwise, if θ′i = θj for some i, j, it is still possible to write
down a general matrix element in terms of the form factors, but we should
also take into account the disconnected contributions. These disconnected
contribution could lead to divergencies whose regularization is non trivial.
Since these divergencies will play a major role in our discussion of quantum
quenches in integrable field theories, we prefer to discuss this formula in de-
tails in the next chapter. Obviously, since the quasiparticle basis diagonalizes
both the energy and the momentum, from 〈B|O(0, 0)|A〉, where A and B are
two sets of rapidities, we can obtain 〈B|O(t, x)|A〉 simply by a translation in
time and space.
Let us state now the set of equations that the form factors satisfy.For an
operator of spin s, the relativistic invariance implies that

FOn (θ1 + Λ, . . . , θn + Λ) = eiΛsFOn (θ1, . . . , θn). (2.78)

For simplicity, let us consider now only a scalar operator, whose form factors
depend only on the differences of rapidities. We have

• Symmetry Property

FOn (θ1, . . . , θi, θi+1, . . . , θn) = FOn (θ1, . . . , θi+1, θi, . . . , θn)S(θi − θi+1).
(2.79)

A graphical representation of this formula is shown in fig.2.10 .

• Analytical continuation

FOn (θ1 + 2πi, . . . , θn) = e2πiγFOn (θ2, θn, θ1) (2.80)

where γ is the semi-local index of the operator O with respect to the
operator that creates the particles. A graphical interpretation of this
formula is shown in (2.11)
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=

Figure 2.11: A graphical representation of (2.80)

=

Figure 2.12: A pictorial representation of the pole structure of the form
factors.

• Pole structure

−i Res
θ̃→θ

FOn+2(θ̃, θ, θ1, . . . , θn) =

(
1− e2πiγ

n∏
i=1

S(θ − θi)

)
FOn (θ1, . . . , θn),

(2.81)
whose graphical representation is shown in (2.12).

While the symmetry property (2.79) is quite evident, formulas (2.80) and
(2.81) are somehow a little more elusive. However, a strong argument in
their support could be build [45], similar to the LSZ reduction formulas.
Moreover, it is possible to prove that, if we assume the validity of these
axioms, then it follows that local (or semi-local) operators commute at space-
like distance. Since commutation at space-like distances is a fundamental
property of local operators in quantum relativistic field theories, this is indeed
a strong evidence in support of these assumptions. The final test for these
axioms is the great body of results build from them in the last 20 years,
whose correctness has been checked beyond any doubt.
As for the S matrix, it is possible to solve explicitly this set of equations,
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thus obtaining an expression for the matrix elements of a given theory. As a
final remark, we would like to emphasize that in integrable field theories with
bound states the pole structure of the form factors is more rich. However, in
the next chapters we will not consider theories with bound states.

2.4.5 Some Simple Examples

The discussion of integrable field theories in the previous sections has been
quite abstract and general. We have focused our attention on the universal
properties of the integrable field theories, and we have never discussed
a specific model. Our reader could wonder if there exists at least one
integrable theory. This doubt is legitimate: actually, we have seen that in
higher dimensions there is a no-go theorem that forbids the existence of
interacting integrable field theories. Here, we will briefly present two simple
integrable field theories.

Ising Model It is well known that in the Hamiltonian limit the two-
dimensional Ising model at zero external magnetic field can be mapped in a
quantum spin chain in 1 dimension,

H =
∑
i

σzi σ
z
i+1 + hσxi , (2.82)

know as the quantum Ising model in a transverse field. Thanks to the Jordan-
Wigner and Bogoliubov transformation, this Hamiltonian is equivalent to a
free fermionic theory. In the scaling limit, these fermionic theory become
relativistic invariant, hence its Hamiltonian density is

H(x) =
i

4π

[
ψ(x)∂xψ(x) + ψ(x)∂xψ(x)− imψ(x)ψ(x)

]
. (2.83)

There is only one particle with mass m ∼ T −Tc, and the S matrix is simply
−1. We know that there are two phases in this model,T > Tc and T < Tc,
related by the Kramers-Wanier duality. Let us choose the disordered phase,
hence T > Tc. At first sight, this theory could seem trivial, since it is free.
However, this is not the case, since the order parameter σ is a highly non
trivial operator, semi-local respect to the quasiparticle basis. The physical
interesting operators are of course the order parameter σ, its dual µ and the
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“energy-density” ε ∼ σx. Their form factors are:

Fε(θ1, . . . , θn) =

{
− i 2πm sinh( θ1−θ2

2
) if n = 2

0 otherwise
, (2.84)

Fσ(θ1, . . . , θn) =

{
σ i(n−1)/2

∏n
l<m tanh( θl−θm

2
) if n is odd

0 otherwise
, (2.85)

Fµ(θ1, . . . , θn) =

{
σ in/2

∏n
l<m tanh( θl−θm

2
) if n is even

0 otherwise
, (2.86)

where σ = 2
1
3 e−

3
4 A3m

1
4 and A = 1.282427 . . . is the Glasher constant1.

Sinh Gordon Model. The Sinh-Gordon model is described by the
Lagragian

L =
1

2
∂µϕ(x)∂µϕ(x)− m2

0

g2
(cos(gϕ(x)− 1) , (2.87)

where ϕ is a bosonic real scalar field, m0 a mass parameter and g an adi-
mensional coupling constant. This model has only one particle of mass M ,
with

M2 = m2
0

sin(πα)

πα
, (2.88)

where

α =
g2

8π + g2
. (2.89)

The S matrix of the model is

S(θ) =
sinh(θ)− i sin(πα)

sinh(θ) + i sin(πα)
, (2.90)

that correctly has no pole in the physical strip.Notice that S(0) = −1 for
g 6= 0. This is a simple example of a more general fact: all the integrable field
theories except the free bosonic ones have S(0) = −1, and so the elementary
excitations have a fermionic nature, regardless of the statistics of the fields
that appears in the Lagrangian.
The physically interesting operators are ϕ and its powers. All their informa-
tion can be incorporated the vertex operator ekgφ, where k is a number.The
n particles form factor can be expressed as:

Fn(θ1, . . . , θn) = [k]

(
4 sin(πα)

N

)n
2

detMn(k)
n∏
i<j

Fmin(θi − θj)
xi + xj

, (2.91)

where:
1Here we are using the conformal normalization of the operators, such as in the limit

x→ 0 〈φ(x, 0)φ(0, 0)〉 ∼ 1
|x|4∆ where ∆ is the conformal dimension of the field.
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• Fmin(θ) = N exp

[
4
∫ +∞

0
dt
t

sinh( tα
2

) sinh(
t(1−α)

2
)

sinh(t) cosh( t
2

)
sin2

(
tθ̂
2π

)]
,

where θ̂ = iπ−θ and N = Fmin(iπ). Fmin is the part of the form factor
that is reminiscent of the S matrix structure of the theory, since

Fmin(θ) = S(θ)Fmin(−θ),

while all the other factors in (2.91) are symmetric under a permutation
of the θi.

• xi = eθi .

• [k] = sin(kπα)
sin(πα)

.

• Mn(k) is a (n − 1) × (n − 1) matrix, whose elements are symmetric
polynomials in the n variables xi defined above. More precisely, let us
introduce the symmetric polynomial σ

(n)
k of n variables x1, . . . , xn and

total degree k defined as

σ
(n)
k (x1, . . . , xn) =

n∑
i1<...<ik

xi1 . . . xik .

Therefore, we have that

[Mn(k)]ij = σ
(n)
2i−j(x1, . . . , xn)× [i− j + k]

2.5 Boundary Integrable Field Theories

Integrable field theories are a very special class of 1+1 dimensional relativistic
field theories, characterized by an infinite set of local conserved currents

∂µJ
µ
s (x) = 0. (2.92)

As we have thoroughly discussed in the previous sections, the existence of
these infinite many integrals of motions greatly constrains the dynamics, since
only elastic scattering is allowed. In this section we would like to analyze
what happens in presence of a boundary. For simplicity, we consider a semi-
infinite system with only one boundary. So, our system is defined in the
semiplane S = {(x, y) ∈ R2, x ≤ 0} . Two different quantization scheme
are possible. Firstly, we could identify the time with the y direction. In this
way, the system is a semi-infinite line with a boundary at x = 0 ,while the
time runs form −∞ to +∞. The Hamiltonian as well as the Hilbert space
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of the theory depend explicitly on the boundary condition. The scattering
properties of the theory are not determined only by the bulk S matrix, but
also by the reflection at the boundary. Explicitly, we have a vacuum state
|0〉B , where the B remind us of the dependence from the boundary condition,
a set of asymptotic states build by the action of the bulk creation operators
Z†i (θ) on |0〉B and also an elementary reflection amplitude

Z†a(θ)|0〉B = Rb
a(θ)Z

†
b (−θ)|0〉B, (2.93)

that describe the elastic bouncing of a particle with rapidity θ against the
boundary.
Otherwise, we could turn our head and identify -x as the time. Therefore,
the system is now an infinite line, the Hamiltonian as well as the Hilbert
space coincide with the bulk ones, while the boundary in time appears as an
initial state.
Let us adopt now the picture where y is the time. As we have previously
emphasized, integrable field theories are characterized by an infinite set of
local conserved quantities. So, it is natural to wonder what happens to
these conserved quantities when we introduce a boundary in our system.
In general, they are no more conserved unless we choose very carefully our
boundary conditions. These very special boundary conditions have been
extensively studied by Ghoshal and Zamolodchikov in [46]. Here we would
like to summarize their findings.

• Boundary Yang-Baxter Equations. The reflection amplitude
Rb
a(θ) satisfies

Rc2
a2

(θ2)Sc1d2a1c2
(θ1 + θ2)Rd1

c1
(θ1)Sb2b1d2d1

(θ1 − θ2) = (2.94)

= Sc1c2a1a2
(θ1 − θ2)Rd1

c1
(θ1)Sd2b1c2d1

(θ1 + θ2)Rb1
d2

(θ2). (2.95)

If the system is in a infinite volume, the existence of infinite many (lo-
cal) conserved quantities guarantees the factorizability of the scattering
amplitude. Here, since these conservation laws are not spoiled by the
presence of the boundary, we have that not only the scattering in the
bulk is factorizable, but also the reflection at the boundary. This fac-
torizability property is encoded in the boundary Yang Baxter equation
(2.95) , whose graphical representation is shown in fig. 2.5.

• Boundary Unitarity. The unitarity condition for the reflection am-
plitude is

Rc
a(θ)R

b
c(−θ) = δba, (2.96)

whose graphical interpretation is shown in fig. (2.5) . Notice that this
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Figure 2.13: A graphical representation of the boundary Yang-Baxter equa-
tions. Here α = θ1 + θ2 while µ = θ1 − θ2.
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Figure 2.14: A pictorial representation of the boundary unitarity condition.

equation implies that the boundary scattering is purely reflective and
no transmission occurs across the boundary.

• Boundary Crossing. The crossing properties of the reflection am-
plitude Rb

a(θ) can be expressed in terms of a boundary cross-unitarity
condition. If we introduce the amplitude

Kab(θ) = Rb
a

(
i
π

2
− θ
)
, (2.97)

the boundary cross-unitarity condition reads as

Kab(θ) = Sabcd(2θ)Kdc(−θ). (2.98)

• Boundary Bootstrap. Simple poles in the reflection amplitude can
be interpreted as boundary bound states. Since we do not need them
for our analysis, we refer the reader to the original literature [46] for
further details on this topic.
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Figure 2.15: A graphical representation of an integrable boundary state
(2.99) composed by pairs with opposite momentum.

As for the bulk S matrix, these conditions are a set of equation that can be
used to determine the reflection amplitude R up the CDD ambiguity.
Let us now turn our head and consider −x as the time. The boundary will
appear now as a special initial state |B〉. It is quite natural to wonder if the
boundary states |B〉 that correspond to integrable reflection amplitudes have
a special form and what is their relation with Rb

a(θ). The answer is that, in
absence of boundary bound states, |B〉 is simply an exponential of pairs with
opposite rapidities ,

|B〉 = exp

[
1

2

∫ +∞

−∞
dθKab(θ)Z†a(−θ)Z

†
b (θ)

]
|0〉, (2.99)

Notice that the exponential in (2.99) is well defined, since[
Kab(θ)Z†a(−θ)Z

†
b (θ), K

cd(θ)Z†c (−θ′)Z
†
d(θ)

]
, (2.100)

thanks to the boundary Yang-Baxter equations (2.5).
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Chapter 3

Quantum Quenches in
Integrable Field Theories

In this chapter, we consider a quantum quench in an integrable field theory
[1]. First of all, in sec. 3.1 , we define the problem we are interested in and we
state our results. In the previous chapter, we have emphasized the power of
the form factors program. However, in sec. 3.2 , we highlight some difficulties
that emerge when we use form factors to compute thermal averages. It turns
out that in the study of quantum quenches we face the very same problems,
and our solution will be reminiscent of what is done in the thermal case. So,
in sec. 3.3, we prove the results enunciated in 3.1, while in sec. 3.4 we show
a simple example of the problem under investigation. Finally, in sec. 3.5,
we discuss some recent and interesting papers [28,47] and their relation with
our work.

3.1 Definition of the Problem and Main Re-

sults

For simplicity, we consider an integrable quantum theory with only one kind
of particle (e.g. the Sinh-Gordon model). So, the eigenstates are con-
structed by the action on the vacuum |0〉 (that we assume unique) of the
Zamolodchikov-Fadeev algebra

Z(θ1)Z(θ2) = S(θ1 − θ2)Z(θ2)Z(θ1) ,

Z†(θ1)Z†(θ2) = S(θ1 − θ2)Z†(θ2)Z†(θ1) , (3.1)

Z(θ1)Z†(θ2) = S(θ2 − θ1)Z†(θ2)Z(θ1) + 2 π δ(θ1 − θ2) .

However, our considerations are quite general: they hold for any model (that
satisfies the previous assumptions) since they do not rely on the specific
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form of the S matrix. This fact strongly suggest that these results could
be trivially generalized to model with more than one particle, at least for
diagonal scattering theories.
In order to describe a quench problem, we should choose an initial state. We
opt for a BCS-like state |B〉

|B〉 = exp

[
1

2

∫ +∞

−∞

dθ

2π
G(θ)Z†(−θ)Z†(θ))

]
|0〉, (3.2)

that is the exponential coherent state of pairs with opposite rapidities. There
are two reasons behind this choice. First of all, we have seen (sec. 1.2.2) that
such states describe the simplest possible quench process, a mass quench
in a free theory. Moreover, these states emerge naturally in the contest of
integrable boundary conditions (sec. 2.5). A quantum quench can be seen
as a statistical physics problem in a confined geometry (1.2.1), where the
initial state plays the role of a boundary condition. Therefore, choosing as
the initial state an integrable one means that we are considering the most
integrable situation: the Hamiltonian in the bulk is integrable as well as the
boundary condition. However, as we have emphasized in sec. 2.5 , integra-
bility implies that the pair amplitude G(θ) must satisfy a set of conditions:
the boundary Yang-Baxter condition (2.95), the boundary unitarity condi-
tion (2.96) and the boundary cross-unitarity condition (2.98). Indeed, the
Yang-Baxter condition is automatically satisfied if we are dealing with only
one particle. Similarly, the cross-unitarity condition

G(θ) = S(2θ)G(−θ) (3.3)

is simply a consequence of the invariance of the integral∫
dθG(θ)Z†(−θ)Z†(θ) under the change of variable θ → −θ. Indeed,

any function F (θ) can be decomposed as

F (θ) = G(θ) +H(θ) =
F (θ) + S(2θ)F (−θ)

2
+
F (θ)− S(2θ)F (−θ)

2
, (3.4)

where G(θ) and H(θ) satisfies

G(θ) = S(2θ)G(−θ), H(θ) = −S(2θ)H(−θ). (3.5)

However, ∫
dθH(θ)Z†(−θ)Z†(θ) =

∫
dθH(−θ)Z†(θ)Z†(−θ) =∫

dθH(−θ)S(2θ)Z†(−θ)Z†(θ) = −
∫
dθH(θ)Z†(−θ)Z†(θ), (3.6)



Definition of the Problem and Main Results 57
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Figure 3.1: The boundary conditon for a mass quench allows for transmission.
Notice that,for free theories, there is no particle production at the boundary
and the transmitted particle has always the same momentum of the incoming
one, since momentum is conserved at the boundary. However, since the mass
is different at x < 0 and x > 0, the rapidity changes from θ to θ′.

hence
∫
dθH(θ)Z†(−θ)Z†(θ) = 0. In the following we will see that the

unitary condition plays no role, and therefore we don’t have to assume it.
As a matter of facts, it is indeed violated for the mass quench in a free
fermionic theory, a signal that the boundary is not transmissionless ( fig.
3.1).

However, it is important that the G(θ) vanishes for large |θ|. Physically,
this is equivalent to ask that we do not excite modes with arbitrarily high
energy and therefore the energy density (the energy per unit of volume)
of the initial state is finite. This is usually not the case for integrable
amplitudes K(θ) , since they go to a non vanishing constant for large |θ|.
Therefore, a regularizator is needed, as for example the extrapolation length
used in the conformal case (1.2.1).
Given an initial state as (3.2), we would like to study the thermalization
properties of local or semilocal operators O(x). Therefore, the matrix
elements of these operators satisfy the axioms of the form factors program
(sec. 2.4.4). We emphasize that, even in the following we will speak about
local operators for the sake of brevity, our analysis is valid also for semilocal
operators as, for example, the order parameter of the Ising model.

Our statement is that the long time limit the expectation value of a
local operators over the initial state (3.2) is described by a generalized Gibbs
ensemble,

ρ̂λ =
exp

(
−
∫
dθλ(θ) n̂(θ)

)
Z

, (3.7)

where n̂(θ) = Z†(θ)Z(θ) and λ(θ) is a Lagrange multiplier fixed by the initial
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state. More precisely, if we define

O = lim
t→+∞

〈O(x, t)〉B = lim
t→+∞

〈B|O(x, t)|B〉
〈B|B〉

, (3.8)

that is clearly position-independent due to the translational invariance of
(3.2), we have that

O =
+∞∑
n=0

1

n!

∫ n∏
i=1

dθi
(2π)

[
|G̃(θi)|2

1− S(0) |G̃(θi)|2

]
〈θn . . . θ1|O(0)|θ1 . . . θn〉conn .

(3.9)
Here |G̃(θ)|2 satisfy the TBA-like equation

|G̃(θ)|2 = |G(θ)|2 exp

[∫
dθ′

2π
ϕ(θ − θ′) log[1 + |G̃(θ)|2]

]
, (3.10)

where ϕ is the derivative of the phase shift

ϕ(θ) = −i d
dθ

log(S(θ)), (3.11)

while 〈θn . . . θ1|O(0)|θ1 . . . θn〉conn are the connected form factors, a properly
regularized expression for the matrix elements (3.18).

3.2 Kinematical Singularities and the

LeClair-Mussardo Formula

In sec. 2.4.4 we have explained the basic ideas of the form factors program.
Indeed, in an integrable field theory, we can compute any matrix element of
local (or semi-local) operator through the form factors

FOn (θ1, . . . , θn) = 〈0|O(0, 0)|θ1, . . . , θn〉, (3.12)

that satisfy a set of consistency equations. However, in the previous chapter,
we have left open one point: how to derive the most generic matrix element
〈θ′m . . . θ′1|O(0, 0)|θ1 . . . θn〉from the form factors. The reason is that this issue
is quite subtle and it doesn’t have a completely satisfactory answer. We have
already seen that, if θ′i 6= θi ∀i, j , then

〈θn . . . θ1|O(0, 0)|θ′1 . . . θ′m〉 = FOn+m(θ′1, . . . , θ
′
m, θ1 − iπ, θn − iπ). (3.13)

However, if θ′i = θj for some i,j, then we have to take into account also
the disconnected contributions. Phenomenological reasoning in the infinite
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volume suggest the following formula: if we denote with A and B two sets
of rapidities, then

〈A|O(0)|B〉 =
∑

A=A1∪A2 ;B=B1∪B2

SAA1SBB1〈A+
1 |O(0)|B1〉〈A2|B2〉, (3.14)

where the sum is over all the possible ways of splitting the sets A/B in two
subsets A1/ B1 and A2/B2 while SAA1 and SBB1 are the products of S(θ) we
need to rearrange the rapidities in the proper order, namely

〈A| = SAA1〈A2A1| , (3.15)

|B〉 = SBB1|B1B2〉 . (3.16)

The symbol A+
1 in (3.14) denotes that each rapidity θ1 . . . θr in A1 is shifted

by an infinitesimal imaginary amount iεi so that 〈A+
1 |O|B1〉 is simply related

to the corresponding form factor by

〈A+
1 |O(0)|B1〉 = 〈0|O(0)|B1A

+
1 − i π〉 . (3.17)

When the εi are finite, the form factors are (for real rapidities) regular func-
tions. However, at the end of the day, we would like to take the limit εi → 0:
in this limit the form factors usually diverge. The simplest case of this cir-
cumstance is provided by the 2-particle matrix element 〈θ|µ|θ′〉 where µ is
the disorder operator of the Ising model (2.86), which indeed diverges when
θ = θ′. This discussion shows that a prescription is needed for handling these
kinematical divergencies. The one proposed in [48,49] consists of taking only
the regular part of (3.17) and discarding all the terms proportional to an
inverse power of εi

〈θn, . . . , θ1|O(0)|θ′1, . . . , θ′m〉conn = (3.18)

= Finite Parts

[
lim
εi→0
〈0|O(0)|θ′1, . . . , θ′m, θn − i π + iεn, . . . , θ1 − i π + iε1

]
.

It should be stressed, however, that this prescription alone is not enough
to properly take care of all the divergencies and, usually, it must be sup-
plemented with extra corrective factors coming from the Bethe-ansatz tech-
nique [48]. For example, let us consider as a density matrix of the system

ρ̂λ =
exp

(
−
∫
dθλ(θ) n̂(θ)

)
Z

, (3.19)

where n̂(θ) = Z†(θ)Z(θ) and λ(θ) is an appropriate function of θ. Notice
that, if λ(θ) = 1

T
m cosh(θ) the density matrix (3.19) describes the familiar
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canonical ensemble, while, in the more general case, it can be associated to
the generalized Gibbs ensemble (1.9). Obviously, it would be nice to write
down the average of a local operator O w.r.t. the density matrix (3.19) in
term of these form factors. But, if we do it applying blindly the prescription
(3.18) we end up with the result

〈O〉ρ̂ = Tr (ρ̂ O(0)) = ! WRONG ! (3.20)

=
+∞∑
n=0

1

n!

∫
dθ1 . . . dθn

(2π)n

n∏
i=1

[
e−λ(θi)

1− S(0) e−λ(θi)

]
〈θn, . . . , θ1|O(0)|θ1, . . . , θn〉conn ,

which is wrong since it does not agree with the thermodynamic Bethe ansatz.
It was firstly conjectured by LeClair and Mussardo [48] that the correct
expression is instead

〈O〉ρ̂ = Tr (ρ̂ O(0)) = (3.21)

=
+∞∑
n=0

1

n!

∫
dθ1 . . . dθn

(2π)n

n∏
i=1

[
e−λ̃(θi)

1− S(0) e−λ̃(θi)

]
〈θn, . . . , θ1|O(0)|θ1, . . . , θn〉conn ,

where the λ̃ are dressed according to the integral equation

λ̃(θ) = λ(θ)−
∫

dθ′

2 π
ϕ(θ − θ′) log[1 + e−λ̃(θ′)], (3.22)

ϕ being the derivative of the phase shift (3.11).
Originally, (3.21) was only an educated guess but its correctness was con-
firmed by subsequent checks [50–52]. An interesting approach to this formula
has been put forward by Pozsgay and Takacs [53–55], who have considered
a system in a finite volume, thus discretizing the rapidities to regularize the
kinematical singularities, and taking the infinite volume limit only at the
end of the calculations. This set of ideas has finally lead to a satisfactory
proof by Balázs Pozsgay of the LeClair-Mussardo formula (3.21) [47]-see sec.
3.5 for more details. However, a complete and satisfactory way to deal with
the divergencies that arise in (3.14) is still lacking. This is reflected by the
fact that it is still unknown if the LeClair-Mussardo formula -or a suitable
generalization-holds for two points functions, even if there have been recent
progresses in this area [56,57].

3.3 A Proof of the Generalized Gibbs Ensem-

ble

In this section, we would like to prove our statement (3.9). For the sake of
clarity, we will divide our proof in two parts: in sec. 3.3.1 we discuss the
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general ideas used in this proof, while the combinatorial technicalities are
shown in sec. 3.3.2.
We would like to emphasize that, as it will be quite clear from our exposition,
our arguments cannot be considered at all a rigorous proof of our statement,
due to the difficulties in the treatment of the divergencies discussed in the
previous section. However, we believe that our arguments are quite convinc-
ing, and they have been supported by recent developments in the field, as we
discuss in sec. 3.5.

3.3.1 Main Ideas of Our Proof

In this section, we show that O (3.8) can be expressed as an average over
a density matrix like (3.7). At first sight, it seems very unlikely that we
can do so: our boundary state (3.2) has a very peculiar structure, since it
is the superposition of pairs of opposite rapidity, while in an average over
an ensemble (3.7) there is no sign of such a structure. How comes that the
system retains no memory of this pair structure in the long time limit?

First of all, a trivial remark: since |B〉 is translational invariant, 〈O(x, t)〉B
do not depend on x and therefore, from now on, we will set x = 0. In
principle, it is quite clear what we have to do in order to compute (3.8):
first we expand the exponential in (3.2) and, taking into account that the
Hamiltonian is diagonal in the particle basis, we thus arrive to the double
sum

〈O(x, t)〉B =
1

〈B|B〉

+∞∑
n,l=0

1

n! l!

∫
dθ1 . . . dθn

(4 π)n
dθ′1 . . . dθ

′
l

(4 π)l
e2 i t(En(θ)−El(θ′))

[
n∏
i=1

G(θi)

][
l∏

j=1

G(θ′j)

]
〈θn,−θn, . . . θ1,−θ1|O| − θ′1, θ′1, . . .− θ′l, θ′l〉 ,(3.23)

where we used the short-hand

En(θ) = m
n∑
i=1

cosh(θi) . (3.24)

However it is difficult to compute the long time limit directly from (3.23).
The reason is that the matrix element in (3.23) are not regular functions
(rather they have delta-like contributions) and, in such a case, we cannot
apply a stationary phase argument. In order to isolate the singular parts, we
have to employ eqn.(3.14). Consider, for instance, the term with n = l = 1
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in the numerator of (3.23), i.e.∫
dθ1

4 π

dθ′1
4 π

e2 i t(E1(θ)−E1(θ′))G(θ1)G(θ′1)〈θ1,−θ1|O| − θ′1, θ′1〉 . (3.25)

Applying the crossing relation (3.14), we can recast this term as∫
dθ1

4π

dθ′1
4 π

e2 i t(E1(θ)−E1(θ′)) G(θ1)G(θ′1)〈θ+
1 ,−θ+

1 |O| − θ′1, θ′1〉+ (3.26)

+

∫
dθ1

2 π
|G(θ1)|2〈θ+

1 |O|θ1〉+ 〈0|O|0〉
∫
dθ1

4π

dθ′1
4 π

G(θ1)G(θ′1)〈θ1,−θ1| − θ′1, θ′1〉 ,

where we make use of the symmetry properties (3.3) of G. Actually, the inner
product 〈θ1,−θ1| − θ′1, θ′1〉 above is divergent in the infinite volume limit and
it should be regularized by putting the system in a box of length L, obtaining

(δ(θ − θ′))2 =
mL

2π
cosh(θ)δ(θ − θ′). (3.27)

This, however, is not an important contribution since, as shown in sec. 3.3.2,
all these inner products cancel out with the denominator of (3.23). What is
really crucial is that, apart from these infinite volume divergencies that we
can easily regularize, the integrands in (3.26) are all well-behaved functions:
hence we can now easily take the infinite time limit t→ +∞, so that (3.26)
simply becomes∫
dθ1

2π
|G(θ1)|2〈θ+

1 |O|θ1〉+ 〈0|O|0〉
∫
dθ1

4 π

dθ′1
4π

G(θ1)G(θ′1)〈θ1,−θ1| − θ′1, θ′1〉
(3.28)

because the first term in (3.26) vanishes for the fast oscillation of its inte-
grand.

In the light of this example, the strategy to compute the expectation
values of local operators can be stated as follows.

1. We first expand the exponential in the numerator of (3.8), ending up
with the double sum (3.23).

2. Then, we use (3.14) in order to isolate the delta-like terms and, after
having done that, we take the infinite time limit, where all terms that
explicitly depend on time go to zero, due to the fast oscillation of
the integrand. This is a simple consequence of the stationary phase
argument, that can also be seen in the following way. If the infinite
time limit exists (and the stationary phase argument assures us that it
does exist), then it must coincide with the temporal average

O = lim
t→+∞

〈O(x, t)〉B = lim
T→+∞

1

T

∫ T

0

dt′〈O(x, t′)〉B . (3.29)
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We know that the time-dependent part of the numerator of (3.23) con-
sists of a sum of terms as∫

dθ1 . . . dθn dθ
′
1 . . . dθ

′
le

2 i t(En(θ)−El(θ′))F (θ1 . . . θn, θ
′
1 . . . θ

′
l) , (3.30)

where F is the regular function obtained by applying (3.14). So, the
only contributions to the infinite time limit comes from the region
En(θ) = El(θ

′), whose Lebesgue measure is zero, so the integral goes
to zero since F has no delta-like term.

With these steps in mind, it is a nice combinatorial exercise (see sec. 3.3.2)
to show that O can be finally expressed as

O =
+∞∑
n=0

1

n!

∫ n∏
i=1

dθi
(2π)

[
|G(θi)|2

1− S(0) |G(θi)|2

]
〈θn+i εn . . . θ1+i ε1|O(0)|θ1 . . . θn〉 .

(3.31)
However, (3.31) is still a meaningless expression, since we have to regularize
it in a proper way. One way to do it is by analogy with LeClair and Mussardo
formula, discussed in section 3.2. When we perform an average over a density
matrix (3.19), we end up with the following expression

O =
+∞∑
n=0

1

n!

∫ n∏
i=1

dθi
(2π)

[
e−λ(θ)

1− S(0) e−λ(θ)

]
〈θn+ i εn . . . θ1 + i ε1|O(0)|θ1 . . . θn〉 .

(3.32)
LeClair and Mussardo suggested that the proper way to regularize the εi → 0
limit of this expression is to take the the connected part of the form factors
(3.18) and to dress λ(θ) according to the integral equation (3.22). This
regularization scheme holds for every function λ(θ). The situation is the
same in equation (3.31), with |G(θ)|2 that plays the role of e−λ(θ). So, the
natural way of regularize (3.31) lead us to

O =
+∞∑
n=0

1

n!

∫ n∏
i=1

dθi
(2π)

[
|G̃(θi)|2

1− S(0) |G̃(θi)|2

]
〈θn . . . θ1|O(0)|θ1 . . . θn〉conn ,

(3.33)

where | ˜G(θ)|2 is dressed in the same way as the term e−λ̃(θ) entering the
thermodynamic Bethe ansatz

|G̃(θ)|2 = |G(θ)|2 exp

[∫
dθ′

2π
ϕ(θ − θ′) log[1 + |G̃(θ)|2]

]
. (3.34)

The above dressing formula is based on the LeClair and Mussardo conjecture
(it has actually the same mathematical structure) and on the possibility to
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exchange the εi → 0 and t → +∞ limits. Assuming that such a regulariza-
tion scheme is indeed correct, it turns out that that the long time limit of
〈O(x, t)〉B could be described by a generalized Gibbs ensemble (3.19), where
the constant of motions are simply given by the occupation number n̂(θ) and
the function λ(θ) is fixed by the conditions

〈B|n̂(θ)|B〉
〈B|B〉

= Tr (ρ̂λ n̂(θ)) , (3.35)

thus proving Rigol et al.’s conjecture for integrable field theory. If we look
at our starting point, this result is quite unexpected: when we expanded the
exponential in (3.8) we had a double sum, and it was only thanks to the
infinite time limit that we could rewrite it as a single summation. Moreover,
while the boundary state (3.2) is formed by pairs of particles with opposite
rapidity, this feature is completely lost in the final expression (3.33).

3.3.2 Combinatorial Details of Our Proof

In this subsection we would like to clarify the combinatorial details omitted
in the previous subsection. Therefore, we will show that, for t→ +∞,

〈B|O(x, t)|B〉
〈B|B〉

→ (3.36)

→
+∞∑
n=0

1

n!

∫
dθ1 . . . dθn

(2π)n

n∏
i=1

[
|G(θi)|2

1− S(0) |G(θi)|2

]
〈θ+
n . . . θ

+
1 |O(0)|θ1 . . . θn〉 ,

where θ+
i = θi + iεi. In this section, we will call the form factors like

〈θ+
n . . . θ

+
1 |O(0)|θ1 . . . θm〉 regular form factors, in order to distinguish them

from the complete form factors 〈θn . . . θ1|O(0)|θ1 . . . θm〉, that have also delta-
like contributions. For εi finite these regular form factors are continuous
functions but, despite their name, they can have a singular εi → 0 limit,
hence the need of the regularization procedure previously discussed. Let’s
firstly briefly summarize the main steps of the proof: after we expand the
numerator of the l.h.s. of (3.36) (as done in (3.23)), we obtain

〈B|O(x, t)|B〉 =
+∞∑
n,l=0

1

n! l!

∫
dθ1 . . . dθn

(4π)n
dθ′1 . . . dθ

′
l

(4π)l
e2 i t(En(θ)−El(θ′)) ·(3.37)

·

[
n∏
i=1

G(θi)

][
l∏

j=1

G(θ′j)

]
〈θn,−θn, . . . θ1,−θ1|O| − θ′1, θ′1, . . .− θ′l, θ′l〉 .
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Then, applying repeatedly the crossing relation (3.14) to the matrix elements
in (3.37), we arrive to an expression in which we can take the infinite time
limit. In this limit, (3.37) reduces to the r.h.s. of (3.36) times the denomi-
nator of the l.h.s

Z = 〈B|B〉 = 〈B|eiHte−iHt|B〉 =
+∞∑
n=0

Zn , (3.38)

where

Zn =
1

n!2

∫
dθ1 . . . dθn

(4 π)n
dθ′1 . . . dθ

′
n

(4 π)n

[
n∏
i=1

G(θi)G(θ′i)

]
· (3.39)

· exp(2 i t (En(θ)− En(θ′))〈θn,−θn, . . . θ1,−θ1| − θ′1, θ′1, . . .− θ′n, θ′n〉 ,

thus completing the proof.

Introductory remarks. Here we would like to highlight some basic
facts that we will find useful for our proof. First of all, we notice that,
when we recast (3.37) in terms of the regular form factors, the only terms
that survive in the infinite time limit are the time-independent ones. As a
consequence, we can discard all the terms in the double sum in (3.37) where
n 6= l. Moreover, from (3.14) it is clear that the term 〈0|O|0〉 in the r.h.s. of
(3.36) is correct, so in the following we will not consider this contribution.

In order to follow more easily our ideas, it may be useful to develop a
diagrammatic representation. In fig. 3.2 it is shown a bra state with n pairs
(a ket state can be introduced in a similar way). An inner product between
a bra and a ket both made of n pairs can be represented as the sum of all
the possible ways to link together the particles of the ket with the particles
of the bra, each link meaning a contraction between the corresponding par-
ticles. Of course, one should be careful about the permutation of particles
and the corresponding S matrix, but we will take care later of these details.
We are interested in the matrix elements of the operator O between states
made of Cooper pairs. In particular, our aim is to reduce the full matrix
element 〈θn,−θn, . . . θ1,−θ1|O| − θ′1, θ′1, . . .− θ′n, θ′n〉 to the regular form fac-
tors 〈θ+

ir
, . . . , θ+

i1
|O|θ′j1 , . . . , θ

′
jr〉. These regular terms can be diagrammatically

represented as in fig. 3.2, where the operator O has 2r legs: r of them are
connected to the particles in the bra, while the other r are connected to the
particles in the ket. So, our combinatorial problem reduces to a problem in
which we have to connect the legs of the operator to the bra/ket and the
remaining particles together, according to (3.14). In order to get the right
combinatorial coefficients, we have to remember what follows.
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Figure 3.2: In this figure we present the building blocks of our diagrammatic
representation. On the left, we can see a bra and a ket with n = 3 Cooper
pairs. In the middle, we see one of the diagrams that represent the inner
product of the bra and the ket. The figure on the right shows a term propor-
tional to the regular form factor 〈θ+

2 , θ
+
1 |O|θ′1, θ′2〉. The circle in the middle

stands for the operator O, that has 2r = 4 legs, half connected to the bra
and half to the ket.

• As we stated before, only the matrix elements with the same numbers
of particles in the ket and in the bra give a non vanishing contribution
in the long times limit. Therefore, the number of legs connected to the
bra is always equal to the number of legs connected to the ket and,
from now on, we will only specify the number of particles connected to
the bra.

• In principle, when we consider the matrix element between two states
with n pairs, i. e. 〈θn,−θn, . . . θ1,−θ1|O|−θ′1, θ′1, . . .−θ′n, θ′n〉, we could
expect to end up with a sum of regular terms with r legs linked to the
bra, with r ≤ 2n. However, it turns out that r ≤ n: if we connect r
particles to the operator, we are left with 2n−r delta functions, and to
suppress all the time dependencies, we have to eliminate n integration
variables, hence r ≤ n.

• Finally, if we link a particle to the operator, its pair partner cannot be
connected to O, otherwise their time dependence survives.

The disconnected terms. Let us show now how some contributions
to (3.36) (the disconnected terms) cancel out with the denominator Z
(3.38). In order to understand this point, we analyze the matrix elements
〈θ2,−θ2, θ1,−θ1|O| − θ′1, θ′1,−θ′2, θ′2〉 . As it is shown in fig. 3.3, we have es-
sentially two types of diagram. Let’s focus our attention on the second one:
it is clear that the contribution in the dotted box factorize from the integral
with the form factors. Hence, if we have a set of particles that is completely
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Figure 3.3: Two different diagrams: in the left one all the particles are
connected to the operator, while in the right one there is a contribution that
factorizes.

disconnected from the operator O (this means that no one of these particles
or their partners is connected to O or to a particle whose partner is connected
to O), its contribution factorizes.

What we want to show now is that these disconnected pieces cancel out
with the denominator Z. Let us consider the term in (3.37) with n pairs
in the bra (let’s denote it as On), and let’s focus our attention on the con-
tribution O[n,k], such that k pairs in the bra (as well as k pairs in the ket)
are disconnected and so only n− k pairs in the bra are connected to O. Of
course, a similar term can also be obtained from On−k, when no particle is
disconnected. With our notation, this term can be written as O[n−k,0] . If we
are able to show that, for any n and k ≤ n,

O[n,k] = O[n−k,0]Zk , (3.40)

then it follows that, when we sum over all n and k ≤ n, (3.37) becomes(
+∞∑
m=0

O[m,0]

)
Z , (3.41)

hence the disconnected pieces cancel out with Z.
The proof of (3.40) is actually quite simple. It is clear that the inner

product of the k disconnected pairs gives an integral proportional to Zk, as
well as O[n,k] is clearly proportional to O[n−k,0]. So, in order to complete
the proof, we have only to check the proportionality constant. O[n,k] has
an overall coefficient 1

n!2
from the expansion of the exponentials, while we

can choose the k disconnected pairs in
(

n!
k!(n−k)!

)2

equivalent ways, since the

creation operator of a pair commutes ([Z†(−θ)Z†(θ), Z†(−θ′)Z†(θ′)] = 0).
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Nicely, 1
(n−k)!2

is the correct coefficient for O[n−k,0] and 1
k!2

is the right one
for Zk, thus concluding the proof of 3.40.

The last step. Let us conclude our proof, showing that O[m,0] has ac-
tually the right structure to give (3.36). Let’s call O{m,r} the contribution
where the operator has r legs connected to the bra, the bra has m pairs and
no particle is disconnected from O. We have already pointed out that for
t→ +∞

O[m,0] =
m∑
r=0

O{m,r}, (3.42)

since the sum is restricted to r ≤ m. So, in order to get (3.36), we need only
to show that

O{m,r} =
1

r!

∫
dθ1 . . . dθr

(2π)r
〈θ+
r . . . θ

+
1 |O(0)|θ1 . . . θr〉 · (3.43)

·
∑
i1,...,ir

′ [
S(0)i1−1(|G(θ1)|2)i1 . . . S(0)ir−1(|G(θr)|2)ir

]
,

where the summation
∑

i1,...,ir

′ is over all the positive integers ij such that∑
j ij = m.

In order to prove (3.43), we need to be a little careful with the ordering of
the particles and the labeling of the rapidities. However, if we exchange two
particles, the contribution is same, since (as we already know) the pairs do
commute while the exchange of two particles forming a pair is equivalent
to change of the integrable variable θ → −θ. This is a consequence of the
symmetry of G (3.3).

Before concluding our proof of (3.36), we need to understand how to label
the rapidity. We start with 2m integration variables and the delta-functions
reduce them to r. So, we use the convention to label the rapidities as in
(3.43): we call θ1 the rapidity of the particle of the bra closest to O and
we take advantage of delta functions in such a way that the rapidity of the
particle in the ket nearest to O is also θ1, and so on.

We can now finally show that we obtain exactly the structure (3.43). First
of all, from our previous reasoning about the long time limit, it is clear that,
performing all the possible contractions, for the term in the second row of
(3.43) we arrive to an expression as∑

i1,...,ir

′ [
c1(i1)(|G(θ1)|2)i1 . . . cr(ir)(|G(θr)|2)ir

]
, (3.44)

where c1(i1) . . . cr(ir) are unknown constant. What we have to prove is that
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1. The overall coefficient agrees with (3.43)

2. cj(ij) = S(0)ij−1.

The first point comes out from the combinatorial coefficient that takes in
account all the equivalent way to link the particles and the operator. In
O[m,0], we have an overall coefficient that is 1

m!2
1

22m : the factorial comes from
the exponentials while we get the 1

2
from the integration measure that is dθ

4π

and not dθ
2π

. We can choose the r particles in the bra (and the r in the ket)
connected to O in [

2m 2(m− 1) . . . 2(m− r − 1)

r!

]2

(3.45)

ways. We remind that if a particle is connected to O, its pair companion
cannot be directly connect to the operator, otherwise the contribution is time
dependent hence it goes to zero for long times. We have to determine in how
many ways we can connect the particle in the bra with rapidity θ1 to the
others in order to have a term like (|G(θ1)|2)i1 . The answer is

[2(m− r) 2(m− r − 1) . . . 2(m− r − i1 + 1)]2 r , (3.46)

where the r comes out from the r equivalent ways to choose a particle in the
ket connected to O. If we repeat the same argument for all the particles, we
end up with an overall coefficient that is

1

m!2
1

22m

22r

r!2
m!2 22(m−r) r! =

1

r!
, (3.47)

in agreement with 3.43.
Finally, we show that cj(ij) = S(0)ij−1. Since we know that every per-

mutation of particles gives the same contribution, it is sufficient to show it
only for one of the many equivalent ways to link particles. In particular, we
will consider the following way to separate the rapidities in two sets

〈θm,−θm, . . . , θ1,−θ1|O| − θ′1, θ′1, . . .− θ′m, θm, 〉 = (3.48)

= SAA1SBB1〈θ+
r , . . . θ

+
1 |O|θ′1, . . . θ′r〉 ·

〈θm,−θm, . . . , θr+1,−θr+1,−θr, . . .− θ1| − θ′1, . . .− θ′r,−θ′r+1, θ
′
r+1, . . . ,−θm,′ θ′m〉 .

An useful trick is to remember that the contractions are such to have, at the
end, θi = θ′i for i = 1, . . . r. When we impose this condition, we see that
the S matrices in (3.48) reduces to the identity. Now, we want to contract
−θ1 with −θ′r+1, obtaining a δ(θ1 − θ′r+1) and the desidered |G(θ1)|2. Then,
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we link −θr+1 to θ′r+1. This contraction gives us a δ(θ1 + θr+1). Finally, we
commute θr+1 (that now is equal to −θ1) with −θr . . .− θ2. In this way, we
end up in a situation similar to the initial one. We have two pair less, a
|G(θ1)|2 overall and a huge product of S matrices that comes from all the
exchanges done. However, if we remind that at the end of our calculation we
have θi = θ′i for i = 1, . . . r, it is easy to see that this product of S matrices
reduces to S(0) . We can repeat this procedure until the overall coefficient

is (S(0)|G(θ1)|2)
i1−1

. Then we contract −θ1 with −θ′1, obtaining another
|G(θ1)|2 and we go on doing the same manipulations on −θ2. It is clear that
at the end we obtain exactly 3.43.

3.4 A simple example

It is instructive to see how the general ideas of the previous section apply
in the simplest case provided by the one point function of the ε operator of
the Ising model (2.84). Indeed, for this operator we can calculate exactly
its one point function for any time with elementary techniques. From the
form factors (2.84), it follows that the operator ε is a quadratic form in the
creation - annhilation operators

ε(0) =

∫
dβ1

2 π

dβ1

2π

{
2πm cosh

(
β1 − β2

2

)
Z†(β1)Z(β2) +

+

[
i π m sinh

(
β1 − β2

2

)] [
Z(β1)Z(β2) + Z†(β1)Z†(β2)

]}
. (3.49)

Since the theory is free, we can easily calculate the expectation value of
binomials of the creation-annihilation operators on the boundary states (in-
troducing, for instance, a generating functional) and we have that

〈B(t)|Z†(β1)Z(β2)|B(t)〉
〈B|B〉

= 2π δ(β1 − β2)
|G(β1)|2

1 + |G(β1)|2
, (3.50)

〈B(t)|Z(β1)Z(β2)|B(t)〉
〈B|B〉

= 2π δ(β1 + β2)
G(β1)e−2 i t E1(β1)

1 + |G(β1)|2
, (3.51)

Hence

〈ε(x, t)〉B = +2πm

∫
dθ

2π

|G(θ)|2

1 + |G(θ)|2
+ (3.52)

−2 πm

∫
dθ

2π

sinh(θ) Im [G(θ) exp (−2 i tE1(θ))]

1 + |G(θ)|2
.
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The results (3.52) has all the features we expect to hold in the general case.
First of all, the time dependent part goes to zero as a consequence of the
fast oscillation of the integrand. The long time asymptotic value obviously
agrees with our general result: in this case, the structure of the operator is so
simple that the entire sum reduces to a single term. More important, since we
are able to calculate exactly the time dependence, we can also estimate the
approach to the t→ +∞ limit value using a stationary phase approximation.
It turns out that (3.52) approaches its asymptotic value as an inverse power
law, in contrast with the exponential decay of the massless case [31, 32].
Formula (3.52) is actually the continuum limit of the early result for the one
point function of the transverse magnetization of the quantum Ising mode
obtained in [58].

3.5 Further Works on Quantum Quenches

and Integrability

Quantum quenches and integrability are quite a hot topic nowadays. In this
section, we would like to highlight two recent contributions [28, 47] that are
deeply connected to our work.

Divergencies and the LeClair-Mussardo formula In the previous
sections we have emphasized that our treatment of the divergencies is not
rigorous, even if well motivated. Indeed, when we developed these ideas
the LeClair-Mussardo formula (3.21) was still a conjecture. However, some
months after the pubblication of [1], this formula was proved in a remarkable
paper by Balázs Pozsgay [47]. The basic idea behind this proof is the
following. When we want to evaluate a thermodynamical average (e.g.
a thermal one) , the brute force approach involves a summation over all
the state of the system. However, in the thermodynamical limit, the only
important contribution comes from the “typical” states, that correspond to
the saddle point of the statistical weights. In an integrable model, these
typical states are characterized by a density of roots that is given by the
TBA equation. So, we could choose one of these typical states, with a large
number of particle N in a large volume L, evaluate the expectation value of
an operator over this typical state, and then take the thermodynamic limit.
It turns out that it is actually possible to evaluate explicitly this limit and
the final result is in agreement with the LeClair-Mussardo conjecture (3.21).
However, we would like to stress that this result holds only for one-point
functions: for multipoint correlators a complete form factors expansion, in
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the spirit of the LeClair-Mussardo formula, is still lacking.
Moreover, in [47] the author considered also the quench problem from an in-
tegrable state, proving that, if we assume that the long time limit is described
by the diagonal ensemble (an assumption we didn’t need), then it follows our
formula (3.9) with the TBA-like dressing (3.10). This is indeed a very nice
check of our result, since it doesn’t rely on the regularization scheme we used.

Exact Results for the Quantum Ising Chain In a very nice pa-
per [28], Calabrese, Essler and Fagotti considered a quench of the transverse
magnetic field for the quantum Ising chain. Remarkably, they were able to
compute the long time limit of the one and two point function of the order pa-
rameter, showing that it is described by a generalized Gibbs ensemble. These
results where obtained with two complementary approach: an evaluation of
the asymptotics of Toeplitz determinant and a form factors sum, quite close
to the techniques we used. So, these results emphasize that, at least for the
initial states considered, the generalized Gibbs ensemble is quite a natural
concept, even for semi-local operators. Moreover, since their approach is free
of the technical difficulties we encountered and do not rely on any regular-
ization procedure, it is another independent check of the correctness of our
assumptions.



Chapter 4

Transformations of the
Zamolodchikov-Fadeev Algebra

In this section we would like to expose some intriguing ideas about a new
approach to the study of quantum quenches in integrable field theories, based
on the transformations that preserve the Zamolodchikov-Fadeev algebra [2].
Admittedly, we have not yet completed our program and so we do not have
conclusive results. However, we believe that it is worthwhile to explain our
novel ideas and discuss some of our results.
This chapter is organized as follows. In sec. 4.1, we explains the basic ideas
behind our approach and the reasons why we believe it is an interesting way
to study quantum quenches. Then, in sec. 4.2, we discuss some of our results.

4.1 Introduction

One of the main open problems in the study of quantum quenches is to
express the initial state |ψ0〉 as a superposition of the eigenstates |n〉 of the
post-quench Hamiltonian H, i.e. how to determine the cn in

|ψ0〉 =
∑
n

cn|n〉. (4.1)

Once such a decomposition is known, it is obviously possible to study the dy-
namics of the system. The brute force approach consists in computing all the
inner product 〈ψ0|n〉 : in practice, however, this approach is not very fruitful
and it cannot be carried out analytically. A possible way out is suggested by
free systems. As we have seen in sec. 1.2.2 , a mass quench in a free bosonic
or fermionic is described by a (bosonic or fermionic) Bogoliubov transfor-
mation between the pre-quench annihilation/creation operators A0(p), A†0(p)
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and the post quench ones A(p), A†(p). Once we know this transformation, it
is possible to express the pre-quench ground state in terms of the new basis,
since it must satisfy the equation A0(p)|ψ0〉 = 0.
It is quite tempting to explore a similar strategy for interacting inte-
grable systems. We know that the creation/annihilation operators satisfy
the Zamolodchikov-Fadeev algebra, that is an extension of the commut-
ing/anticommuting relations that hold for free systems. For example, we
could consider a system described by a integrable field theory and then
quench one of its parameters. Therefore, the S matrix changes from S0 to S,
and the corresponding transformation of the annihilation/creation operators
should be consistent with pre-quench and post quench Zamolodchikov-Fadeev
algebras.Therefore, our strategy consists in two steps:

1. Identify the possible transformations that satisfy the Zamolodchikov-
Fadeev algebra. We could expect that most of this transformation are
highly non linear, but it is conceivable that there exists some physically
meaningful transformation that is not too complicated, at least for an
infinitesimal quench.

2. Once such a transformation is identified, we could see if it is possible
to use this information to write down the initial state in terms of the
new quasiparticles.

We emphasize that both of these steps are non-trivial, and it is still unclear
if this program can be carried out. However, we strongly believe that it
is worth to explore this idea, for several reason. First of all, the brute
force approach is usually not feasible, so another strategy is needed. This
approach has the merit that it takes explicitly into account the fact that we
are dealing with integrable field theories both before and after the quench,
and the fact that the initial state is the vacuum, hence it is destroyed by the
pre-quench annihilation operators. Finally, even if maybe it is not possible
to complete all the steps of this program, the study of the transformations
that preserve the Zamolodchikov-Fadeev algebra could have applications
beyond quantum quenches.
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4.2 Some solvable examples

So, we focus our attention on a integrable field theory with only one kind of
particle. Therefore, the Zamolodchikov-Fadeev operators satisfy the relations

Z(θ1)Z(θ2) = S(θ1 − θ2)Z(θ2)Z(θ1) ,

Z†(θ1)Z†(θ2) = S(θ1 − θ2)Z†(θ2)Z†(θ1) , (4.2)

Z(θ1)Z†(θ2) = S(θ2 − θ1)Z†(θ2)Z(θ1) + 2 π δ(θ1 − θ2) .

We have seen in sec. 2.4 that, in the study of the analytical properties of
integrable field theories, the rapidity θ is a convenient variable. Indeed, in the
θ plane, the analytical structure of the S matrix is much simpler. However,
when we deal with quantum quenches, the mass before and after the quench
can be different. The trivial example is the mass quench in a free theory (sec.
1.2.2), but, for example, if we change the coupling constant in a relativistic
field theory as the Sinh-Gordon model, the physical mass (2.88) changes even
if the bare mass is constant. Therefore, it is convenient to use as a variable
not the rapidity but the momentum, that is conserved under a quench of a
global parameter. So, we have

Z(p) = Z

(
θ = arctanh

[
p

E(p)

])
, (4.3)

where E(p) =
√
p2 +m2, and this set of operators Z(p), Z†(p) satisfy the

algebra

Z(p1)Z(p2) = S(p1, p2)Z(p2)Z(p1) ,

Z†(p1)Z†(p2) = S(p1, p2)Z†(p2)Z†(p1) , (4.4)

Z(p1)Z†(p2) = S(p2, p1)Z†(p2)Z(p1) + 2 π E(p1)δ(p1 − p2) .

Notice that the S matrix amplitude

S(p1, p2) = S

(
θ =

{
arctanh

[
p1

E(p1)

]
− arctanh

[
p2

E(p2)

]})
, (4.5)

is actually a function of the difference of the two rapidities, due to Lorentz
invariance. Moreover, we have that

S(−p1,−p2) = S(p2, p1), S(p1, p2)S(p2, p1) = 1. (4.6)

Therefore, our basic idea is the following: before the quench, the system
is in the ground state of an integrable field theory described by the S ma-
trix S0(p1, p2). Then, we quench one parameter, and so the unitary evolu-
tion of the system is governed by the integrable Hamiltonian with S matrix
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S(p1, p2). Our aim is to find out the relation between the old particle opera-
tors Z0(p), Z†0(p) and the new ones Z(p), Z†(p), or at least to spell out some
constrain for such a transformation.

4.2.1 Bogoliubov Transformation

Since for free system the transformation is simply a Bogoliubov one, it is quite
natural to explore if this is possible also for interacting integrable systems.
So, we assume that

Z0(p) = α(p)Z(p) + β(p)Z†(−p), (4.7)

where α(p), β(p) are unknown complex functions. Therefore, we have that

Z0(p1)Z0(p2) = α(p1)α(p2)Z(p1)Z(p2) + β(p1)β(p2)Z†(−p1)Z†(−p2) +

+α(p1)β(p2)Z(p1)Z†(−p2) + β(p1)α(p2)Z†(−p1)Z(p2). (4.8)

However, we immediately notice that there is something odd in this ex-
pression: we can exchange Z0(p1) and Z0(p2) with the pre-quench S matrix
S0(p1, p2), while in the commutation relations of Z(p) the post quench S
matrix S(p1, p2) enters. So, let us consider the state

|2〉 =

∫ +∞

−∞

dq1

2πE(q1)

∫ q1

−∞

dq2

2πE(q2)
ψ(q1, q2)Z†(q1)Z†(q2)|0〉, (4.9)

where |0〉 is the ground state of the post-quench Hamiltonian. So, we have
that (p1 > p2)

〈0|Z0(p1)Z0(p2)|2〉 = α(p1)α(p2)〈0|Z(p1)Z(p2)|2〉 = (4.10)

= α(p1)α(p2)ψ(p1, p2)S(p1, p2).

However, we know that

〈0|Z0(p1)Z0(p2)|2〉 = S0(p1, p2)〈0|Z0(p2)Z0(p1)|2〉 = (4.11)

S0(p1, p2)α(p1)α(p2)〈0|Z(p2)Z(p1)|2〉 = α(p1)α(p2)ψ(p1, p2)S0(p1, p2),

hence we have S0(p1, p2) = S(p1, p2). Similarly, we could consider
〈2|Z0(p1)Z0(p2)|0〉 ∼ 〈2|Z(−p1)Z(−p2)|0〉, hence we get S0(p1, p2) =
S(p2, p1). Therefore, we have that

S0(p1, p2)2 = S(p1, p2)2 = 1, (4.12)
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hence the theories before and after the quench are free ones1. This is the
first of our results, even if it is negative: a Bogoliubov transformation can
describe a quench only in free systems.

4.2.2 Infinitesimal Quantum Quenches

Instead of considering the most general case, we limit ourself to an infinites-
imal transformation. Therefore, we assume to have a small parameter ε that
is related to the variation of the parameter in the Hamiltonian. The particle
operators change as

Z(p) = Z0(p) + εW (p) + . . . , (4.13)

where we have omitted terms of higher order in ε, while the S matrix changes
as

S(p1, p2) = S0(p1, p2) + ε T (p1, p2) + . . . . (4.14)

Obviously, T is a function of the difference of the two rapidities, as for
the S matrix. Notice that the unitarity condition S(p1, p2)S(p2, p1) =
S(p1, p2)S(p1, p2) = 1 implies that

T (p2, p2) = T (p1, p2) = −T (p1, p2)S2
0(p2, p1) . (4.15)

The new particle operators Z(p), Z†(p) must satisfy the Zamolodchikov-
Fadeev algebra at the first order in ε, and so

W (p1)Z0(p2) + Z0(p1)W (p2) = S0(p1, p2) [Z0(p2)W (p1) +W (p2)Z0(p1)] +

+T (p1, p2)Z0(p2)Z0(p1) (4.16)

W (p1)Z†0(p2) + Z0(p1)W †(p2) = S0(p2, p1)
[
Z†0(p2)W (p1) +W †(p2)Z0(p1)

]
+

+T (p2, p1)Z†0(p2)Z0(p1) + 2 π δE(p1) δ(p1 − p2), (4.17)

where δE(p1) is the shift of the single particle E(p) energy due to the (even-
tual) change of the physical mass.
Now, we would like to investigate the following issue: there exists a sim-
ple transformations that satisfy the Zamolodchikov-Fadeev algebra at the
infinitesimal level? In principle, it is not clear that this is the case: we could

1Technically, the above equations admit also the solution α(p) = 0 or β(p) = 0. How-
ever, β(p) = 0 is not interesting, since it is simply a rescaling of the particle operators,
while we do not admit α(p) = 0 as a solution since in the limit when the variation of the
parameter is zero, the transformation of the particle operators must be to the identity.
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have that the only way to satisfy the algebra is to have an infinite series of
operators, also at the first order in ε. Indeed, we have see that the conditions
imposed by the Zamolodchikov-Fadeev algebra are quite strict, since in the
interacting case there is no way to satisfy them with a Bogoliubov transfor-
mation.
In order to understand more carefully this point, let us consider the following
ansatz

W (p) =

[∫
dq

2πE(q)
α(q, p)Z†0(q)Z0(q)

]
Z0(p). (4.18)

Clearly, this expression respect the momentum conservation. The reason be-
hind the choice of this particular form for the transformation will be evident
in a few moments: essentially, in order to reproduce the term proportional
to T (p1, p2) in (4.16) we need at least 1 Z†0 and two Z0’s. We have that

W (p1)Z0(p2) = S0(p1, p2) [Z0(p2)W (p1) + α(p2, p2)Z0(p2)Z0(p1)] ,(4.19)

W (p1)Z†0(p2) = S0(p2, p1)
[
Z†0(p2)W (p1) + α(p2, p1)Z†0(p2)Z†0(p1)

]
+

+2π E(p1)δ(p1 − p2)

[∫
dq

2πE(q)
α(q, p)Z†0(q)Z0(q)

]
. (4.20)

So, from (4.16) we have that

T (p1, p2) = S0(p1, p2) [α(p1, p2)− α(p2, p1)] , (4.21)

while from (4.17) we get

α(q, p) + α(q, p) = 0; (4.22)

T (p1, p2) = S0(p1, p2) [α(p1, p2) + α(p2, p1)] . (4.23)

Nicely, these conditions could be simultaneously satisfied if α(p1, p2) is purely
imaginary. Notice that if α(p1, p2) is purely imaginary, T (p1, p2) satisfies also
the unitarity condition (4.15). Therefore, we have found a simple transfor-
mation that (up to the first order in ε) preserves the Zamolodchikov-Fadeev
algebra. Notice that this transformation doesn’t change the mass of the
particle δE(p) = 0. Under this transformation, the ground state is invari-
ant, since it has a Z0 to the right that clearly annihilate the pre-quench
vacuum. However, this transformation is still interesting in our opinion. In-
deed, we can decompose any infinitesimal transformation that changes the
ground state and the S matrix in a part that changes only the ground state
and one as (4.18) that is responsible for the shift of the S matrix. This is one
of the ideas that we are currently pursuing in this area. Moreover, we are
complementing our abstract analysis of the transformations that preserve
the Zamolodchikov-Fadeev algebra with the examination of some concrete
example, e.g. infinitesimal quenches in the Sinh-Gordon model.
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In this thesis we have explored the theme of integrability and out of
equilibrium dynamics. Our attention has been focused on the simplest
paradigm of out of equilibrium coherent dynamics, the so called quantum
quench.

In chapter 3, motivated by novel experimental results [6], we have
addressed the issue of thermalization in integrable systems. On the one
hand, we have shown what is probably the first argument in favor of
a generalized Gibbs ensemble for interacting integrable one-dimensional
systems. On the other hand, our work is quite interesting also from the
technical point of view: for the first time the calculation of the long time
limit of the expectation value of a local operator has been performed in the
context of integrable field theories. The validity of some of our assumptions,
that were well justified but not rigorously proven, has been confirmed by
subsequent works [28,47].

Instead, in chapter 4, we have studied a complimentary problem: rather
than studying the dynamics, assuming a specific initial state, we have tried
to take advantage of the integrability before and after the quench in order
to write down an explicit formula for the initial state. Admittedly, our
results are not conclusive and there is room for many further developments.
However, we believe that the key concept of the transformations that
preserve the Zamolodchikov-Fadeev algebra could play a major role in the
next years, also beyond the study of quantum quenches.

In the classical book “Arnold’s Problems” [59] Vladimir Arnol’d wrote
that:

“Poincaré used to say that precise formulation, as a question admitting a
“yes or no” answer, is possible only for problems of little interest. Questions
that are really interesting would not be settled this way: they yield gradual
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forward motion and permanent development.”

In our opinion, this is the status of the problem of thermalization in quantum
systems. The intense work of the community in the last few years has indeed
provided nice new results and intuitions, but many aspects of this problem
still need a thoughtful investigation. Among the others, we would like to
emphasize the problem of small perturbation of integrable systems: in our
minds we have this idea, that there is a qualitatively different behavior
between integrable and not integrable systems, and actually the results of
the last few years seem to confirm this intuition. However, what happens
when we add a small non integrable perturbation to our system? Is the
integrable structure immediately destroyed or not? This point is of course
very important for experiments, since there is always a deviation from inte-
grability, for example, a trapping potential. Moreover, this is the quantum
analog of the Fermi-Pasta-Ulam problem [60, 61], that has stimulated a
lot of research works in classical mechanics as well as in statistical physics
over the last fifty years. Quite ironically, some of the early investigators
of the Fermi-Pasta-Ulam problem thought that it could provide an alter-
native to the quantum mechanical description of macroscopic bodies at
low temperature, in the spirit of an earlier proposal by Jeans (see e.g. [62,63]).

For these reasons, we believe that in the next few years a proper un-
derstanding of the transition between integrable and non integrable systems
will provide to be a major focus of the research in non equilibrium coherent
dynamics. Moreover, we hope that our research work in the area of inte-
grable field theories will provide to be a suitable starting point for such an
investigation, for example relying on the perturbative theory already devel-
oped [64,65].
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