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Introduction

Happy families are all alike
(Lev Tolstoy, Anna Karenina)

Mathematical techniques in statistical physics have developed in recent years along several
directions. In particular, integrable models have received considerable attention because they
represent prototypical examples which can be exactly solved, either to gain some intuition
about the behaviour of more complex systems or to approximate a class of real systems in
certain limits.

Models of interest in this thesis are constituted by a large number of quantum degrees
of freedom, which either will be or will be reducible in the form of spins. Moreover, a key
role in our analyses will be the fact that they are based on exactly solvable models. The �rst
exact solution of a quantum statistical system goes back to Bethe's treatment of the one-
dimensional Heisenberg spin chain [1]. He found that the eigenvectors of this hamiltonian are
written is a certain speci�c form (Bethe's ansatz), and that the eigenvalues are described by
a system of algebraic equations nowadays known as Bethe's equations.

Bethe's technique has been systematized and applied to various other models, including
two-dimensional models of classical statistical mechanics, allowing the exact computation of
the low-lying eigenvalues and of the free energy and the access to thermodynamic properties,
such as phases [2].

Through all these developments, it was recognized that at the heart of the method there
is a single algebraic relation among the �building blocks� of the models, called Yang-Baxter
equation. Schematically, each solution of this equation gives rise to a class of exactly solvable
hamiltonians. The way in which these hamiltonians are written and diagonalized has been
systematized in the so-called quantum inverse scattering method [3] or algebraic Bethe ansatz
[4].

For two-dimensional systems at the critical point that identi�es in the phase space a
second order phase transition, a totally di�erent approach, based on the e�ective description in
terms of a conformal �eld theory, was initiated in [5]. In this situation, an in�nite-dimensional
algebra constrains the theory and allows its exact solution, which amounts to the computation
of multi-point correlation functions. It was soon realized that away from the critical point,
speci�c �eld theories admit a description in terms of particles, whose interaction can be
summarized in terms of scattering matrices, which are forced to satisfy the Yang-Baxter
equation [6]. Also in this context, this stringent requirement allows ultimately for the exact
solution of the theory.

The aim of this thesis is to provide further examples of the great impact that the tech-
niques related to the algebraic Bethe ansatz to integrable models have on modern problems
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of condensed matter physics, as well as to highlight the single algebraic structure that unites
many of them. In facts, the relative �exibility of the underlying formalism allows somewhat
�unorthodox� applications: among those illustrated in this thesis, there appear disordered
and even nonintegrable hamiltonians, as well as quantum �eld theories on some nontrivial
support. One essential characteristic of this work is the emphasis posed on matrix elements
of quantum observables, which are explicitly obtainable by algebraic Bethe ansatz.

The �rst chapter is an introduction to the general concepts about integrable lattice models
and to the Yang-Baxter equation. One important solution to this equation is presented, and
it is shown how to derive from it two important hamiltonians, namely the Heisenberg and
the Richardson hamiltonians, which will be considered extensively throughout the thesis.
Moreover, the algebraic Bethe ansatz method for writing eigenstates and eigenvalues of these
hamiltonians is presented in general terms.

The second chapter deals with the Richardson model, as a few-body description of Bardeen-
Cooper-Schrie�er (BCS) superconductivity. In particular, the BCS equations are reviewed
and shown how to be derived from the scaling limit of the model. An original investiga-
tion of the Josephson current �owing among two coupled few-body superconductors is pre-
sented, having in mind experiments featuring trapped cold-atoms with tunable interaction.
The crossover among the superconducting regime and the one to a Bose-Einstein condensate
(BEC) is studied. Part of the results are contained in my paper [7].

The third chapter analyses the e�ect of disorder on the properties of the exact many-
body eigenstates of the Richardson model, with attention to their localization properties in
the Hilbert space. Motivation for the work, which lies in the study of thermalization and of
hopping conduction in quantum systems is presented, together with the original results of my
article [8].

The fourth chapter introduces the basics concept of integrable �eld theory, with attention
to the computation of correlation functions. The sine-Gordon/massive Thirring theories are
presented and shown to be particularly relevant in condensed matter and statistical physics.
This is a review chapter.

The �fth chapter tackles the problem of computing correlation functions of the sine-
Gordon �eld theory in �nite size. The technique used is based on an already known lattice
regularization, which is reviewed in the �rst part. Then a new formula, contained in my
article [9], for the generating function of connected correlation functions in �nite volume is
derived, using the algebraic formalism introduced earlier in this thesis.
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Chapter 1

The models and the algebraic

formalism

This chapter provides an introduction to the formalism of algebraic Bethe ansatz and of the
models which will be used in this work. Connections among the various Hamiltonians are
highlighted from the point of view of their algebraic construction.

1.1 Integrability in quantum systems

1.1.1 Spin systems

Consider a system with 2N sites and a spin−1
2 degree of freedom on each site. The Hilbert

space of the system is spanned by the direct product of the single-site basis

{|↑〉 , |↓〉} (1.1)

For the time being, the geometry is that of a one-dimensional chain with periodic boundary
conditions. Each site is labelled by an integer m,n, . . . and carries a local Hilbert space
upon which a spin-1/2 representation of su(2) acts. It is possible to carry on part of the
construction without specifying a particular model. In other words, as we will see below, it
is possible to diagonalize an Hamiltonian without even knowing its expression.

An essential step for constructing a lattice model which is integrable through algebraic
Bethe ansatz amounts to �nding a matrix that satis�es the Yang-Baxter equation (YBE).
Given three "local" Hilbert spaces a, b, c, the so�called R-matrix satis�es:

Rab(λ)Rac(µ)Rbc(λ− µ) = Rbc(λ− µ)Rac(µ)Rab(λ) (1.2)

for any choice of the complex "rapidities" λ and µ. Here and in the following, whenever
useful, matrix representations will carry subscripts with local space labels. The Yang-Baxter
relation is fundamental in quantum integrable systems, and may be taken as a de�nition (see
also [10]) of quantum integrability itself. The analogue formulation in quantum �eld theory
will be reviewed section 4.2. It consists on a relation on the two-paricle S�matrix of the
theory and can be seen as a necessary condition on the factorization of the full S�matrix into
two�body processes.

There is an analogous formulation of the relation above for open boundary conditions,
which takes the name of boundary Yang-Baxter equation [11] and holds in the same form in
the context of integrable quantum �eld theories [12].
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Another property (see, e.g., [13],[14]) of the R-matrix is (provided b(λ) 6= ±c(λ)), unitar-
ity :

Rab(λ− µ)Rba(µ− λ) = 1 , (1.3)

which follows from inverting one matrix in (1.2) and applying the permutation operator. This
requirement is functional to the construction and diagonalization of integrable Hamiltonians
through algebraic Bethe ansatz and will �nd application later on in section 1.3.1.

Some classes of solutions to (1.2) are know 1 . The simplest and by far the best known
is the R-matrix associated with the six-vertex model and with the corresponding quantum
chain [2], upon which the models analysed in this thesis are based.

We write here the �six-vertex� and the �rational� R-matrix, represented on the local C2

spaces α and β:

R(λ)α,β =


1

b(λ) c(λ)
c(λ) b(λ)

1


α,β

(1.4)

where the functions b and c, for the XXZ family are taken2 as:

b(λ) =
sinh(λ)

sinh(λ− iγ)
, c(λ) =

sinh(−iγ)

sinh(λ− iγ)
(1.5)

and the anisotropy parameter γ is related to the coupling of the spins along the z axis.
With this choice, the matrix enjoys the property of crossing symmetry

(C ⊗ 1)Ra,b(iπ − λ) (C ⊗ 1) = Rt1a,b(λ) (1.6)

in which C is, in general, an appropriate 2 × 2 matrix such that C2 = 1 and Ct = ±C and
in this case C = σx. The superscript t1 indicates transposition in the �rst of the two spaces
only, in other words, the exchange of the order of |↑〉 and |↓〉 in the �rst basis.

For the rational model, which is the starting point for obtaining the Richardson model
studied in the following, we have instead

b(λ) =
λ

λ+ η
, c(λ) =

η

λ+ η
(1.7)

and, similarly, the isotropic XXX is obtained by specializing the value η = i, so that we have

b(λ) =
i

λ+ i
, c(λ) =

λ

λ+ i
(1.8)

The models are not independent. The hyperbolic R-matrix (1.4,1.5) can be analytically
continued to imaginary values of the anisotropy parameter

eiγ → e−εη (1.9)

for some small real ε. Then, vanishing values of the argument eλ ' 1+εv and of the anisotropy
parameter reduce the XXZ R-matrix to the rational form (1.7), i.e.:

R(u) =
1

u+ η
(η 1+uP) (1.10)

1due to the fact that the above relation is a representation on a, b, c of a de�ning property the "universal
R-matrix" of a quantum group, they are classi�ed accordingly

2an overall multiplying function can be considered as well
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which is itself a solution of the Yang-Baxter equation.
As it will be seen in Chapter 4, integrable two-dimensional quantum �eld theories can be

formulated in terms of a two-particle scattering matrix. Integrability of the theory will imply
the constraint (1.2) that such an object has to satisfy. The solution (1.4,1.5) will then be the
exact two-particle scattering matrix between the fundamental excitations in the sine-Gordon
�eld theory.

1.2 Introduction to Algebraic Bethe Ansatz

Algebraic Bethe ansatz (ABA) [15] is a powerful technique that allows to write exact eigen-
states and eigenvalues of a class of lattice models. Both the e�ectiveness and the main
limitation of this technique are not con�ned to the exact diagonalization of a particular
Hamiltonian, but also consists in the possibility of generating a class of Hamiltonians starting
from the underlying requirement of integrability itself.

There are two main classes of quantum systems that can be dealt with through the ABA,
namely periodic chains and fully connected models. In the following, we shall review the
construction for the most noticeable representatives for each class: the Heisenberg chain and
the Richardson model. Open chains, as well as "ladders", can also be dealt with under suitable
modi�cations.

A great advantage of the algebraic version of Bethe ansatz stays in the fact that, despite
the technical di�culties, it has proven to be possible to solve the "inverse scattering" problem,
at least for some simple prototypical models. This means reconstructing matrix element of
operators in terms of generalized creation and destruction operators, which satisfy algebraic
relations that ultimately allow the reconstruction of matrix elements of the operators. More
details will be provided below.

1.2.1 The Yang-Baxter relation at work

The ingredient in the algebraic Bethe ansatz construction which actually speci�es the model
under study is the so-called Lax L-operator, which we will represent as a matrix valued
function of a complex argument ("rapidity"). It acts on a couple of local Hilbert spaces
C2 ⊗ C2.

For de�niteness we anticipate that for the XXZ chain we have the following form:

LXXZm,n (λ) =

(
qS

z
n−iλ − q−Szn+iλ

(
q − q−1

)
S−n(

q − q−1
)
S+
n q−S

z
n−iλ − qSzn+iλ

)
m

= Rm,n

(
λ+ i

γ

2

)
(1.11)

with q = e−iγ , whereas for Richardson

LRm,n (λ) =
1

λ

(
λ+ ηSzn ηS−n
ηS+

n λ− ηSzn

)
m

(1.12)

and once again the isotropic Heisenberg chain is obtained from the value η = i

LXXXm,n (λ) =

(
λ+ iSzn S−n
S+
n λ− iSzn

)
m

(1.13)

This operator is a function of a complex variable λ and must satisfy a specialized version of
the YBE:

Lab(µ)Lac(λ)Rbc(λ− µ) = Rbc(λ− µ)Lac(λ)Lab(µ) (1.14)
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This relation is generally derived by (1.2) by de�ning L as the R-matrix itself with some shift
of its argument along the imaginary axis, as it will seen below. Moreover, it is required that
it reduces to a permutation between local spaces

Pa,b |ψ〉a ⊗
∣∣ψ′〉

b
=
∣∣ψ′〉

a
⊗ |ψ〉b (1.15)

for some special value of its argument. The reason for this is in the great simpli�cation that
is obtained in the construction of the Hamiltonian (see below).

We will now de�ne the basic operators which are necessary for constructing the Hamil-
tonian and the conserved charges, the latter being operators on the "physical" Hilbert space
built as the closure of the tensor product of the single-site Hilbert spaces ¯C2 ⊗ . . .⊗ C2. In-
troduce an auxiliary space a and consider a family of Lax operators that act on this subspace
and on one (say, the n-th) of the local Hilbert spaces La,n, while behave as the identity on
all other local spaces. Then we can de�ne a monodromy matrix as follows:

T (λ) = La,2N (λ)La,2N−1(λ) . . . La,1(λ) (1.16)

We will actually need a generalization of this basic de�nition, obtained by introducing site-
dependent shifts hα, α = 1, . . . , 2N in the arguments of our operators, called inhomogeneities:

Ta(λ) = KaLa,2N (λ− h2N )La,2N−1(λ− h2N−1) . . . La,1(λ− h1) (1.17)

The Sklyanin's matrix Ka is present whenever the boundary conditions are not strictly peri-
odic: instead, the local state in the m-th and the 2N + m-th sites are identi�ed only up to
the action of this operator

|ψm〉 = Ka |ψm〉 (1.18)

Since it is nontrivial only on the auxiliary space, such an action reduces, in the physical space,
to the multiplication by a phase factor called "twist". This can also be written as

KaBmK
†
a = Bm+2N (1.19)

with Bm a generic operator acting on the m-th physical space. The lattice structure is still
periodic, because the twist a�ects only the quantum mechanical properties,

Such a matrix acts nontrivially on the auxiliary space only and satis�es

[Rab(λ− µ),Ka(λ)Kb(µ)] = 0 (1.20)

For our purposes, it will be su�cient to consider a Ka as independent from the rapidity and
diagonal. With this choice, the above requirement is automatically satis�ed. It is convenient
to specify since now the parametrization of the twist as:

Ka = eiω(σza−1) (1.21)

in which the usual Pauli matrix appears.
An important property of the monodromy matrix is that it braids like (1.14), by virtue

of the so-called "train argument". In facts, denoting a second copy of the auxiliary space as
b, we can apply one after another the various copies of (1.14) and (1.20) as follows:

Rab(λ− µ)KaLa,2N (λ− h2N ) . . . La,1(λ− h1)KbLb,2N (λ− h2N ) . . . Lb,1(λ− h1)

= Rab(λ− µ)KaKbLa,2N (λ− h2N )Lb,2N (λ− h2N ) . . . La,1(λ− h1)Lb,1(λ− h1)

= KaKbRab(λ− µ)La,2N (λ− h2N )Lb,2N (λ− h2N ) . . . La,1(λ− h1)Lb,1(λ− h1)

= KbKaLb,2N (λ− h2N )La,2N (λ− h2N )Rab(λ− µ) . . . La,1(λ− h1)Lb,1(λ− h1)

. . .

= KbKaLb,2N (λ− h2N )La,2N (λ− h2N ) . . . Lb,1(λ− h1)La,1(λ− h1)Rab(λ− µ)(1.22)

4



Then we have a crucial identity in the ABA construction, named "RTT-relation" for obvious
reasons

Rab(λ− µ)Ta(λ)Tb(µ) = Tb(µ)Ta(λ)Rab(λ− µ) (1.23)

Let's now introduce a standard parametrization for the monodromy matrix:

Ta(λ) =

(
A(λ) B(λ)
D(λ) D(λ)

)
a

(1.24)

when is represented on the auxiliary space. The elements that appear in the matrix above
are operators on the Hilbert space of the chain and will be used.

The braiding relation (1.23) �xes the relations between the elements of the monodromy
matrix in terms of those of R. We write in extended form on the auxiliary spaces, for the
sake of clarity, the product

1
b c
c b

1



A(λ)A(µ) A(λ)B(µ) B(λ)A(µ) B(λ)B(µ)
A(λ) C(µ) A(λ)D(µ) B(λ) C(µ) B(λ)D(µ)
C(λ)A(µ) C(λ)B(µ) D(λ)A(µ) D(λ)B(µ)
C(λ) C(µ) C(λ)D(µ) D(λ) C(µ) D(λ)D(µ)



=


A(µ)A(λ) B(µ)A(λ) A(µ)B(λ) B(µ)B(λ)
C(µ)A(λ) D(µ)A(λ) C(µ)B(λ) D(µ)B(λ)
A(µ) C(λ) B(µ) C(λ) A(µ)D(λ) B(µ)D(λ)
C(µ) C(λ) D(µ) C(λ) C(µ)D(λ) D(µ)D(λ)




1
b c
c b

1

 (1.25)

By equating term by term the elements of the RTT-relation, we obtain a set of quadratic
algebraic relations among operators acting on the physical Hilbert space of the chain, which
is named Yang-Baxter algebra:

[B(λ),B(µ)] = [C(λ), C(µ)] = 0 (1.26)

[A(λ),A(µ)] = [D(λ),D(µ)] = 0 (1.27)

A(µ)B(λ) =
1

b(λ− µ)
B(λ)A(µ)− c(λ− µ)

b(λ− µ)
B(µ)A(λ) (1.28)

D(λ)B(µ) =
1

b(λ− µ)
B(µ)D(λ)− c(λ− µ)

b(λ− µ)
B(λ)D(µ) (1.29)

[A(µ),D(λ)] =
c(λ− µ)

b(λ− µ)
(B(λ) C(µ)− B(µ) C(λ)) (1.30)

[B(µ), C(λ)] =
c(λ− µ)

b(λ− µ)
(A(λ)D(µ)−A(µ)D(λ)) (1.31)

C(λ)A(µ) =
1

b(λ− µ)
A(µ) C(λ)− c(λ− µ)

b(λ− µ)
A(λ) C(µ) (1.32)

C(µ)D(λ) =
1

b(λ− µ)
D(λ) C(µ)− c(λ− µ)

b(λ− µ)
D(µ) C(λ) (1.33)

The trace over the auxiliary space of a monodromy matrix de�nes the transfer matrix

τ̂(λ) = Tra [T (λ)a] = A(λ) + e−2iωD(λ) (1.34)

which again acts on the Hilbert space of the chain.
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This object is crucial because we can write from (1.34) a set of 2N algebraically indepen-
dent operators Qj (as many as the size of the system) and to show that they commute. As
a consequence, these objects will act diagonally on all the eigenstates of the transfer matrix.
Most importantly, as long as one of these operators can be chosen as a physically meaningful
Hamiltonian, our quantum system is endowed with a set of charges that commute among
them and with the Hamiltonian, i.e., that are conserved in time. All such charges can be
generated by di�erentiation

Qn =
∂n

∂λn
log τ(λ)

∣∣∣∣
λ=i γ /2

(1.35)

An important property of the transfer matrix is that

[τ̂(λ), τ̂(µ)] = 0 , ∀λ , µ (1.36)

which can be proven starting from (1.23) and inverting the R-matrix

Rab(λ− µ)Ta(λ)Tb(µ)Rab(λ− µ)−1 = Tb(µ)Ta(λ) (1.37)

and then tracing over the space a⊗ b and using the cyclic property of the trace

Tra⊗b
[
Rab(λ− µ)Ta(λ)Tb(µ)Rab(λ− µ)−1 − Tb(µ)Ta(λ)

]
= [Tra [Ta(λ)] ,Trb [Tb(µ)]] (1.38)

which proves (1.36). From this property, which must be true for arbitrary choices of the
spectral parameters λ, µ, it follows that all the charges de�ned in (1.35) commute among
them.

1.2.2 Construction of the eigenstates

Our goal is to construct a set of eigenstates of the transfer matrix since these states are
simultaneous eigenstates of the Hamiltonian and of all the conserved charges.

Within the formalism of second quantization, a state with, say, n free fermions on momen-
tum levels k1, . . . ,kn, is created by the action of ladder operators c†k1

, . . . , c†kn on a vacuum
state |0〉. Such a state is de�ned to be the one which is annihilated by all the lowering op-
erators, i.e., by ckj |0〉 = 0 ∀j. The framework of ABA somehow extends these notions to
strongly interacting systems. The key idea is that an eigenstate can be built as the repeated
action of generalized ladder operators, the role of which will be played by the Bs in (1.24),
on a reference state:

|Ψ({λ})〉 = B(λ1) . . .B(λn) |ref〉 (1.39)

where the interacting nature of the system is encoded in the fact that the arguments of
the ladder operator are not independent one from another, but must satisfy a system of n
algebraic equations, which will be written below.

As for the reference state, also called "pseudovacuum", it is de�ned by the property:

C(λ) |ref〉 = 0 (1.40)

In order to construct such a vector, we require that the action of the monodromy matrix
(1.24) to be:

T (λ) |ref〉 =

(
a(λ) whatever

0 d(λ)

)
|ref〉 (1.41)

6



From the speci�c spin models and L-matrices that are under study, it is clear that if we

chose every local variable to be in the "spin-up" state |↑〉 =

(
1
0

)
then the Lax operator

will act as a triangular matrix on it

La,m(λ− hm) |↑〉 =

(
α(λ− hm) |↑〉 6= 0

0 δ(λ− hm) |↑〉

)
a

(1.42)

Multiplication of many of these upper-triangular matrices in (1.17) on the di�erent sites will
preserve the upper-triangularity, leading to (1.41).

The action of the transfer matrix on this state is then simply written as

τ̂(λ) |ref〉 =

(
2N∏
l=1

α(λ− hl) + e−2iω
2N∏
l=1

δ(λ− hl)

)
|ref〉 ≡ (a(λ) + d(λ)) |ref〉 (1.43)

and de�nes the functions3 a and d that are to be used in the following. For the sake of
de�niteness, we write them here for the XXZ model:

a(λ) =
2N∏
m=1

sinh
(
λ− hm + iγ2

)
sinh (λ− hm)

, d(λ) =
2N∏
m=1

sinh
(
λ− hm − iγ2

)
sinh (λ− hm)

(1.44)

and for the rational case:

a(λ) =

2N∏
m=1

λ− hm − η
2

λ− hm
, d(λ) =

2N∏
m=1

λ− hm + η
2

λ− hm
, (1.45)

and the XXX chain, that can be obtained from this expression for η = −i:

a(λ) =
2N∏
m=1

λ− hm + i
2

λ− hm
, d(λ) =

2N∏
m=1

λ− hm − i
2

λ− hm
, (1.46)

We turn on the action of the two parts of the transfer matrix on a generic Bethe state.
Using the exchange relations (1.26), we see that:

A(µ)B(λ1) . . .B(λM ) |ref〉 =

M∏
l=1

b−1(λl − µ)a(µ)B(λ1) . . .B(λM ) |ref〉+

+
M∑
l=1

Cl(µ|{λ})B(λ1) . . . B̂(λl) . . .B(λM )B(µ) |ref〉 (1.47)

where the symbolˆdenotes ellipsis. The �rst term gives back the original state, multiplied by
a factor, while the other terms have the same number of rapidities, but one of those relative to
the state has been replaced by the argument of the operator. Because of the commutativity of
the Bs among them, we can focus on one term only and obtain all the others by permutation.
If in the exchange with B(λ1) one takes the second term in (1.26), then a factor

C1(µ|{λ}) = −c(λ1 − µ)

b(λ1 − µ)

M∏
j=2

b−1(λl − λ1)a(λ1)

3actually, the ratio of the two is determined
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is generated, multiplying the state in which the rapidity µ replaces λ1. This state is not
generated by any other exchange, hence commutativity of the Bs imposes that

Cl(µ|{λ}) = −c(λl − µ)

b(λl − µ)

M∏
j 6=l

b−1(λj − λl)a(λl) (1.48)

We can focus on the action of the other part of the operator and compute similarly:

D(µ)B(λ1) . . .B(λM ) |ref〉 =

M∏
l=1

b−1(µ− λl)d(µ)B(λ1) . . .B(λM ) |ref〉+

+
M∑
l=1

C̃l(µ|{λ})B(λ1) . . . B̂(λl) . . .B(λM )B(µ) |ref〉 (1.49)

and once again we have M unwanted terms, one for each root of the state, multiplied by a
factor

C̃l(µ|{λ}) = −c(µ− λl)
b(µ− λl)

M∏
j 6=l

b−1(λl − λj)d(λl) (1.50)

In order to obtain a diagonal action of the element of the transfer matrix, we add (1.47)
to (1.49) and ask that all unwanted terms cancel. This produces a system of M algebraic
equations for the M unknown rapidities {λ} that form the state:

a(λl)
M∏
j 6=l

b−1(λj − λl)− e−2iωd(λl)
M∏
j 6=l

b−1(λl − λj) = 0 j = 1, . . . ,M (1.51)

These are the Bethe equations (BE) for a state de�ned by a set of M rapidities. Of course,
various solutions with the same number of roots can exist.

To associate a physical meaning to this number, we need to remind that we are construct-
ing spin models, and speci�cally from the Lax operators (1.11,1.12,1.13). It is easily seen
that the reference state will be the state in which all the local spin variables have a de�nite
orientation, pointing upwards along the z axis

|ref〉 = |↑, . . . , ↑〉 (1.52)

Then, one can see from the form of the Bethe ansatz ladder operators (see below) that the
total magnetization of the state is:

S = N − M

2
(1.53)

To rephrase, to �nd all the states with given magnetization S, one should �nd all the
solutions of (1.51) with M = 2(S −M) rapidities. Completeness of the set of all solutions
of the Bethe equations is shown by direct inspection for small size systems, but there is no
available proof for generic sizes.

1.3 The Heisenberg chain

The Heisenberg chain is a paradigmatic model for ferromagnetism in one dimension. The
Hamiltonian reads:

Hxxz = −J
2N∑
n=1

[SxnS
x
n + SynS

y
n + cos γSznS

z
n] (1.54)
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with the anisotropy parameter γ introduced earlier.
There are several physical systems that can be modeled by this kind of Hamiltonian. For

example, the structure of KCuF3 is such that the unpaired electron on Cu is in a d orbital
which has its maximum overlap with the F− ions in the x direction and weak antiferromag-
netic exchange along the y and z direction. Then, if the temperature is high enough (higher
than the latter exchange interaction), the system behaves e�ectively as one-dimensional.

One more example is provided by the whole family of Bechgaard salts (TMTSF)2X, which
have been objects of intense study, as the �rst organic superconductors. They appear in
crystalline form, in which piles of (TMTSF) are sided by PF−6 (hexa�uorophosphate) or ClO4

(perchlorade) anions, which provide a negative charge and bind the salt together. The π
orbitals of sulfur have a high overlap among them, hence allowing high conductivity along
the direction of the cations. Conversely, due to the ionic nature of the compound, the transit
of an electron in the perpendicular plane is highly suppressed. In particular, there is one ion
for two (TMTSF) molecules, which implies that the chain is at quarter �lling.

More recently, the Heisenberg chain has been applied to explain the results of neutron
scattering experiments [16] on Azurite (Cu3(CO3)2(OH2)), with success in the prediction of
the dynamical properties in a magnetic �eld. Other applications can be found in [17, 18].

1.3.1 Construction of the Hamiltonian

We start by rewriting the operator (1.11) as

L(λ)a,m =
f1(λ)

sinh(λ+ i γ /2)
1+

fp(λ)

sinh(λ+ i γ /2)
Pa,m +

fz(λ)

sinh(λ+ i γ /2)
σzaσ

z
m (1.55)

with

f1(λ) =
1

2
(sinh(λ+ i γ /2) + sinh(λ− i γ /2)− sinh(i γ))

fP (λ) = sinh(i γ)

fz(λ) =
1

2
(sinh(λ+ i γ /2)− sinh(λ− i γ /2)− sinh(i γ))

In the homogenous case, the monodromy matrix is

T (λ) =
1

sinh(λ+ i γ /2)2N
(f1 1+fPPa,2N + fzσ

z
aσ

z
2N )

(
f1 1+fPPa,2N−1 + fzσ

z
aσ

z
2N−1

)
. . .

. . . (f1 1+fPPa,1 + fzσ
z
aσ

z
1) (1.56)

The transfer matrix is de�ned as usual as the trace over the auxiliary space of the previous
expression. In particular, we have that

τ(i γ /2) = Tra [T (i γ /2)] = P1,2P2,3 . . . P2N−1,2N = V (1.57)

is the shift operator.
Being V a translation operator, a lattice momentum can be de�ned as its generator, as

V = e−iaP , with a the lattice spacing. It follows that the �rst integral of motion is simply

Q0 = log τ(i γ /2) = −iaP (1.58)
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The second integral of motion has to be computed by using that

Da,m =
d

dλ
La,m(i γ /2) =

cosh2(i γ /2)1− cosh(i γ)Pa,m − sinh2(i γ /2)σzaσ
z
m

sinh(i γ)

La,m(i γ /2) = Pa,m

Then the derivative of the transfer matrix is
dτ̂

dλ
(i γ /2) =

∑
j

Tra [Pa,N . . . Pa,j+1Da,jPa,j−1 . . . Pa,1]

=
∑
j

Dj−1,jPN,N−1 . . . Pj+2,j+1Pj+1,j−1Pj−1,j−2 . . . P2,1 (1.59)

and the logarithmic derivative is simply written as

d log τ̂

dλ
(i γ /2) =

∑
j

Dj−1,jPj−1,j (1.60)

then one has

J

2
sinh(i γ)

d log τ̂

dλ
(i γ /2) =

J

2

2N∑
n=1

[
cosh2(i γ /2)Pn,n+1 − cosh(i γ)1− sinh2(i γ /2)σznσ

z
n+1

]
=

J

4

2N∑
n=1

[
σxj σ

x
j+1 + σyj σ

y
j+1 + cos γ σzjσ

z
j+1

]
+ const (1.61)

which is just (1.54), apart from a constant term.
It is instructive, now that we have (1.56), to try to understand the action of the B operators

for this speci�c model. In order to do this, we can try to construct them explicitly, for a few-
sites chain. Obviously, for one site only, the ladder operator just �ips an up spin downwards.
For a two-site chain, it reads:

B(λ) = A1(λ−h1)B2 −B1A2(λ−h2) (1.62)

and for a three-site chain:

B(λ) = A1(λ−h1)A2(λ−h2)B3+B1B2B3−A1(λ−h1)B2A3(h3−λ)+B1A2(h2−λ)A3(h3−λ)
(1.63)

where the notation used is:

Aj(λ) = q−i λqS
3
j − qi λq−S

3
j , Bj =

(
q−i λ − qi λ

)
S−j (1.64)

In principle, one can go on to higher and higher sizes, but the main feature of the operators is
already clear: as anticipated by (1.53) the Bs act on a state by �ipping downwards one spin,
which is localized at a given site with a certain amplitude.

1.3.2 Scalar products and matrix elements

A beautiful formula, due to N. Slavnov [19, 13], is known for the scalar product of two states,
provided that at least one of them is an eigenstate of the Hamiltonian of the XXZ chain:

〈ψ({µ})|
N∏
j=1

B(λj)|0〉 =

∏M
a=1 d(µa)

M∏
a>b

sinh(µa − µb) sinh(λb − λa)
· detH({µ}, {λ}) (1.65)
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in which H is

Hω
jk = a(λj) t(µk, λj)

M∏
l=1

sinh(µl − λj − iγ)

−e−2iωd(λj) t(λj , µk)

M∏
l=1

sinh(µl − λj + iγ) (1.66)

with 1 ≤ j, k ≤M , a, d de�ned in (1.44) and

t(µ, λ) =
−i sin γ

sinh(µ− λ) sinh(µ− λ− iγ)
. (1.67)

We would like to emphasize that the rapidities of the "bra" set satisfy the Richardson equa-
tions and therefore are an eigenstate of the transfer matrix, while those appearing in the "ket"
are just M complex numbers.

The quantum inverse problem (QIP) amounts to reconstructing the operators of the quan-
tum system under study (the S+, S−, Sz operators on every site of the spin chain) in terms
of the ABA operators A, B, C, D. Since these operators are used to build eigenstates and
they form the algebra (1.26), the solution of the inverse problem [13, 14] opens the way to
the computation of matrix elements and from these of expectation values and correlation
functions. For the Heisenberg chain, the results are:

S−m =

{
m−1∏
l=1

τ̂(hl)

}
B(hm)

{
m∏
l=1

τ̂(hl)

}−1

(1.68)

S+
m =

{
m−1∏
l=1

τ̂(hl)

}
C(hm)

{
m∏
l=1

τ̂(hl)

}−1

(1.69)

Szm =

{
m−1∏
l=1

τ̂(hl)

}
Tra [Ta(hm) · Sza]

{
m∏
l=1

τ̂(hl)

}−1

(1.70)

Matrix elements of operators in the context of quantum spin chains are denominated
"form factors". Throughout this thesis, we would like to reserve such a denomination to the
corresponding objects in quantum �eld theory. As explained in Chapter 5, the two families
have a close relationship in a lattice model of our interest: the inhomogeneous XXZ chain.
Because of this, to avoid confusion, we will refer to the ones coming from the lattice simply
as matrix elements, reserving the denomination of form factors to the corresponding objects
in the content of integrable �eld theories.

Given this solution, it is easy to show that the matrix element of the site magnetization
operator FS

z
m ({µ}, {λ}) = 〈{µ}|Szm |{λ}〉 between Bethe eigenstates can be represented as a

determinant

FS
z
m ({µ}, {λ}) =

φm−1({µ})
φm−1({λ})

m∏
l=1

sinh(µj − hm + iγ)

sinh(λj − hm + iγ)

det [H − 2Pm]∏
j>k sinh(µk − µj) sinh(λj − λk)

(1.71)

where the matrix H has been given in (1.66) and P is the rank-one matrix:

(Pm)j,k = t(µj − hm)
M∏
l=1

sinh(λl − λh + iγ) (1.72)
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The coe�cients φm({λk}) are instead:

φm({λk}) =

n∏
k=1

m∏
j=1

b−1(λk−ξj), (1.73)

with b de�ned in 1.5.
The proof is given in [13] and uses the solution of the inverse problem (1.70) by writing

σzm = 2
m−1∏
j=1

(A+D)(hj) · A(hm) ·
N∏

j=m+1

(A+D)(hj)− I, (1.74)

Ttherefore, taking the matrix element between two states, one hase

F zn(m, {µ}, {λ}) = 2 φ−1
m ({λk})φm−1({µj}) P1(hm, {µ}, {λ})− S({µ}, {λ})

with

P1(hm, {µ}, {λ}) = 〈0|
n∏
j=1

C(µj) A(hm)
n∏
k=1

B(λk) |0〉 . (1.75)

To compute the function P1, one uses the formula (1.47) for the action of the operator
A(hm) on an arbitrary state:

A(hm)
n∏
k=1

B(λk) |0〉 =
n∏
k=1

sinh(λk−hm − iγ)

sinh(λk−hm)

n∏
k=1

B(λk) |0〉 −

−
N∑
a=1

sinh(iγ)

sinh(λa−hm)

( n∏
k 6=a

sinh(λk−λa +iγ)

sinh(λk−λa)

)
B(hm)

n∏
k 6=a
B(λk) |0〉

(1.76)

Hence P1 reduces to a sum of scalar products, therefore to a sum of determinants according
to (1.65). It can be rewritten as a single determinant by means of the following formula for
the determinant of the sum of two matrices, one of which being of rank one. Indeed, if Â is
an arbitrary n×n matrix and B̂ a rank one n×n matrix, the determinant of the sum Â+ B̂
is:

det(Â+ B̂) = det Â+
n∑
j=1

det Â(j),

where

Â
(j)
ab = Âab for b 6= j,

Â
(j)
aj = B̂aj .

A determinant representation for the matrix elements

F−n (m, {µ}, {λ}) = 〈0|
n+1∏
j=1

C(µj) σ−m

n∏
k=1

B(λk) |0〉 , (1.77)

and

F+
n (m, {µ}, {λ}) = 〈0|

n∏
k=1

C(λk) σ+
m

n+1∏
j=1

B(µj) |0〉 , (1.78)
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where {λk}n and {µj}n+1 are solutions of Bethe equations, is also known. For two Bethe
states with spectral parameters {λk}n and {µj}n+1, the matrix element of the operator σ−m
can be represented as a determinant,

F−n (m, {µ}, {λ}) =
φm−1({µj})
φm−1({λk})

∏n+1
j=1 sinh(µj − ξm + η)∏n
k=1 sinh(λk−ξm + η)

×

× detn+1H
−(m, {µ}, {λ})∏

n+1≥k>j≥1 sinh(µk − µj)
∏

1≤β<α≤n sinh(λβ − λα)
,

(1.79)

and the (n+ 1)× (n+ 1) matrix H− is de�ned as

H−ab(m) =
sinh(η)

sinh(µa − λb)

(
a(λb)

n+1∏
j=1,j 6=a

sinh(µj − λb +η)− d(λb)
n+1∏

j=1,j 6=a
sinh(µj − λb−η)

)
for b < n+ 1, (1.80)

H−an+1(m) =
sinh(η)

sinh(µa − ξm + η) sinh(µa − ξm)
. (1.81)

The matrix element F+
n (m, {µ}, {λ}) of the operator σ+

m admits a similar representation,

F+
n (m, {µ}, {λ}) =

φm(λk)φm−1(λk)

φm−1(µj)φm(µj)
F−n (m, {µ}, {λ}). (1.82)

The proof of these representations is rather straightforward using 1.68, as the local oper-
ator σ−m can be expressed in terms of the transfer matrix and the operator B(ξm) as

σ−m =
m−1∏
j=1

(A+D)(ξj) · B(ξm) ·
N∏

j=m+1

(A+D)(ξj)

Since the Bethe states are eigenstates of the transfer matrix,

(A(ξj) +D(ξj))
n∏
k=1

B(λk) |0〉 =

( n∏
a=1

b−1(λa, ξj)

) n∏
k=1

B(λk) |0〉 , (1.83)

the product of the operators A(ξj) +D(ξj) contributes to the function F−n (m, {µ}, {λ}) as a
global factor:

F−n (m, {µ}, {λ}) = φ−1
m ({λk})φm−1({µj}) 〈0|

n+1∏
j=1

C(µj) B(ξm)

n∏
k=1

B(λk) |0〉 . (1.84)

Here we used a simple property of the solutions of Bethe equations,
n∏
k=1

N∏
j=1

b−1(λk, ξj) = 1.

The right hand side of (1.84) thus reduces to a scalar product,

F−n (m, {µ}, {λ}) = φ−1
m ({λk})φm−1({µj}) Sn+1({µj}, {ξm, λ1, . . . , λn}), (1.85)

which, {µj} being a solution of Bethe equations, can be computed by means of (1.65). Writing
this explicitly, the representation (1.79) is obtained.

The form factor F+
n (m, {µ}, {λ}) can be calculated analogously using the representation

for the operator σ+
m given by 1.68.
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1.4 The Richardson model

The Richardson model [20, 21, 22] belongs to the class of fully connected models. The
Hamiltonian is written in terms of creation and destruction operators of fermions in energy
levels α = 1, . . . , N with spin ↑ or ↓ and reads:

HR =

N∑
α=1

hα

(
c†α↑cα↑ + c†α↓cα↓

)
− g

N∑
αβ=1

c†α↑c
†
α↓cβ↓cβ↑ (1.86)

where the hα are the single-particles energies of the N levels and g is a real (positive or
negative) parameter, which models the matrix element of the scattering among Cooper pairs
of spin-reversed electrons.

The Richardson model has been studied for long time in the context of nuclear super-
conductivity, where it was �rst applied [20, 21].More recently, it has been applied with great
success to the study of the tunnelling spectra of metallic nanograins [23, 24, 25], where the
spectroscopic gap between Al grains with an odd or even number of electrons was explained
with the existence of pairing correlations among these [26]. Moreover, the model is important
in connection to the �nite-size scaling of the BCS theory of superconductivity [27, 28, 29, 30].

Justi�cation for the use of (1.86) in condensed matter will be given in Section 2.1 in the
context of BCS theory of superconductivity. To fully exploit the formalism presented for spin
models, one can rephrase the Hamiltonian in terms of the su(2) algebra generators:

HR = −2

N∑
α=1

hαS
z
α − g

N∑
αβ=1

S+
α S
−
β +

N∑
α=1

hα (1.87)

or equivalently in terms of Cooper pairs of fermions, i.e., of hardcore bosons:

HR = 2
N∑
α=1

hαb
†
αbα − g

N∑
αβ=1

b†αbβ (1.88)

under the de�nitions:

b†α = S−α = c†α↑c
†
α↓ , bα = S+

α = cα↓cα↑ , 2Szα = 1− c†α↑cα↑ − c
†
α↓cα↓ (1.89)

Note that the Hamiltonians (1.88,1.87) above are truly equivalent because, in addition to the
formal mapping of the operators, there is also a one-to-one correspondence among the states
in the Hilbert space of hard-core bosons and of spins, since:

|1〉 ↔ |↓〉 , |0〉 ↔ |↑〉 (1.90)

On the other hand, the Hilbert spaces on which the operator (1.88) acts is only a subspace
of the full space on which (1.86) acts. In facts, the states which are singly occupied, i.e.,
those in which there is only one electron with either ↑ spin or ↓ spin, are una�ected by the
interaction and the net e�ect arising from their presence is that of "blocking" the level, by
preventing the scattering of the other pairs on it. In other words, the full Hilbert space is
divided into sectors with a given number of unpaired electrons and with given distribution
over the levels. In each of these subspaces, the bosonic Hamiltonian (1.88) only describes the
doubly occupied ("unblocked") levels, while the free part of (1.86) describes the remaining
electrons.
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1.4.1 Algebraic construction

Integrability of the model [31] was not realized immediately. Here we would like to emphasize
the fact that it can be constructed from the general solution of the Yang-Baxter equation of
section 1.2.1. An important property (�quasi-classical� property) of the matrix (1.10) is that
it reduces to the identity in the limit:

lim
η→0

R(u) = 1 (1.91)

and because of this, it can be parametrized as:

R(u) = 1+ηR̃(u) +O(η2) (1.92)

Here we follow the construction of [32]; the starting form of the monodromy matrix is the
one given in (1.17), but here we chose to scale also the twist parameter with η as ω = η/g.
In other words, the Sklyanin matrix is Ka = e−2iη/g(σza−1). Note that we consider the explicit
form of the L-operator anticipated in (1.12).

Considering the reference state |↑, . . . , ↑〉 as above, we can compute the action of the
monodromy matrix, yielding (1.45). From this, the Bethe equations are readily derived to be

a(wj)

d(wj)

M∏
k 6=j

wj − wk − η
wj − wk + η

= 1 (1.93)

as well as the eigenvalue of the transfer matrix on a Bethe state (1.39) de�ned by a set {w}
of rapidities:

τ(u) = a(u)
M∏
j=1

u− wj + η

u− wj
+ e

2η
g d(u)

M∏
j=1

u− wj − η
u− wj

(1.94)

Once again, we de�ne the transfer matrix according to (1.34), but in the following the
construction of the Hamiltonian will slightly di�er from the one for the Heisenberg chain. In
facts, we can de�ne 2N operators by:

τ̃α = lim
η→0

lim
u→hα

u− hα
η2

τ̂(u) (1.95)

called Gaudin Hamiltonians. They can be written explicitly as:

τ̃α = −2

g
Szα +

∑
β 6=α

2~Sα · ~Sβ
hα − hβ

(1.96)

and possess the key property of being mutually commuting:

[τ̃α, τ̃β] = 0 (1.97)

as derived from the commutativity of transfer matrices and the de�nition (1.95). We are in
the position of de�ning an Hamiltonian through:

HR = −g
2N∑
α=1

hατ̃α +
g3

4

2N∑
α,β=1

τ̃ατ̃β +
g2

2

2N∑
α=1

τ̃α − g
2N∑
α=1

~Sα · ~Sα (1.98)
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which produces exactly (1.87). Due to this construction, we have 2N integrals of motion (1.96)
commuting among themselves and with the Hamiltonian. Note that this is so independently
of the spin representation of su(2), but throughout all this work, we are going to use the
spin−1/2 representation.

Since the RTT-relation (1.23) must be satis�ed order by order, then one also has:

T (u)a = 1+ηT̃ (u) +O(η2) (1.99)

then the second order de�nes the Gaudin algebra (GA) much in the same way as for the YBA,
since [

T̃a(u), T̃b(v)
]

=
[
T̃a(u) + T̃b(v), R̃a,b(u− v)

]
(1.100)

Again, writing the components of (1.99) in full:

A(u) = 1+η Ã(u) +O(η2) (1.101)

B(u) = η B̃(u) +O(η2) (1.102)

C(u) = η C̃(u) +O(η2) (1.103)

D(u) = 1+η D̃(u) +O(η2) (1.104)

one obtains their commutation relations[
Ã(u), Ã(v)

]
=

[
D̃(u), D̃(v)

]
= 0 (1.105)[

B̃(u), B̃(v)
]

=
[
C̃(u), C̃(v)

]
=
[
Ã(u), D̃(v)

]
= 0 (1.106)[

B̃(u), C̃(v)
]

=
Ã(u)− Ã(v) + D̃(v)− D̃(u)

u− v
(1.107)[

Ã(u), B̃(v)
]

=
B̃(u)− B̃(v)

u− v
(1.108)[

Ã(u), C̃(v)
]

=
C̃(v)− C̃(u)

u− v
(1.109)[

D̃(u), B̃(v)
]

=
B̃(v)− B̃(u)

u− v
(1.110)[

D̃(u), C̃(v)
]

=
C̃(u)− C̃(v)

u− v
(1.111)

The realization of the Gaudin-Yang-Baxter algebra associated with the monodromy matrix
in the semiclassical limit can be written explicitly in a simple form:

Ã(w) = −1

g
1+

∑
α

Sz

w − hα
(1.112)

B̃(w) =
∑
α

S−

w − hα
(1.113)

C̃(w) =
∑
α

S+

w − hα
(1.114)

D̃(w) =
1

g
1−

∑
α

Sz

w − hα
(1.115)
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We are going to repeat now the construction of eigenstates of the transfer matrix to �rst
order in the �quantum� parameter η exactly as in Section 1.2.2. The only di�erence is that
we are using the Gaudin algebra to write the states:

|{w}〉 = B̃(w1) . . . B̃(wM ) |↑↑ . . . ↑〉 (1.116)

Note that the generalized ladder operator B̃ (1.113) �ips a spin(creates a boson) on every
level with an amplitude of probability which depends from its argument. The �lling of the
level α of a state which is created by the action of one operator (1.113) is just:

fα =
1∑

β
|w−hα|2

|w−hβ|2
(1.117)

Also the functions a, d de�ned from the eigenvalues of the transfer matrix on the reference
state (1.43) are expanded in η:

a(u) = 1 + ηã(u) +O(η2) , d(u) = 1 + ηd̃(u) +O(η2) (1.118)

and the rapidities {w1, . . . , wM} of the eigenstates satisfy a system of equations which is
derived from the rational model ones (1.93) system by expanding in η to �rst order:

1

g
+

N∑
α=1

1

wj − hα
−

M∑
k 6=j

2

wj − wk
= 0 j = 1, . . . ,M (1.119)

Since �rst proposed by Richardson, these equations are are named after him. Analogously,
all eigenvalues of the conserved operators (1.96) on a Bethe state |{w}〉 are obtained from
(1.95) and (1.94) to be:

λα =
2

g
+
∑
β 6=α

1

hβ − hα
−

M∑
j=1

2

hα − wj
(1.120)

By substituting the eigenvalues (1.120) into the Hamiltonian (1.98), it is possible to write the
eigenenergy of a state (1.116) as:

E{w} = 2
M∑
j=1

wj −
2N∑
α=1

hα (1.121)

1.4.2 Matrix elements

The rational limit of the formula (1.65) allows to treat the Richardson model and the isotropic
Heisenberg chain:

〈{w}|
∏
j

B(vj) |ref〉 =

∏M
j=1 d(wj)∏

j>k(wj − wk)(vk − vj)
detF (1.122)

The matrix appearing above is now given by:

Hj,k =
ηa(vj)

∏M
l=1 (wl − vj + η)

(wk − vj) (wk − vj + η)
−
ηd(vj)

∏M
l=1 (wl − vj − η)

(wk − vj) (wk − vj − η)
(1.123)
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where the functions a, d refer to the rational case (1.45).

〈Ψ({w})|
∏

B̃(vj) |↑, . . . , ↑〉 =

∏M
j=1 d(wj)∏

j>k(wj − wk)(vk − vj)
det H̃ (1.124)

where by Ψ({w}) we want to emphasize that the rapidities of the "bra" set satisfy the Richard-
son equations and therefore are an eigenstate of the transfer matrix, while those appearing
in the "ket" are just M complex numbers. The matrix H̃ appearing above is obtained from
(1.123) in the quasi-classical limit:

H̃j,k = lim
η→0

1

η2
Hj,k =

∏M
l=1(wl − vk)
(wj − vk)2

1

g
−

2N∑
α=1

1

vk − hα
+
∑
l 6=j

2

vk − wl

 (1.125)

An important case of the above formula, necessary for extracting numerical values for
observables, is the one {w} = {v}, for which the Slavnov formula yields the norm of the
Bethe state:

〈{w}|{w}〉 = detK (1.126)

where

Kj,k =

{
ã′(wj)− d̃′(wj)−

∑M
l 6=j

2
(wj−wl)2

=
∑2N

α=1
1

(wj−hα)2
−
∑M

l 6=j
2

(wj−wl)2
j = k

2
(wj−wk)2

j 6= k

(1.127)
To compute the matrix elements for Szα, one uses that D̃ has simple poles when the

argument assumes the values of one of the levels hα. The derivation goes like for the XXZ
case, or one can directly make use of (1.71) in the rational case, then consider the quasi-
classical limit, so that:

〈{w}|Szα |{v}〉 = − lim
u→hα

(u− hα) 〈{w}| D̃(u) |{v}〉

= −
M∏
l=1

wl − hα
vl − hα

1∏M
k>j(vk − vj)(wj − wk)

det
[
H̃ − 2P̃α

]
(1.128)

The rank-one matrix P̃ is obtained from (1.72) by applying the usual procedure of analytic
continuation γ → iγ, the rational limit and the quasi-classical limit:[

P̃α

]
j,k

= lim
η→0

1

η2
[Pα]j,k =

∏
l 6=k(vl − vk)
(wj − hα)

(1.129)

We will also need the action of S+, S− between two states, which can be obtained either
from (1.79) the or by using the explicit form of B̃, D̃ as follows:

〈{v}|S−α |{w}〉 = 〈{w}|S+
α |{v}〉 = lim

u→hα
(u− hα) 〈{w}|{v}, u〉

=

∏M
l=1 (wl − hα)∏M−1
l=1 (vl − hα)

det H̃−∏
j<k (vk − vj) (wj − wk)

(1.130)

where

H̃−j,k =

{
H̃j,k k < M

1
(wj−hα)2

k = M
(1.131)
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Figure 1.2: Real and imaginary parts of the roots of Richardson equations for an excited state
with N = 12, M = 7, as g is varied. Roots collide and form a complex conjugate pair, or
recombine and split. When g grows, they can go to −∞ alone or in pairs, or they can stay
�nite, "trapped" between two adjacent levels.

1.4.3 Properties of Bethe states

The eigenstates are constructed like in (1.39), but with the use of the operator B̃ in (1.113) and
rapidities satisfying (1.119).

Figure 1.1: The electrostatic analogy
of the Richardson equations

This system of equations have a simple analogy in clas-
sical electrostatics: they left-hand side is the force act-
ing on a mobile particle ("pairons") with unit charge
at position wj , as produced by the electric �eld gen-
erated by a set of sources ("orbitons") with double
charge, �xed on the real axis at positions hα. More-
over, external �eld, whose value is 1/g, is present. The
set of equations (1.119) express then equilibrium con-
dition for the mobile charges. This is shown in Figure
1.1

With this picture in mind, it is easy to �gure out
that mobile charges may either be found in between
two �xed charges (real roots) or in pairs, symmetri-
cally disposed on the two sides of the real axis (com-
plex conjugated roots).

Solutions of the Richardson equations are easily
guessed in the limit g → 0, when the Hamiltonian
just accounts for independent hardcore bosons distributed on di�erent levels. In facts, the
divergence from the �rst term must be compensated by an opposite one from the second term,
which tells us that the solutions are all real and lie slightly below (O(g)) one of the energy
levels. The full Hilbert space is then obtained by the 2N con�gurations in which M roots are
assigned to levels for each M = 0, 1, . . . , N .

In the opposite limit g →∞, the Hamiltonian becomes

HR,g→∞ ' −g
(
~S · ~S − (Sz)2 − Sz

)
(1.132)

and conserves the total spin of the state and its z-projection. Numerical solutions shows that
rapidities can either diverge to −∞ proportionally to g or remain �nite, with real part which
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stays between two energy levels; consequently, the Richardson equations assume a simpli�ed
form [33] . For the r diverging roots, energy levels and �nite roots can be neglected in a �rst
approximation, and (1.119) become:

1

g
+
N

wj
− 2(M − r)

wj
=

r∑
k 6=j

2

wj − wk
(1.133)

Instead, for the remaining M − r roots, one has:

N∑
α=1

1

wj − hα
= 0 (1.134)

If one multiplies each of the (1.133) by the corresponding wj and adds all of them, then the
leading part of the energy can be computed as:

E ' −gr(N − 2M + r + 1) (1.135)

by comparing this expression with the strong coupling Hamiltonian (1.132) the number r of
roots that diverge in the strong coupling limit and the total spin of a state are related [33]
by:

r = s+M − N

2
(1.136)

An algorithm which can follow the evolution of the roots with g has to take into account
these changes in the nature of the solution, where the roots become complex conjugate. These
critical points, for random choices of the h's can occur at particularly close values of g and
this can create troubles for the algorithm.4 In order to pass the critical points a change of
variable is needed, and one natural choice is [34]:

w+ = 2hc − w1 − w2

w− = (w1 − w2)2

in which w1 and w2 are the root colliding on the level hc.
When more than a pair of roots collide in a too small interval of g this change of variables

may not be su�ciently accurate and one should think of something else (if one does not want
to reduce the step in the increment of g inde�nitely). The most general change of variables
which smooths out the evolution across critical points is that which goes from the roots wj
to the coe�cients ci of the characteristic polynomial p(w) �i.e. the polynomial whose all and
only roots are the wj 's.

This polynomial is quite interesting in itself as it satis�es a second order di�erential equa-
tion whose polynomial solutions have been classi�ed by Heines and Stjielties [35].5 Following
the evolution of the coe�cients ci(g) is a viable alternative to following the roots but we
found out that the best strategy is a combination of both evolutions. Therefore we follow the

4This problem is not so serious for the ground state and �rst excited states so one can go to much higher
values of N without losing accuracy.

5The equation is −h(x)p′′(x) +
(
h(x)
g

+ h′(x)
)
p′(x)− V (x)p(x) = 0, where h(x) =

∏N
α=1(x− hα), V (x) =∑N

α=1
h(x)Aα

x−hα
. The problem to be solved is to �nd a set of Aα's such that there exists a polynomial solution

of this equation. The solution will automatically satisfy also Aα = p′(hα)
p(hα)

.. For a more general method based

on similar approach, see [36]
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evolution of the roots, extrapolating the coe�cients and using them to correct the position of
the roots at the next step in the evolution. In this way we do not implement any change of
variables explicitly and we do not have to track the position of critical points. This algorithm,
implemented in Python, can be used on a desktop computer to �nd the roots of typical states
with about 50 spins.
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Part I

Integrability on the lattice
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Chapter 2

Coupled Richardson models

This chapter approaches the study of the Josephson e�ect, with particular reference to the
BCS-BEC crossover, through the few-body approximation constituted by the Richardson
model.

Important technological applications of this e�ect are already widely used. For instance,
superconducting quantum interference devices (SQUIDs), very sensitive magnetometers that
operate via the Josephson e�ect, superconducting single-electron transistors (SSETs), circuit
components constructed of superconducting materials making use of the Josephson e�ect
to achieve novel properties, and rapid single �ux quantum (RSFQ), a digital electronics
technology that relies on Josephson junctions to process digital signals.

As it will be seen in this chapter, the Richardson model captures the essential features
of the BCS theory of superconductivity, with the important extra feature of being exactly
solvable. Moreover, it gives access to the few-body physics of superconducting devices, which
has proven to play an important role in nanoscopic physics and may be relevant in issues
related to miniaturization.

A review part, containing essential information on the BCS superconductivity, on the
Josephson e�ect and on the BCS-BEC crossover, is contained in the �rst section. Our new
results are presented in section 2.4. A warning for the reader is that here we will label the
inhomogeneities in the construction of the transfer matrix as εα, since we are going to use
them as single�particle energies (unlike in Chapter 3): all the formulas of Chapter 1 hold,
provided one substitutes hα → εα.

2.1 The BCS theory of superconductivity

Conduction electrons, residing in a crystal lattice, may be subject to an e�ective attractive
interaction, resulting from the coupling with the lattice phonons [37, 38]. Although weak,
this interaction is enough to bind quasiparticles of the Fermi liquid together [39] into Cooper
pairs, with a �nite binding energy 2 ∆BCS. As a result, couples of fermions behave as bosons,
that at low temperatures can form a Bose condensate.

Let us consider, in the grand-canonical ensemble, the many-body Hamiltonian obtained
by a generic density-density interaction:

H − µN =
∑
kσ

(εk − µ) c†k,σck,σ −
∑

σ1,...,σ4

∑
k1+k2=k3+k4

Vk1,k2;k3,k4c
†
k1,σ1

c†k2,σ2
ck3,σ3ck4,σ4 (2.1)

where N is the total number operator and the ck,σ, c
†
k,σ are fermionic operators that destroy
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or create an electron with momentum k and spin orientation σ =↑, ↓= +,−. They obey the
anticommutation rule {

ck,σ, c
†
k′,σ′

}
= δk,k′δσ,σ′ (2.2)

Moreover, we have the matrix element

Vk1,k2;k3,k4 =
1

2

∫
dx1

∫
dx2φk1(x1)∗φk2(x2)∗V (x1 − x2)φk2(x3)φk1(x4) (2.3)

describing the momentum-conserving scattering of pairs of electrons among levels. If we
assume that the dependence on momenta of the matrix element of the potential is weak, we can
approximate 〈k1k2|V |k3k4〉 ' g which corresponds to a potential of the form V (x) ∼ gδ(x),
i.e., a point contact interaction. The resulting Hamiltonian is

H − µN =
∑
kσ

(εk − µ) c†k,σck,σ −
g

Ω

∑
σ1,σ2

∑
k1+k2=k3+k4

c†k1,σ1
c†k2,σ2

ak3,σ2ak4,σ1 (2.4)

with Ω the volume (or any other appropriate normalization). We will incorporate this factor
into the coupling constant, in the following.

To treat this Hamiltonian, it is convenient to de�ne the following canonical transformation
[40]:

ck,↑ = ukAk + v∗kB
†
−k , ck,↓ = ukBk − v∗kA

†
−k (2.5)

with the constraint
|uk|2 + |vk|2 = 1 (2.6)

necessary for the new quasiparticle operators to satisfy the anticommutation relations (2.2).
The Bogolubov transform above may be inverted to give

Ak,σ = ukck ↑ − σvkc†−k,↓ , Bk,σ = ukck ↓ + σvkc
†
−k,↑ (2.7)

The diagonal part of (2.1) is readily written, on the pseudovacuum, as∑
k,σ

(εk−µ)c†k,σck,σ =
∑
k,σ

(εk−µ)
[
2v2

k + (u2
k − v2

k)(A†kAk +B†kBk) + 2ukvk(A†kB
†
−k +B−kAk)

]
(2.8)

The attractive interaction can make the Fermi sea unstable [41]; as a consequence, the
quasiparticle operators above play an important role, since they de�nes an associated pseu-
dovacuum in a natural way as:

Ak |v〉 = 0 (2.9)

Let us consider a simple expectation value on the newly�de�ned state〈
c†k,σcq,σ

〉
= δk,qv

2
k = δk,qnk,σ (2.10)

which shows how the electronic occupation number is related to the Bogolubov transform.
The interaction part can be separated into two contributions, according to the spin ori-

entation of the scattered pairs which read:

Va = −1

2

∑
kk′q

Vk,k′;k+q,k′−q
∑
σ

c†k,σc
†
k′,σck′−q,σck+q,σ

Vb = −
∑
kk′q

Vk,−k′;k+q,−k′−qc
†
k,↑c

†
k′,↓ck′−q,↓ck+q,↑ (2.11)
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By substituting the de�nition (2.5), they are brought into the form:

Va = N(Va)−
∑
k,k′

(
Vk,k′;k,k′ − Vk,k′;k′,k

)
[v2

kv
2
k′ + v2

k′(u
2
k − v2

k)(A†kAk +B†−kB−k)

+2v2
k′ukvk(A†kB

†
−k +B−kAk)]

Vb = N(Vb)−
∑
k,k′

(Vk,−k;k′,−k′ukvkuk′vk′ + Vk,−k′;k,−k′v
2
kv

2
k′)

−
∑
k,k′

[Vk,−k′;k,−k′(u
2
k − v2

k)v2
k′ − 2Vk,−k;k′,−k′ukvkuk′vk′ ](A

†
kAk +B†−kB−k)

−
∑
k,k′

[Vk,−k;k′,−k′(u
2
k − v2

k)uk′vk′ + 2Vk,−k′;k,−k′ukvkv
2
k′ ](A

†
kB
†
−k +B−kAk)]

(2.12)

where N(O) denotes the normal ordered form of the operator with respect to the state (1.40),
which does not contribute when contracted on it. We now de�ne a new single-particle energy
εk = εk−

∑
k′ Vk,k;k′,k′v

2
k′ and measure it from the chemical potential ξk = εk−µ. We also

introduce the energy gap by the relation

∆k =
∑
k′

Vk,−k;k′,−k′uk′vk′ (2.13)

Then, following [42], it is possible to collect together all the similar contribution and to rewrite
the Hamiltonian as:

K = U +H1 +H2 (2.14)

where

U = 2
∑
k

ξkv
2
k −

∑
k

ukvk∆k +
∑
kk′

(Vk,k′;k,k′ − Vk,k′;k′,k + Vk,−k′;k,−k′)v
2
kv

2
k′

−
∑
kk′

Vk,−k;k′,−k′ukvkvk′vk′ (2.15)

H1 =
∑
k

[(u2
k − v2

k)ξk + 2ukvk∆k](A†kAk +B†−kB−k) (2.16)

H2 =
∑
k

[2ukvkξk − (u2
k − v2

k)∆k](A†kB
†
−k +B−kAk) (2.17)

Here, we see why the choice (2.5) is successful in dealing with the pairing interaction in (2.1):
it is possible to impose the constraint

2ξkukvk = (u2
k − v2

k)∆k (2.18)

to make the part which is not diagonal in the new operators vanish. The above equation,
together with (2.6), has the solution

u2
k =

1

2

1 +
ξk√

ξ2
k + ∆2

k

 , v2
k =

1

2

1− ξk√
ξ2
k + ∆2

k

 (2.19)

while the constraint becomes
2ukvk = ∆k/

√
ξ2
k + ∆2

k (2.20)
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and, together with (2.13), de�nes the BCS gap equation:

∆k =
1

2

∑
k′

Vk,−k′;k,−k′
∆k′√
ξ2
k + ∆2

k

(2.21)

for the unknown function ∆k. Whenever the two�body potential allows a nontrivial solution
∆BCS of this equation, the latter is called a superconducting solution.

Then the Hamiltonian becomes:

K = U +
∑
k

√
ξ2
k + ∆BCS

2(A†kAk +B†−kB−k) (2.22)

which shows that the state (2.9) is indeed a vacuum state, above which positive�energy

excitations (pseudoparticles) can be created. They have energy
√
ξ2
k + ∆BCS

2, so that there
is a gap in the spectrum whenever this equation has a nonzero solution.

Note that the expectation value of the total number of electrons on the vacuum, according
to (2.10) and (2.19), is given by

n =
∑
k

〈nk,+ + nk,−〉 =
∑
k

2v2
k =

∑
k

1− ξk√
ξ2
k + ∆BCS

2

 (2.23)

taking the name of number equation.
A great simpli�cation is made if we assume that the matrix elements are constant in some

region around the Fermi surface and vanish elsewhere:

Vk,−k′;q,−q ' gΘ(ω − |ξk|)Θ(ω − |ξq|) (2.24)

which is applicable when the interaction is originated by the scattering of phonons, as in the
BCS theory [43]. In this case the gap is indeed independent from the level. If we write our
pairing Hamiltonian only for the levels within this region (the others are free) within the
approximation (2.24) and we relax the constraint of conservation of momenta, we obtain a
mean��eld approximation or reduced BCS model, being nothing else but (1.86).

Substitution of (2.19) into the expectation value (2.15) of the grand�canonical Hamiltonian
on the new vacuum (2.9) yields the ground state energy:

E0

V
=
∑
k

εk− εk ξk√
ξ2
k + ∆BCS

2
− 1

2

∆BCS
2√

ξ2
k + ∆BCS

2

 (2.25)

These equations are correctly reproduced by the Richardson model in the thermodynamic
limit, as will be shown in the next section.

2.1.1 Large-N limit of the Richardson model

The Richardson model (1.86) arises from (2.4) by loosening the requirement of conservation
of momentum in the interaction. Using the behaviour of solutions described in section (1.4.3)
in the thermodynamic limit, it is possible to show that the Richardson model reproduces
the BCS theory of superconductivity [44, 28, 29]. We remind the reader that in the ground
state of a large system in which an even number of roots (particles) is present, all the roots
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come in complex conjugated pairs, provided the pair scattering g is large enough. These pairs
distribute in such a way to form an arch Γ in the complex plane, with extremes at the points:

µ± i∆BCS (2.26)

The thermodynamic limit we are interested in is obtained by letting the number of energy
levels go to in�nity in such a way that their range Ω = [−ω/2, ω/2] is kept constant, in a
way that mimics a Debye energy. In other words, the energy spacing decreases like d ∼ 1/N .
Moreover, we should always consider a �xed �lling x.

N →∞ , M →∞ , M/N = x , g → 0 , G = g N (2.27)

The energy levels will therefore be most conveniently described by a density ρ(ε) of negative
charge, located on the real axis. The total charge in the interval will be given by

N = 2

∫
Ω
ρ(ε)dε (2.28)

in which the factor two comes from the fact that the "pairons" have double charge with
respect to the "orbitons". The total number of pairs and the total energy are �xed by:

2M =

∫
Γ
r(w)|dw| (2.29)

E =

∫
Γ
wr(w)|dw| (2.30)

whereas equations (1.119) become

2

∫
ρ(ε)

w − ε
dε− 2P

∫
r(v)

w − v
|dv|+ 1

G
= 0 , w ∈ Γ (2.31)

We imagine to start from the case in which we have a �nite number of levels and we look for
an analytic �eld H(w) outside the curves Γ and Ω in the complex plane, in such a way that
the poles of the �eld are in the position of the mobile charges and their residues correspond
to the charge values.

Res(H, εα) =
1

2πi
(2.32)

In other words, we are looking for a function that for a �nite number of rapidities looks like:

H(w) =
∏
j

2

w − wj
=

1

g
+
∑
α

1

w − εα
(2.33)

where the wjs are the positions of the roots in the ground state. In the thermodynamic limit,
all sources come closer and closer one to the other and a line of discontinuity Γ is created.
The value of the �eld on the two sides of the cut provides the charge density of this region,
or:

r(w)|dw| = 1

2πi

(
H(w+)−H(w−)

)
dw (2.34)

where we denoted w± = w ± ε for some vanishingly small ε. In order to achieve this, we
should look for a double-valued function with a cut along the curve. A good candidate is:

E(w) =
√

(w − µ− i∆BCS)(w − µ+ i∆BCS) (2.35)
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Moreover, since the position of mobile charges is �xed by the Richardson equations (1.119),
from (2.33) we can argue that the �nal form of the �eld will be:

H(w) =
√

(w − µ− i∆BCS)(w − µ+ i∆BCS)

∫
Ω

ϕ(ε)

ε− w
d ε (2.36)

where ϕ is an analytic function that is required to possess all the moments:∫
Ω
εmϕ(ε)dε <∞ m ∈ N (2.37)

To determine this function, we make use of (2.31) and de�ne a closed contour L that encloses
all the "pairons", but not the "orbitons" positions. It follows that:

P

∫
Γ

r(v)

w − v
|dv| =

∫
dv

2πi

√
(v − µ− i∆BCS)(v − µ+ i∆BCS)

w − v

∫
Ω

ϕ(ε)

ε− v
d ε

=

∫
Ω
ϕ(ε)dε−

∫
Ω

ϕ(ε)
√

(ε− µ− i∆BCS)(ε− µ+ i∆BCS)

ε− w
(2.38)

in which the �rst integral contains the poles at in�nity and the second the ones in Ω. Plugging
(2.38) into (2.31), we �nd that the unknown function ϕ is determined to be

ϕ(ε) =
ρ(ε)√

(ε− µ− i∆BCS)(ε− µ+ i∆BCS)
(2.39)

1

2G
=

∫
Ω

ρ(ε)√
(ε− µ− i∆BCS)(ε− µ+ i∆BCS)

=

∫
Ω

ρ(ε)√
(ε− µ)2 + ∆BCS

2
(2.40)

therefore

H(w) =
√

(w − µ− i∆BCS)(w − µ+ i∆BCS)

∫
Ω
dh

ρ(ε)

(ε− w)
√

(ε− µ− i∆BCS)(ε− µ+ i∆BCS)
(2.41)

whose value at in�nity is �xed by (2.40). We easily recognize in the latter the BCS gap
equation (2.21) in the continuum limit. We now manipulate (2.29) as:

2M =

∫
L

dw

2πi
ε(w) =

∫
Ω

ρ(ε)√
(ε− µ)2 + ∆BCS

2

∫
L

dw

2πi

√
(w − µ)2 + ∆BCS

2

ε− w∫
Ω

ρ(ε)√
(ε− µ)2 + ∆BCS

2

(√
(ε− µ)2 + ∆BCS

2 − (ε− µ)

)

=

∫
Ω
ρ(ε)

1− (ε− µ)√
(ε− µ)2 + ∆BCS

2

 (2.42)

in which the second term comes from the residue (ε − µ) of the second-order pole of the
function E(w)/w at in�nity, after deforming the contour of integration in order to encircle
the interval Ω. This equation corresponds to the number equation (2.23) in the BCS theory.
Following an analogous path for (2.30), we obtain that the ground state energy is:

E0 =

∫
dw

2πi
wH(w) =

∫
Ω
ερ(ε)

1− ε− µ√
(ε− µ)2 + ∆BCS

2

 dh− ∆BCS
2

4G
(2.43)
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One has, for instance, that at vanishing interaction between pairs, the pair chemical potential
(twice as much as the single electron chemical potential) is just equal to the Fermi energy
εF = 2µ, i.e., the system is composed of noninteracting fermions doubly occupying the lowest
energy shells.

What can the Richardson model tell us for a nanoscopic superconductor? When is g
already big enough for the system to show superconducting behaviour? For answering to
these question, we need the analysis of [28, 45], which is based on a 1/M expansion and on
the electrostatic analogy of section 1.4.3. This generalizes the results above and shows that
the �rst order in 1/M yields the discrete form of the BCS equations (2.21,2.23).

One way of characterizing the superconducting behaviour is the presence of a gap in the
spectrum, which can be computed from the Bethe roots (see eq. 2.26). Here and in the
following, in order to account for a �nite single-particle level spacing, we need to de�ne an
intensive Richardson gap [36], which is related to the BCS gap by

∆BCS = N∆ (2.44)

Note that the LHS is the parameter which can be extracted from the root con�guration. The
gap is roughly proportional to N g. If one chooses as a criterion the condition ∆BCS ' d,
then this is met for g∗ ∼ 1/N . It is also possible to exploit the analysis of [28, 45], which is
based on the electrostatic analogy the Richardson equations [44, 29]. In the large�N limit,
the parameters of the model satisfy the BCS equations:

N − 2M =
∑
α

1− εα − µ√
(εα − µ)2 + ∆2

BCS

 (2.45)

and
1

2g
=
∑
α

1√
(εα − µ)2 + ∆2

BCS

(2.46)

A more re�ned way is to use the fact that the gap is directly related to the occupation
number of each level since, as we saw, the superconducting ground state is characterized by
a smoothing the Fermi surface arising from the scattering of the pairs. Then, following [46],
one can consider the order parameter

Ψ = 2
∑
α

uαvα (2.47)

which reaches its saturation value (unit value) when the occupation of the levels is uniform
over all the energies. This would actually be a condition for strong superconductivity. Opera-
tively, one can obtain the Bogolubov parameters in the expression above from the expectation
values: 〈

b†αbα

〉
= v2

α ,
〈
bαb
†
α

〉
= u2

α ,
〈
b†αbβ

〉
= uαvαuβvβ (2.48)

and also:
uαvα =

√〈
S−α S

+
α

〉 〈
S+
α S
−
α

〉
=

√
1/4− 〈Szα〉

2 (2.49)
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Figure 2.1: Order parameter at di�erent sizes at
half �lling

Computation of the right-hand side by
the aid of (1.128) allows to estimate
(2.47). This is plotted in �gure 2.1 at
half �lling: assuming as a threshold a
value of Ψ∗ = 1/2, we can claim that
the system shows strong superconduct-
ing behaviour for g > g∗ ' 0.25. Finite-
size e�ects play a negligible role, in this
case, as argued in [36]. The supercon-
ducting parameter is related to the gap
as

Ψ = 2
∆BCS

g
= 2

N∆

g
(2.50)

2.2 Tunnelling currents in fermionic super�uids and bosonic

condensates

A striking feature of superconducting metals is that when connected with a low-resistance
junction, a current can �ow among them even in the absence of an applied voltage bias.
This phenomenon is called a Josephson current [47, 48]. Examples of such settings are the
so-called "SNS" junctions: two superconductors are separated by a thin metal in the nor-
mal state. Due to the di�usion of Cooper pairs into the metallic layer, the inset becomes
weakly superconducting, which realizes a Josephson junction. Other possible settings are the
Superconductor-Quantum Dot-Superconductor (S-QuDot-S) Josephson junctions, which are
implemented by the use of carbon nanotubes, but many more examples are known.

2.2.1 The Josephson current

The passage of electrons from one lead to the other is the result of the penetration of the
electron wavefunction through the junction, therefore a consistent theory should deal with
the system as a whole. In facts, formation of Cooper pairs of electrons belonging to di�erent
metals is possible. This leads to the possibility of pair tunnelling with a probability which
is comparable with that of a single electron and on the appearance of a condensate current,
that can �ow across the junction even in the absence of applied voltage.

A microscopic derivation (see [40]) can be given with the method of the tunnelling Hamil-
tonian. We shall consider two superconducting grains coupled by a weak Josephson tunnelling
term and study the Josephson current between the two. The Hamiltonian is written as:

H = HL +HR + λ∆BCSHT (2.51)

where HL and HR are two Richardson Hamiltonians (1.86), ∆BCS is the BCS gap and HT is
a fermion tunnelling term

HT = −
∑
σ=↑,↓

∑
α,β

(
Tα,βc

†
ασ,Lcβσ,R + h.c.

)
(2.52)

which conserves the total number of electrons within the two-lead system, but energetically
favours the states which hybridize di�erent fermion numbers on the two sides. The total
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current from the left to the right is equal to the rate of decrease of the number of electrons
in the left metal, multiplied by the electron charge. Then

J = −eṄL = − ie
~

[H,NL] = − ie
~

[HT , NL] (2.53)

where the last equality holds because the tunnelling term is the one that leads non conservation
of the number of electrons in the left and right lead separately. Substituting its explicit form,
one has

J =
ie

~
∑
σ=↑,↓

∑
α,β

(
Tα,βc

†
ασ,Lcβσ,R − h.c.

)
(2.54)

We now suppose a small value of λ, much smaller than the other two scales involved, i.e., d
and g.

Perturbation theory on the ground state of the system, yields

|Ψ0〉 = |Φ0〉+
∑
m

(HT )m,0

E
(0)
0 − E(0)

m + i0
|Ψm〉 (2.55)

where the sum runs over the excites states of the system and the superscript 0 identi�es the
factorized ground state of the two separate Hamiltonians. It follows that

〈J〉 =
∑
m

(HT )m,0

E
(0)
0 − E(0)

m + i0
〈Ψ0|J |Ψm〉+ c.c. (2.56)

The tunnelling term is written by creation operators for single electrons. On the other
hand, we have seen that a convenient description for the ground end the excited states is in
terms of quasiparticles. It follows that there are two families of intermediate states which are
involved in the process. The �rst kind of states are those which transfer one quasiparticle back
and forth and that conserve the total number of quasiparticles. These states give rise to a
normal current, which vanishes if there is no applied voltage. The second kind of intermediate
states contains one more or one less quasiparticle on both sides of the system, even if the
total number of electrons is unchanged. These processes give rise to a voltage-independent
Josephson current.

and using the explicit expression for the current operator (2.53), one sees that the terms
of the �rst family are those that contain the product T 2

α,β . One is left with the di�erences

1

E
(0)
0 − E(0)

m + i0
− 1

E
(0)
0 − E(0)

m − i0
= −2πiδ(E

(0)
0 − E(0)

m ) (2.57)

And the �nal result is

〈J〉 =
2πe

~
∑

m,σ,α,β

|Tα,β|2δ(E
(0)
0 − E(0)

m )

[(
cα,Lc

†
β,R

)
0,m

(
c†α,Lcβ,R

)
m,0
−
(
c†α,Lcβ,R

)
0,m

(
cα,Lc

†
β,R

)
m,0

]
(2.58)

where we recall that indexes α, β label single-particle levels, σ is for spin, while the latin index
m is for a full many-body state of the unperturbed Hamiltonian, while the subscripts of the
round brackets refer to the states upon which the matrix element is computed. Reminding
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that nk denotes electronic occupation number in the ground state, the expression in brackets
results in

nα,L(1− nβ,R)− (1− nα,L)nβ,R = nα,L − nβ,R
If the two occupation distributions are the same, then summation in (2.58) provides a null
result. The only way to have a normal current is then evidently to shift the relative energies
on the two sides by applying a voltage di�erence to the junction. Then the current becomes

〈J〉 =
2πe

~
∑
σ,α,β

|Tα,β|2 [n(εα−eV )− n(εβ)] (2.59)

Let us go back to (2.54) and consider the other contribution. The expression for the
current expectation value also contains terms of the form

i
e

~
∑

α,β,σ,m

[
TαβTγ δ

(
c†α,σ,Lcβ,σ,R

)
0,m

(
c†γ,σ′,Lcδ,σ′,R

)
m,0

(
1

E
(0)
0 − E(0)

m + i0
+

1

E
(0)
0 − E(0)

m − i0

)

+T ∗αβT
∗
γ δ (cα,σ,Lcβ,σ,R)0,m

(
c†γ,σ′,Lc

†
δ,σ′,R

)
m,0

(
1

E
(0)
0 − E(0)

m + i0
+

1

E
(0)
0 − E(0)

m − i0

)]
(2.60)

We would like to diagonalize the quadratic expression above by the use of a Bogolubov
transformation [49]. However, in contrast to the thermodynamic quantities, the Josephson
current depends on the phases of the condensates on the two leads. Therefore, the coe�cients
u, v are allowed to be complex in:

cβ,+ = uβAβ + v∗βB
†
β , cβ,− = uβBβ − v∗βA

†
β (2.61)

with the constraint |uβ|2 + |vβ|2 = 1 in order for the new operators to satisfy ordinary
anticommutation rules. The next steps, for each of the two grains, can be carried on as above
and yield:

|vβ|2 =
1

2

1−
εβ√

ε2β +|∆BCS |2

 , |uβ|2 =
1

2

1 +
εβ√

ε2β +|∆BCS |2

 (2.62)

with the (complex) BCS gap function

∆BCS = g
∑
α

uαv
∗
α (2.63)

The phase of the Bogolubov coe�cients can be explicitly factored out

uβ = |uβ|eiφ , vβ = |vβ|eiφ (2.64)

To proceed, we would like to compute the average of the operator at given temperature
T , so that one needs to average over many states, weighted with the Gibbs distribution
factor. However, one can use the fact that in realistic systems of weakly interacting fermions,
composed of a large number of particles, the occupation number of states within a given
energy window is the same. Up to small �uctuations, this is the Fermi distribution nF (ε) at
given temperature.
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We then make the hypothesis that Tα,β is real. When there is no applied voltage, the
expectation value of the current is found to be

〈J〉 =
e g

~
∑
k,q

|ukvkuqvq|T 2
α,β sin(φL − φR)

[
nk(1− nq)

εk− εq
− nknq
εk + εq

+
(1− nk)(1− nq)

εk + εq
− (1− nk)nq

εk + εq

]
(2.65)

This is already an exact expression that shows the Josephson relation. If the two supercon-
ducting leads show phase coherent behaviour, the overall phase di�erence is well-de�ned. The
Josephson current only depends on it through the law

J = Jc sin(φL − φR) (2.66)

which is expected to hold at all times. The critical current jc is model dependent. For
instance, it can be computed to be

Jc =
π∆BCS

2eR
(2.67)

for two equal in�nite leads at temperature T = 0, connected by a conductor with resistance
R [48, 40].

2.3 The BEC-BCS crossover

In conventional superconductors (like Al, Hg, Sn, ...), electrons with opposite spin can form
Cooper pairs at temperatures below the superconducting critical temperature under the con-
dition that an attractive interaction among them exists. In this superconductors, the average
"size" of the pair ξpair exceeds by some orders of magnitude the typical interparticle distance
k−1
F and turns out to be about ξpairkF ∼ 103 − 105. This means that the di�erent pair are
highly overlapping with all the others. The discovery of high-temperature cuprate super-
conductors has changed completely the picture of Cooper pair superconductivity, as in these
materials the size of the pair is about ξpairkF ∼ 5 − 10. In other words, the description of
the pairs lies somewhere between strongly attracting, tightly bound pairs of fermion forming
composite bosons and overlapping, loosely correlated Cooper pairs (see [50]).

Therefore, the investigation of the crossover between these two situation (BCS-BEC
crossover) has become of great interest to the condensed matter community, and has re-
ceived further impulse by the development, on the experimental side, of the techniques and
the machineries to investigate ultracold trapped Fermi atoms. In particular, it is possible to
achieve in the laboratory the tuning of the e�ective attractive interaction between fermions
of di�erent species, therefore realizing the crossover. This is achieved by the use of the Fano-
Feshback resonances, which are characterized by a resonant coupling between a two-atom
scattering state with vanishing energy and a bound state in a closed channel.

A simple description of the BCS-BEC crossover in an homogeneous system can be given
at zero temperature in the approximation (2.24). The low-energy physics is encoded in the
s-wave scattering length a, which is related to the bare fermion coupling strength (see [42],
sec. 35) by:

g =
4π~2a

m
(2.68)
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for the interaction (2.24). It is given by the integral:

− mgV

4πa
+ 1 = −gV

2

∫
d3k

(2π)3

1

εk
(2.69)

which is divergent whenever a cuto� (i.e., a Debye frequency) is not present. Nevertheless,
combining it with (2.24) and the integral form of (2.46), one obtains a convergent expression
in terms of the scattering length itself:

mg

4πa
= − g

2(2π)3

∫
d3k

 1√
ξ2
k + ∆BCS

2
− 1

εk

 (2.70)

This equation, together with (2.45), can be used to characterize the crossover. In the BCS
limit a → 0−, and the solution can be found to be µ ' εF > 0 and ∆BCS ∝ εF e

−π/2kF a.
Instead the BEC limit is characterized by µ ≤ 0, a→ 0+ and one �nds

n ' ∆2(2m)3/2

16π
√
|µ|

,
m

4πa
'

(2m)3/2
√
|µ|

8π

(
1 +

∆2

16µ2

)
(2.71)

which imply for the chemical potential

µ ' − 1

2ma2
+
aπ

m
n (2.72)

If we accept the picture of a pair of fermions binding together to form a boson, then we
can set [51, 52] the number of bosons to beM = n/2, their mass mB = 2m and the scattering
length aB = 2a. The chemical potential for the pairs is µB = 2µ+ ε0, with the de�nition of
the molecular binding energy ε0 = 1/(ma2). Then (2.72) can be seen as the equation of state

M =
mB

4πaB
µB '

µB
gB

(2.73)

which is associated to a system of super�uid bosons and can be derived from the Gross-
Pitaevski formalism [51, 52] and the last relation comes from (2.68). In other words, varying
the scattering length through the bare coupling induces a crossover between the physics of
fermions in a superconducting state to a bosonic condensate.

In the case of attracting fermions, one has µ > 0, a < 0 and the physics described by
the system is the one associated with the BCS theory. The vanishing of the left-hand side
corresponds to a diverging scattering length and is called unitary limit [53]. It is associated to
a change of sign in the scattering length, which in turns signals the formation of metastable
pairs of fermions and, for growing attraction, of stable bosonic pairs [51, 50].

Previous work about the tunnelling current through the BEC-BCS crossover [54], involving
the numerical solution of the Bogolubov-De Gennes equations, has shown two important
aspects of the crossover. First, that the Josephson relation (2.66) is modi�ed when passing
from a fermionic super�uid to a true Bose condensate. Second, that the maximum current
attainable for a given barrier shape between the two sides of the system is maximum around
(not exactly at) unitarity.

The BCS-BEC crossover can be argued in the framework of the integrable Richardson
model. The issue was �rst tackled in [55], where the model (1.88) was considered in the
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Figure 2.2: Dependence of the intensive gap and chemical potential per particle from the bare
pairing strength g, as computed from the ground state root con�guration for M = N/2 − 1
and the discrete version of the BCS equations in systems with di�erent sizes. The chemical
potential for the sizes N = 14 − 22 on the rightmost part of the graphic is computed by
extrapolating the intensive gap.

thermodynamic limit and it was suggested there that root con�gurations at strong enough
coupling can be used to identify the boundaries of the crossover.

A generic feature of the crossover from a fermionic to a bosonic behaviour of the con-
stituents of the gas is that the chemical potential µ must change sign. In our canonical
model, the number of particles M is kept �xed and µ is not a free parameter, but is �xed
from (2.45), which we can solve for the chemical potential. Note that the correct setting
for a few�body problem would be that of solving for a time�dependent chemical potential.
However, having in mind application to large system, we keep the average expectation value,
the procedure standing as an approximation for which the error scales as the inverse of the
size.

Summing up, given a root con�guration computed �evolving� the lowest M energy levels
to a given value of g, the gap and the chemical potential are determined. The results are
shown in Figure 2.2. Note that, whenever M < N/2, the chemical potential becomes more
and more negative while increasing g: at some point, it crosses the real axis to negative values,
suggesting the presence of a crossover. In the BCS scaling, in which the level spacing goes
to zero as the inverse of the size, the crossing point tends to g∗ = 0.5 in the thermodynamic
limit, whereas in our equally�spaced model, we have g∗ ∝ N . In all cases, we remind that the
single�particle levels can be chosen arbitrarily and in particular that they can be translated:
the value for which the chemical potential crosses the real axis is only conventionally identi�ed
as an indication of the crossover. As a matter of fact, what we learn from the model is that
the chemical potential varies from the Fermi energy when g → 0 to arbitrarily negative values
as the bare attraction between fermions is increased.

It is also possible to have some insight on the crossover from the functional form of the
eigenstates themselves, if one goes back to the explicit one-particle states (see 1.113,1.117).
The Richardson model has no notion of space, in its bare formulation. Nevertheless, having
in mind the description of a lead, it is clear that the energy levels must be associated with
the momentum bands of the conduction electrons through a quadratic dispersion relation
εk = ~2k2/(2m). Analogously, the spatial variation of the wavefunction can be encoded in
the phase factor eik·r.

According to (1.121), the energy of a state is simply given by the sum of the Richardson
roots. It is then tempting to interpret such roots (or their real part) as squared momenta. It
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follows that the single-pair wavefunction can be written as:

ϕw(r) ∼
∑
k

ei
√

2mwr

w − εk
(2.74)

with m the e�ective mass of the pair. Then, in the noninteracting limit
√

2mw ' kf , so
that the wavefunction is delocalized over the whole sample; in the strong-coupling limit,
instead, the ground state has w ' − 1

ξ2
g with some positive "localization length" ξ and the

wavefunction is exponentially localized.

Tunnelling on the BEC side

The macroscopic condensate wavefunction Ψ = Ψ(r, t) of a Bose-Einstein condensate obeys
a nonlinear equation known as Gross�Pitaevski equation.

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ + g |Ψ|2 Ψ (2.75)

with g a bare interaction strength. A fairly general description of the tunnelling of bosons
between trapped condensates can be given by considering a two�state model in which a
uniform amplitude over each sample is taken, modulated by a phase [56]. A variational
ansatz for a system of two weakly linked condensates is

Ψ(r, t) = ψ1(t)Φ1(r) + ψ2(t)Φ2(r) (2.76)

Given that M1,2 particles are present in the two sides of the sample, with phases φ1,2 one can
chose a model amplitude like ψ1,2 =

√
M1,2e

iφ1,2 . The resulting equations are:

i~
∂ψ1

∂t
=
(
E0

1 + U1M1

)
ψ1 −Kψ2 (2.77)

i~
∂ψ2

∂t
=
(
E0

2 + U2M2

)
ψ2 −Kψ1 (2.78)

where K is the coupling matrix element. The parameters E1,2, U1,2 can be derived by
substituting the ansatz (2.76) into (2.75) and are provided in the original papers [56, 57], but
we will not need their expression in the following. By substituting the ψ and massaging the
system, one arrives at the couple of di�erential equations:

∂z

∂2Kt
= −

√
1− z2 sinφ (2.79)

∂φ

∂2Kt
= Λz +

z√
1− z2

cosφ+ δE (2.80)

for the fractional occupation di�erence z = M1−M2
M1+M2

and the relative phase δφ = φ1−φ2. The
dimensionless parameters that appear are

δE =
E0

1 − E0
2

2K
+
U1 − U2

4K
MT (2.81)

Λ =
U1 + U2

4K
MT (2.82)

and MT = M1 +M2 is the total number of bosons.
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An useful mechanical analogy to be noticed is that the system (2.79) can be seen as derived
from the Hamiltonian of a non rigid pendulum

H =
Λ

2
z2 −

√
1− z2 cosφ+ δEz (2.83)

in which the time evolution of the conjugated variables φ, z can be found from:

ż = −∂H
∂φ

φ̇ =
∂H

∂z
(2.84)

We can rephrase these relations by de�ning a fake "angle" variable θ, such that z = sin θ ∈
[−1, 1]. It follows that

θ̇ = − sinφ (2.85)

φ̇ = tan θ cosφ+ δE + Λ sin θ (2.86)

this form explicitly shows that the instantaneous relative occupation is a function of time
only through the relative phase φ.

Note that a simple form is obtained as long as the number of particles in the system
tends to in�nity, being Λ ∝ M−1

T , whatever the ratio of the interactions over the tunnelling
parameters may be.

Starting from (2.85) and identifying with a prime the derivative with respect to φ, we
write

dθ

dt
=
dθ

dφ

dφ

dt
= θ′ tan θ cosφ = − sinφ

which implies

tan θ
dθ

dφ
= − tanφ

This is easily integrated, yielding the dependence

cos θ =
A0

cosφ
(2.87)

where the constant A0 = cosφ0 cos θ0 is �xed by the initial conditions. Substituting into
(2.79) one has that the dependence of the current on the phase is simply:

I(φ) =
M

2
ż =

M

2
cos θθ̇ = −M A0

2
tanφ (2.88)

We will see that this picture is partially recovered in our numerical analysis. However, for
our small particle unbalances, we have to remark that the variable z appears not to be the
only relevant quantity in the dynamic.

2.4 Study of coupled Richardson models from integrability

We show in the following that, remarkably enough, integrability can be crucial in simplifying
the problem even when the model under study is non-integrable. In particular, we will
couple two Richardson Hamiltonian through a fermionic tunnelling term and study the phase
relation and the current. The interest lies both in the fact that many observed properties
are expected to hold also in the thermodynamic limit, therefore for real superconducting
leads, and in the application in cold-atoms experiments, where few-body Hamiltonians can
be explicitly investigated.
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2.4.1 The Hamiltonian

We are interested in studying the Hamiltonian (2.51), in the approximation in which all
matrix elements are equal. The tunnelling term is then

HT = −
∑
σ=↑,↓

∑
α,β

(
c†ασ,Lcβσ,R + h.c.

)
(2.89)

The present work shows the exact numerical dynamics of the system. With slight abuse of
terminology, we shall refer to each side of the system as �grain�1.

We will now argue, following ([58]) that for small values of λ, an e�ective Hamiltonian
can be written only in terms of the pair operators, therefore greatly simplifying the problem.
Since the single-site Hamiltonian contains only interactions among pairs, eigenstates of (1.86)
are classi�ed in terms of their seniority ν, i.e., the number of the unpaired electrons. In the
regime (λ∆BCS /d)3 � 1, the second order e�ective tunnelling term can be written as:

H2 = −
∑
σ

∑
ν

∑
αβ

HT
|αLβRσ; ν〉 〈αLβRσ; ν|

EαLβRν
HT (2.90)

in which the sum runs over all the possible intermediate states that can be reached from a
ν-seniority couple of states |N/2 + ν〉L⊗ |N/2 + ν〉R, by removing an electron of spin σ from
the level βR of the right grain and adding it on the level αL on the left grain (or viceversa).
The quantity EαLβRν is the corresponding excitation energy relative to the initial state.

We will now try to limit the space of states the intermediate sum runs over to the lowest
energy ones, having in mind to act with (2.90) on the lowest-energy states of the two grains,
in which all electrons are bound into Cooper pairs.

The energy EαLβRν will include the energy necessary for moving an electron from the
starting level to an intermediate level on the other side, the energy needed to break a pair
and the e�ect of the blocking of the states on the collective excitations on both sides2. In
other words, it is the energy of a collective excitation, arising from the fact that the levels α
and β are singly occupied. This limits the space of intermediate states to the ones with the
lowest energy, in which such collective excitations are quasiparticles (2.5), created on top of
the superconducting vacuum.

Figure 2.3:

In the BCS regime we expect that the breaking of a pair associ-
ated with the tunnelling of a single electron to be energetically costly.
When going to the second order, it is more convenient to the system
to regain the gap energy by the tunnelling of a second electron among
the two levels, in order to reconstruct the Cooper pair in the other
grain [47]. On the other hand, we have seen that single-electron
tunnelling does not produce a current in the absence of an applied
driving force. To second order, in (2.90) two kinds of processes can
happen, which are summarized in Figures 2.3,2.4.

In the �rst kind of processes, one electron on one side undergoes
a transition to a level on the other side, then is re-created on the

1For more realistic modelling of nanograins, their high charging energy should be taken into account
2In principle, the charging energy due to the transfer of one unit charge to the grain should be taken into

account, due to the limited number of levels in our system. We address to the situations in which one can
neglect such charging energy, or to experimental settings in which ultracold neutral atoms can tunnel among
two neighbouring traps
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same level of the starting grain. On the other hand, coherent pair tunnelling involves both
electrons of a pair and can be written in term of the bosonic operators b†α,Lbβ,R or bα,Lb

†
β,R

directly. Processes in which one electron hops on the other grain and then back on a di�erent
level from the starting one are energetically suppressed, since they involve both the breaking
of a pair with an energy cost equal to the BCS gap ∆BCS and the blocking of a level, which
a�ects all the levels above it and has therefore an energy cost roughly proportional to N .

Figure 2.4:

Assuming the two superconductors to have a well-de�ned phase
(which will be checked in the following), the coherent tunnelling in-
volves a phase shift on the state in which it takes place and a cor-
responding variation of the relative number of particles δM = ±2.
Conversely, in the back-and-forth electron tunnelling process the en-
ergy shift does not depend on the relative phase, nor any electron
or Cooper pair is e�ectively transported from one side to the other,
unless there is an applied bias. The net e�ect of this last process is
then a shift of the single-particle energy levels, due to the second-
order coupling to the other grain.

We shall therefore focus on the coherent pair tunnelling, for which
the e�ective Hamiltonian [58] is then written as:

HJ = −2(λ∆BCS)2
∑
α,β

b†α,Lbβ,R + bα,Lb
†
β,R√

ξ2
α,L + ∆BCS

2 +
√
ξ2
β,R + ∆BCS

2
(2.91)

and the excitation energies have their BCS value with the gap ∆BCS. We remind the reader
that the Hamiltonian (1.86) does not involve any single-electron scattering and that the
Hilbert space is divided into seniority subspaces. The ground state for a system with an
even number of electrons is the one in which all of them are paired and there are no singly-
occupied levels. The form (2.91) is then particularly relevant because it formalizes the fact
that preparing the system in its ground state and adding a weak fermionic tunnelling term
to the grain Hamiltonian will not destroy the Cooper pairs picture. This provides an evident
simpli�cation in the problem, since, together with (1.88), allows us to study the Josephson
junction problem only in terms of hard-core-bosons only, since the subspaces with di�erent
seniority will not be accessed neither by the single-site dynamics, nor by the coupling between
di�erent sites.

2.4.2 Numerical analysis

The goal of this section is to study the exact dynamics of a two-grain system after switching
on of a tunnelling term, extracting the time-dependence of observables such as the Josephson
current or the number of pairs in the two grains, as well as the evolution of the bulk phase
di�erence between the superconductors.

The most realistic setting is the one in which the two superconductors are exactly degen-
erate in energy, and share the same value of the pair scattering strength g. Moreover, we
shall chose equally spaced, non-degenerate single-particle energy levels.

Integrability enters the game in that it gives the exact eigenstates of the two uncoupled
grains and, most importantly, the exact hopping matrix elements. This is not all, since it
also provides an e�cient truncation mechanism to select the most important eigenstates in
the dynamics.
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To see this, we shall consider the two limits g → 0 and g →∞. In the noninteracting case,
the single-level occupation numbers are good quantum numbers for the system. It follows
that all the excitations above the Fermi sea ground state induced by the coupling, in the
regime in which the Josephson coupling small (λ/d � 1), are the one particle-hole states,
obtained from exciting one pair from below to above the Fermi level. In the opposite limit, it
is su�cient to consider the spin formulation (1.87) to see that the total spin quantum number
of the eigenstate is conserved in the dynamics, since:

HR →g→∞' −g
(
~Stot · ~Stot − (Sztot)

2 − Sztot
)

(2.92)

and, e.g., at half �lling (zero magnetization) has eigenvalues:

HR,g→∞ |s, 0〉 ' −gs(s+ 1) |s, 0〉 (2.93)

In the strong coupling limit, also the e�ective tunnelling Hamiltonian simpli�es, in that
the bcs gap diverges linearly with g and all the couples of levels in (2.91) factorize a common
term, yielding the simple form:

HJ,g→∞ = − λ∆BCS√
∆BCS

2 +µ2
S+
tot,LS

−
tot,R + h.c. (2.94)

The ground state is the unique state in which all the rapidities diverge in the strong coupling
limit and is the one with highest (total) spin. From the relation (1.136) one can argue that
it is su�cient to restrict the single-site Hilbert space to the root con�gurations with one less
(or one more) rapidity and only one more (or one less) rapidity which diverges at large g, i.e.,
again the ground state of the new sector.

Algorithms for connecting the number of roots that eventually diverge to the initial state
con�gurations have been given in ([36],[59]) and are based on the sizes of contiguous roots or
holes.

This class of states is a subset of the one-particle-hole excitations, therefore no other state
is needed. We don't have a rigorous argument to proof that this set of states, certainly the
most important one, is su�cient to describe the dynamics also in the middle of the crossover.
nevertheless, we can compare the results with exact diagonalization (for N = 6) or the e�ect
of adding more total spin subspaces to the dynamics (for N = 8). In all these tests, the same
results were found. A more drastic approximation, like the one adopted in ([60]), seems not
to be satisfactory for weak coupling.

2.4.3 Features of the spectrum

The e�ect of the weak tunnelling on the level spacing depends essentially on the coupling
among fermions. In facts one can identify clearly a regime of nearly non-interacting particles,
in which the nearly degeneracy of the levels is given by the number of ways of promoting
one or more particles in an excited level to obtain a given energy. The latter is a feature
of our choice of equally�spaced levels, yet it is the most natural one . In this regime, the
perturbation splits the levels of one band as far as the band spacing, hence giving rise to a
spectrum in which the original degeneracies are not seen any more.

On the other hand, in the strong coupling regime states group in eigenstates of the total
angular momentum (see the spin representation 1.132). Since the distance among the energies
of these subspaces is of order g, in this regime, even a tunnelling term of several times the
gap cannot mix the di�erent subspaces among them.
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Figure 2.5: Change in the energy levels while varying the tunnelling parameter for a system
with N = 8 in the half��lled subspace, with g = 0.1 (left), g = 1.2 (centre), g = 6.2 (right).

In the crossover region, the strong coupling subspaces are already quite de�ned, but not
far one from the other. It follows that a su�ciently strong perturbation can still hybridize
them.

To make these aspects more quantitative, we may evaluate how much the levels are shifted
by turning on λ. This, however, would not convey all the information we have highlighted
before: in facts, the absolute value of the shift can be said to be large or small only in
relation to another energy scale. This scale is the level spacing in a situation where levels are
well-distinguishable (intermediate couplings) and the band spacing in the presence of strong
degeneration (g → 0 or g →∞).

We �nd therefore more convenient to bin energy levels in classes, in such a way that the
band structure is captured. As a second step, we can estimate the change of the distribution
when swithching on λ, by considering the di�erence among the classes for the two values of
the perturbation: this tells us whether the original band structure is still intact and whether
levels from a band have moved enough that they have come close levels from another band.
To be precise, we de�ne

χm := (# levels in the m− th class)(λ)− (# levels in the m− th class)(0)

Since the number of levels is unchanged, the average of this quantity (with respect to the
class index m) is zero. To estimate the change we need therefore to consider its standard
deviation σχ. The result is that it has a maximum around g ∼ 1, when the degeneracies of the
noninteracting picture are already destroyed, while the energy bands of the strong coupling
regime are not evident yet.

For �xed size, the Richardson Hamiltonian describes the physics of a crossover between
weakly attracting fermions and strongly coupled bosons. From the point of view of the
energy spectrum, this can be seen through the creation of energy bands out of the pair
levels, which are more and more separated by increasing g. This is also seen at the level
of the coupled spectrum, where the doublet structure characterizing coupled noninteracting
systems is melted into an highly�degenerate band structure.

In general, the main di�erence is for even and odd number of pairs in the system. In
the odd case, the ground state is always doubly degenerate without coupling and splits when
turning on the perturbation. It is also important to characterize the splitting in their depen-
dence on the gap: it turns out that, as long as the gap opens more and more, the energy
di�erence between the components of the level doublet reaches a maximum splitting.
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Figure 2.6: Left: estimate of the susceptibility associated with the level structure, as described
in the main text, in a system with N = 8, MT = 7. Right: energy di�erence between the
�rst excited state and the ground state, as a function of g at �xed λ = 0.05.

2.4.4 De�nition of the phase relation

Without coupling among grains, an eigenstate of the Richardson Hamiltonian (1.86) can be
written as a superposition of eigenstates of the free Hamiltonian (with g = 0), where the
single levels have a well-de�ned occupation number. From the expression (1.113) it is clear
that the components of any many-particle eigenstates on each level occupation con�guration
has the same phase at a reference time and at any later time.

An important issue we want to check, however, is whether the grains actually behave as
superconducting also when coupled. As a matter of fact, in the presence of a tunnelling term,
eigenstates will in principle be written as a combination of many of the factorized states
of the two uncoupled Hamiltonian. Nevertheless, as we will see, when the initial particle
unbalance is small, the number of involved states is rather small. Moreover, even for higher
particle unbalance, when the tunnelling is weak and the pairing strength is strong enough, the
Hilbert space of each grain organizes in subspaces, labelled by eigenvalues of the total spin
(see section 1.4). It then follows that in most cases, even if the exact states involved are many,
the corresponding energy eigenvalues are not very di�erent, therefore the time evolution takes
place with nearly de�nite phase.

Being the overall phase of the single grain unde�ned, we can only detect phase di�erences
among two con�gurations in which one particle has been displaced from one level (α) to
another (β), by computing the correlation function:

〈Φ(t)| b†αbβ |Φ(t)〉 = uαvβe
iφ (2.95)

and being the latter always real, we conclude that the phase di�erence is always vanishing.
Nevertheless, as soon as the two leads are coupled, the initial state will be a complicate
superposition of eigenstates, each component evolving with its own eigenenergy

|Ψ(t)〉 =
∑

ΦL,ΦR

cΨ,ΦL×ΦR(t) |ΦL〉 |ΦR〉 (2.96)

Therefore, the phase di�erence φ between any two levels in (2.95) will be, in general, a function
of time.

42



Figure 2.7: Phase di�erence as determined from correlation functions zN/2 and wN/2, as
de�ned in (2.98), for two coupled grains with N = 8 levels each, total number of pairs
MT = 8, pairing strength g = 0.6, tunnelling parameter λ = 0.06 and initial unbalance
z0 = 0.25

In our canonical setting, the expectation value 〈Ψ(t)| bα,L/R |Ψ(t)〉 is always vanishing,
since the operator does not conserve the number of particles. Nevertheless, we can easily
recover phase di�erences between two levels on di�erent leads, by the use of the formalism
of Section 1.4. Two-point functions where the operators act on di�erent grains are easily
evaluated, while on the same grain can be computed as well [61, 62], but we are going to use
the former procedure because it gives a clear quantitative understanding of the amplitude of
�uctuation, as described below, not to mention the fact that it is computationally simpler.

From the correlation function

〈Φ(t)| b†α,Lbβ,R |Φ(t)〉 = uα,Lvβ,Re
i(φα,L−φβ,R) (2.97)

we can extract how much the phases of two distinct levels di�er at a given time. In particular,
we can follow two di�erent procedures for the choice of the levels; we de�ne:

zα(t) = 〈Φ(t)| b†α,LbN/2,R |Φ(t)〉 , wα(t) = 〈Φ(t)| b†α,Lbα,R |Φ(t)〉 (2.98)

In the �rst case, the subscript refers to the level on the left grain and a reference state is taken
on the right grain; conversely, with the other choice of correlation function, the level is chosen
to be the same on both grains. The two are expected to produce the same phase only when
the grains show coherent behaviour, which means that the phase di�erence between them is,
within a good approximation, given by the phase di�erence between any two levels chosen.

Note that, on general grounds, the functions (2.98) are functions of both time and of the
level index. It is then necessary to verify whether, for most of the time, levels have small
phase di�erence. We start by the analysis of the mean mw,z(t) and the standard deviation
σw,z(t) of the level phases, at each given time, as computed from both w and z functions.
The corresponding �gures, for a model initial state, are shown for di�erent pairing strengths
in Figures 2.8 and 2.9.

The information at given time is useful, but not complete, as we need information about
the time evolution of the system. In particular, to assign a unique phase di�erence to the
grains, one needs assess whether a given value of g shows a satisfactory degree of phase variance
when taking into account di�erent couples of levels for most of the time. In order to give a
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Figure 2.8: Phase di�erence mean (blue) and standard deviation (purple) with respect to level
index, as determined from correlation functions z (right) and w (left), for two coupled grains
with N = 8 levels each, total number of pairs MT = 8, pairing strength g = 0.6, tunnelling
parameter λ = 0.1 and initial unbalance z0 = 0.25

Figure 2.9: Phase di�erence mean (blue) and standard deviation (purple) with respect to level
index, as determined from correlation functions z (right) and w (left), for two coupled grains
with N = 8 levels each, total number of pairs MT = 8, pairing strength g = 0.2, tunnelling
parameter λ = 0.1 and initial unbalance z0 = 0.25
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Figure 2.10: Left: parameters Cφz (blue) and Sφz (purple). Right: parameters Cφw (blue) and
Sφw (purple), as de�ned in the main text. Grains have N = 8 levels each, total number of
pairs MT = 8, tunnelling parameter λ = 0.1 and initial unbalance z0 = 0.25

more quantitative estimate of this property, we consider the mean of the standard deviation
presented above over su�ciently long times (several periods) Cφz,w = 1

t

∫ t
0 σz,w(t′)dt′. To

establish a comparison, we need to evaluate also the magnitude of the mean phase di�erence
among the condensates. This is a rapidly varying quantity, whose characteristic frequency
is proportional the absolute value of the ground state energy. Since it has zero mean, we
are interested in computing the characteristic range over which it varies, i.e., its standard
deviation computed during the time evolution Sφz,w = 1

t

∫ t
0 m

2
z,w(t′)dt′.

In Figure 2.10 we plot Cφ and Sφ as computed from corresponding levels on the two sides
and by taking a reference level on one grain. As a function of the pairing parameter, the
two procedures convey the same information: the highest the pairing, the more grains show
coherent behaviour.

By applying this line of reasoning, we could verify some features about the phase rela-
tionship between grains for growing g. First, that the smaller the tunnelling parameter, the
sooner (in g) a well-de�ned phase is established. Equally, that a small initial unbalance allows
a de�nite phase to be built for relatively small values of g, while it is necessary to enforce
stronger pairing if states with large initial unbalances are selected. This is due to the fact
that the initial states are projected on few states in the lowest part of the spectrum when
the initial population di�erence is small. Conversely, large population di�erences at t = 0 are
projected to many states in the middle of the spectrum, each having its own energy.

An important aspect to consider is the presence of fermion tunnelling. As a matter of facts,
the original Hamiltonian (2.51) is written in terms of fermionic operators, while the results
obtained � that the phase coherent behaviour is established with relatively small pairing �
refer to the bosonic approximation, acting on the restricted subspace. If, on the one hand, it is
plausible that at vanishing g pair-breaking excitations may play an important role, a natural
question to ask is whether the presence of fermionic degrees of freedom, aside of bosonic pairs,
may spoil the phase-coherent behaviour of the grains for su�ciently large pairing. The issue
can be rephrased into the question of whether the initial state, during the evolution generated
by the coupled Hamiltonian, containing a fermionic tunnelling term, may give rise to a huge
number of states in which two or more electrons are not paired, which evolve incoherently
with respect to the states in which only pairs appear.
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Figure 2.11: Left: phase di�erence, as a function of time. Right: averaging over short times
removes �uctuations.

These states must be written as linear combinations of the factorized states of the two
uncoupled Hamiltonians. On each grain, the energy of such states can be computed exactly
for any value of g. In order to have an estimation of a lowest bound for the energy, we can
consider a state in which the most energetic pair is broken and one electron is promoted
into the next level, which reduces the number of pairs by 1 and the number of unblocked
levels by 2, as seen in section 1.4. The energy of the lowest pair-breaking excitation has been
considered in [33] and reads:

Epair '
εM + εM+1

2
− g(M − 1)((N − 2)− (M − 1) + 1) (2.99)

The bare energies in the �rst term of the above do not depend on g, unlike the ground state
energy, all the pair-conserving excitations and the second term in the previous equation. It
follows that, by taking the pairing strength su�ciently high, all pair-breaking excitations can
be made to lay at arbitrary energy above the ground state and are therefore suppressed with
respect to pair-conserving excitations.

Checking explicitly that the insertion of states with unpaired electrons does not spoil the
phase relation requires much larger computational e�ort, in that the Hilbert space should be
enlarged to the

(
N
m

)(
N−m
M

)
con�gurations in which the m electrons can �block� part of the N

levels, with �xed number M of pairs. We therefore rely on the standard argument based on
the presence of a gap. Note that this should already hold for values of g ≥ 0.25, as discussed
earlier.

We also mention that, even if the phase is quite well-de�ned, residual �uctuations can still
be observed, in such a way that the widest, slowest oscillations are superimposed with faster
and narrower ones. What is relevant are only the former ones, so that we �nd convenient
to isolate them by computing time averages on intervals much smaller than the period of
the largest oscillations: this allows to better understand the structure of the diagrams. An
example of the procedure is provided in Figure 2.11.

2.4.5 Occupation�phase diagram and current�phase characteristic

In order to achieve the largest possible freedom in selecting the initial conditions, we imagine
to prepare the two uncoupled leads at t = 0 in a linear superposition of the states in which
the total number of pairs is �xed to beMT = N −1. Calling

∣∣∣Φ(L,R)
g,M

〉
the lowest-energy state
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ξ δM

0.1 0.98
0.2 0.92
0.3 0.83
0.4 0.72
0.5 0.60
0.6 0.47
0.7 0.34
0.8 0.22
0.9 0.10

Figure 2.12: Phase diagram for di�erent values of the parameter ξ in the BCS regime, with
N = 8, MTOT = 7, g = 0.571.

with M pairs of either the left or the right grain, we prepare the system in the state

|Ψ0〉 =
1√

1 + ξ2

(∣∣∣Φ(L)
g,M

〉
⊗
∣∣∣Φ(R)

g,M−1

〉
+ eiφ0ξ

∣∣∣Φ(L)
g,M−1

〉
⊗
∣∣∣Φ(R)

g,M

〉)
(2.100)

where the initial phase di�erence φ0 and the initial population unbalance δM0 = 1−ξ2
1+ξ2

can be
selected by choosing the corresponding parameters appropriately. We then turn on a small
perturbation (λd = 0.01− 0.1 in our runs) and compute the time evolution of the state after
exact diagonalization the Hamiltonian. The main limitation of this protocol arises from the
consume of RAM by diagonalization subroutines; by limiting subspaces appropriately, one
can study systems of up to N = 10 levels, below half �lling and for a small initial population
unbalance.

The �rst, already nontrivial, issue we would like to check is whether it is possible to draw
a population�phase diagram in the spirit of [57, 56] and if it can be seen to �t a two�level
model. The con�ned phase can be explored by tuning the initial state to di�erent particle
unbalances. We report an example of the results in �gure 2.12

The phase diagram in the plane φ, z shows a remarkable agreement with the "pendulum"
law of motion in the small oscillations regime when the initial unbalance is small (see �gure
above). In addition to that, as the oscillations become more pronounced, we see that the
motion receives important corrections. It is a characteristic of the BEC regime the fact that
the phase does not overcome the value φ = π/2 when the initial unbalance is of one particle,
which agrees with the predictions of (2.79). This fact has been checked also with exact
diagonalization and is certainly not and artefact the Hilbert space truncation. Instead, it is
connected with the fact that the main contributions to the wavefunction arise from the �rst
two lowest-lying states of the interacting system with equal weights. The very high coherence
of the grains con�rms this aspect.

It is also possible to study the diagram while varying the initial phase in the initial state
(2.100). Also in this case, as shown in �gure 2.13, the �stretched pendulum� with Λ → 0
seems to agree with the �gures. But it has to be remarked that this picture seems to hold
only for the unbalance δM = 1. For larger values, the phase is allowed to oscillate further,
and more complicate picture emerges.

We now focus on the pair current between the models, de�ned as the time derivative of
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Figure 2.13: Phase diagram for di�erent initial phases (N = 8, MTOT = 7, δM(0) = 1,
g = 9.7).

the occupation number of the left subsystem.

I(t) = i [H,NL] = i [HT , NL] = i
∑
α,β

bα,Lb
†
β,R − b

†
α,Lbβ,R√

ξ2
α,L + ∆2 +

√
ξ2
β,R + ∆2

(2.101)

From a computational perspective, we can easily evaluate the time evolution of the occupation
number di�erence δM = NL −NR and take the derivative numerically.

It is possible to verify, for δM = 1 that, in this con�guration, the levels involved are
mainly the �rst two, with minor contributions from the ones above. The frequency observed
is then trivially the di�erence of the two and, as a function of g, goes to a constant value that
characterizes the bosonic side.

One feature of the the evolution of the phase is that it never crosses the value δφ = π/2.
It follows that the current�phase characteristic can be �tted with a form

I(φ) = Ic(g, λ) tanφ (2.102)

The critical current is seen to have a maximum around g ' 1 and can be �tted in the form

Ic(g, λ) = I0λ
e−c/g

2

g
(2.103)

with c ' 0.27, nearly independent on λ. This relation has a maximum at g∗ =
√

2c.
Please, note that it is possible to roughly �t these data in the two�mode model with

Λ = 0. This must be true, as long as the two lowest levels are the ones mainly involved in
the dynamics. The fact that the noninteracting model is reproduced arises from the linearity
of the problem and from the fact that the two levels are well separated from the rest of the
spectrum.

The dominant frequency ν, i.e., the Fourier component with the highest weight, can also be
investigated by our methods. It turns out to be proportional to the critical current, therefore
given by (2.103).

It is an interesting issue to explore what happens when more levels, inserted in a band
structure as the one described above, participate to the dynamics: in this situation, the e�ect
of the interaction should be evident. Additional care must be paid to check that the spreading
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Figure 2.14: Left: tangent �t for g = 2.3, δM(0) = 1, N = 8, MT = 7. Right: critical current
�t with the law in the main text.

Figure 2.15: Dominant frequency δM(0) = 3, N = 6, MT = 4.
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Figure 2.16: Occupation�phase diagram for N = 8, δM(0) = 2, MT = 7 and g = 0.4 (left),
g = 6.4 (right). The phase range increases with the pairing interaction.

Figure 2.17: Left: sine �t for g = 2.6, δM(0) = 1, N = 8, MT = 7. Right: amplitude �t with
the law in the main text.

of the phases is constant: for this reason, we were not able to study particle unbalances
overcoming the value δM = 2.

For what the phase diagram is concerned, we found that it �ts the expectation from a
two�mode model, showing the typical ellipsoid form. The phase range depends only on the
interaction, while the amplitude of the population oscillations depends on the initial relative
phase given to the system through (2.100).

However, no explicit trapping can be observed. What is observed, instead, is that the
amplitude of the fastest oscillations is increased and that the period of the slowest decreased
more and more, as 1/g. The scenario is that of a large crossover to a con�ned regime, in
which the occupation oscillations have in�nite period at g → ∞. This may be a �nite�size
e�ect, leading to a transition in the thermodynamic limit. The dependence of the frequency
one the pairing strength is given by (2.103). Our �nding is that the law is

I(φ) = Ic(g, λ) sin
φ

2
(2.104)

with the same dependence for the amplitude as in (2.103). The dependence on the phase
was predicted for a weak, pointlike barrier in the WKB approximation in the Bogolubov-de
Gennes equation [63]. Here we qualify the dependence on the pairing strength of the critical
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current.
The initial phase can also be varied with initial unbalance δM0 > 1. It is interesting to

note that the for most of the values of g, the phase runs. Nevertheless, the time evolution of
the mean phase locks it around some large�period oscillation. Quantitative evaluation of the
phase diagrams remains a nontrivial task.

2.4.6 Conclusions

We have performed a numerical analysis of the exact dynamics of two coupled Richardson
Hamiltonians, with attractive interaction and �xed level spacing, initially prepared in the
ground state of the unperturbed system. From the behaviour of the chemical potential, we
suggested that the model can describe the crossover the BCS and BEC regimes and shown
that these regimes are clearly distinguishable by the spectrum of the coupled models. We
have explained a criterion for assessing the formation of a de�nite phase relation and found,
for the cases in which the coupled models showed coherent behaviour, that a unique relation
connects the occupation number and the current with the phase di�erence, throughout the
crossover.

In the strongly coupled regime, one expects that an e�ective nonlinear dynamics for the
condensate density would emerge. Nevertheless, we are dealing with a linear Hamiltonian,
which couples a set of discretely�spaced levels. One way of seeing the e�ective nonlinearity
is in the highly�degenerate banded structure that is created when g → ∞: a given initial
state, eigenstate of the unperturbed Hamiltonian, is written as a linear combination of states
in di�erent bands. When the occupation unbalance at t = 0 is equal to one, the behaviour
is well described by a noninteracting two�mode approximation, since the involved levels are
mainly two and are well-separated by all the others. Whenever the levels involved are more,
one has to consider the e�ect of the band structure. With more than two bands, a multi�mode
level may be needed to describe the e�ective many�body dynamics.

It stands as an open question how our �ndings scale with the size of the system. This was
mainly due to the need of diagonalizing and multiplying large matrices, which is both time-
and memory- consuming. This is an important issue, which we intend to investigate in the
future.
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Chapter 3

Many-body localization in the

Richardson model

Recently [64, 65] it has been pointed out that the phenomenon of Anderson localization [66],
usually associated with single-particle hopping in a random potential, can be present even in
the many-body eigenstates of an interacting quantum system and manifest itself as a phase
transition at �nite or in�nite temperature.

This phenomenon has been dubbed many-body localization (MBL) and can be conceived
as an example of Anderson Localization (AL) on con�guration space, rather than real space.
As the geometry of con�guration space for a many-body system is quite di�erent from that
of a regular lattice in few dimensions, many-body localization is thought to have properties
distinct from those of the single-particle localization.

This phenomenon should be responsible, among other things, of the exact vanishing of
the DC conductivity of metals below a critical temperature [64] and of the failure [67] of the
simplest version (and possibly of all versions) of the quantum adiabatic algorithm [68] for the
solutions of NP-complete problems; it has also been studied in disordered Heisenberg spin-
chains [69, 70] where the phase transition has been linked to the in�nite-randomness �xed
point. The similarity of some features of many-body localization to the glass transition in
spin and con�gurational glasses makes it the closest to a quantum analog of a glass transition,
where the assumptions of equilibrium statistical mechanics fail.

As we said, in some problems, many-body localization is found in typical many-body
states[71], namely states sampled with uniform distribution from the spectrum (therefore
corresponding to in�nite temperature). These states are di�cult to study directly, much more
than the ground states for which many approximations (DMRG, MPS etc.) can be devised:
indeed the only strategy here seems to be exact diagonalization (as used in [70] for example),
the exponential complexity of which limits the size of the systems to less than 20 spins;
alternatively the study of correlation functions with time-dependent DMRG was used, whose
failure to converge due to growing entanglement can signal the onset of delocalization[72].

In this chapter, an introduction to many-body localization is provided in section 3.1.
An original contribution is illustrated in section 3.2, where the disordered version of the
hamiltonian (1.86) is studied, focusing on the localization properties of the exact many-body
eigenstates. As it will be made clear below, the possibility of computing exact matrix elements
between eigenstates of hamiltonians, as well as exact overlaps, even for di�erent values of the
interaction, turns out to be essential in our approach.
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3.1 Localization in the Fock space

3.1.1 Hopping conduction

A single-particle wavefunction φ(~r) in a d-dimensional disordered potential may have di�erent
properties, with respect to the spatial extension of its support. In particular, for an eigenstate,
a major role is played by the strength of the disorder. To be speci�c, the eigenstate can be
either localized, when peaked around some point in space and exponentially decaying away
from that point:

|φ|2 ∝ 1

ξd
e
−~r−~r0

ξ (3.1)

with ξ the localization length, or extended, when

|φ|2 ∼ 1

size
(3.2)

in words, when there is a nonvanishing probability of �nding the particle approximately at
every point in space.

It is currently accepted (see [73]) that localized and extended states cannot coexist at
the same energy, so that the spectrum splits into bands of localized and extended states,
separated, in d ≥ 3, by a mobility edge at energy E . The presence of such a feature in the
spectrum implies that conduction is provided only by the states which have enough energy.
This leads to a conductivity of the form

σ ∝ e−
E−εF
kBT (3.3)

known as activated conductivity, in which only states above a certain energy, which are present
in the thermal mixture with an exponentially suppressed amplitude, conduct.

In the limit of very strong disorder, when all single-particle eigenstates around the Fermi
level are localized, it is possible to model our sample as a collection of sites, which are
characterized by a set of randomly-distributed single-particle eigenstates. These sites are
distributed in a regular lattice and some mechanism allowing hopping from one site to the
other is needed for conduction.

One possible mechanism in that of thermal activation, if the density of states at the Fermi
energy ν is �nite. The energy which is necessary to hop from one localized state to the other
can be provided by a bath, in equilibrium at some temperature T . The details of the bath
are not essential and one just requires continuous spectrum of delocalized excitations down
to zero energy. One example of such bath is a phonon bath [74]: due to the continuity of the
spectrum, any energy mismatch can be absorbed by a phonon of appropriate energy. As a
consequence, σ(T ) turns out to be �nite, although very small, at any �nite T even when all
one-electron states are localized.

As described in [75], if the electron is supposed to move always to the nearest empty site,
the temperature dependence of the conductivity would still be of the form (3.3), in which
the energy appearing is that of the state. However, it was pointed out in [74] that at low
temperature the dominant process would not be to a nearest neighbour. In facts, within a
range L from a given site, the density of states per unit energy range near the Fermi energy
is

NL = ΩdL
Dν (3.4)

where ΩD = 2πD/2/Γ(D/2) is the angular integral in dimension D. It follows that for the
hopping process through a distance L with the lowest activation energy, this energy mismatch

53



would be the reciprocal of this number δE = 1/NL. Then, the further the electron hops, the
smaller will be the energy required for the process.

However, hopping over a large distance involves a tunnelling whose probability is sup-
pressed by the factor

e−2L/ξ (3.5)

where ξ is a localization length characterizing the the decay of the localized wavefunction.
There will be an optimum hopping distance L, maximizing the probability

e
−2L/ξ− δE

kBT (3.6)

which happens when the exponent has its minimum value, i.e., when

L = D+1

√
ξD

2 ΩD ν kBT
(3.7)

This model gives the conductivity of the system to be

σ = σ0e
−BdT−1/(1+D)

(3.8)

in which BD ∝
(

2D

xiDΩDν

) 1
D+1 and σ0 has some weak (power law) dependence on temperature.

Together with T0, it depends on the details of the model. This form takes the name of Mott's
variable range conductivity.

Even when the dominant mechanism of conduction is provided by the phonon-mediated
hopping, but one has many particles on many accessible levels within a small region, the degree
of localization of an electron on the levels at a speci�c site modi�es the energy mismatch which
has to be overcome in the transition. Somewhat oversimplifying, if one assumes a uniform
delocalization over the whole local con�guration space, it is reasonable to expect that the
highest tunnelling rate will occur for the couple of levels which exhibit the smallest energy
di�erence. This process accesses an energy mismatch which is given by

δE =
1

(ΩDLDν)2 (3.9)

Then, by repeating the above arguments, one �nds that the conductivity (3.8) is modi�ed to:

σ = σ0e
−BDT

− 1
2D+1 (3.10)

with BD =
(

2D

ξDΩDν

)2/(2D+1) (
(2D)1/(2D+1) + (2D)2D/(2D+1)

)
. One sees that in the two ex-

trema � on each site either only one level or the whole set of accessible levels are occupied
� correspond to two di�erent temperature dependence of the conductivity. This drives the
interest toward the presence of a many-body localization transition on the local space and in
the possibility of intermediate situations, in which the wavefunction does not cover the whole
local space.

In this case, the "local" space is constituted by the set of levels within the single-particle
localization length. On the other hand, whenever within the same range many electrons
are present, the interactions among them imply that the many-body wavefunction may be
expressed as a linear combination of several many-body eigenstates of the noninteracting
problem, the latter being labelled by the single-particle level occupation numbers. As a
result, the interaction strength drives the degree of many-body delocalization, playing a role
in the hopping conduction process. The simplest approximation for the local hamiltonian
is provided by (1.86), where a uniform interaction couples a set of otherwise independent,
randomly distributed levels.
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3.1.2 The role of interactions in conduction

A question which is legitimate to ask is whether an interaction between electrons on the
same site may be an e�cient mechanism for hopping conduction, even in the absence of a
phonon-mediated hopping, at low temperatures. The issue has been explored in [64], where a
non-trivial answer was found. Below a critical temperature, conductivity is exactly vanishing,
while above it, interactions can actually determine hopping e�ciently and the behaviour
is that of a metal. The mechanism at the roots of this peculiar behaviour is many-body
localization.

To be more precise, an hamiltonian describing a simple system of spinless electrons with
two-body interactions is given by

H =
∑
α

hαc
†
αcα +

1

2

∑
α,β,γ,δ

Vαβ,γδc
†
αc
†
βcγcδ (3.11)

with matrix elements:

Vαβ,γδ =

∫
d~r

∫
d~r′φα(~r)∗φβ(~r′)∗V (~r − ~r′)φγ(~r′)φδ(~r) (3.12)

where φα stands for the single-particle wavefunction relative to level α. These levels are, by
de�nition, eigenstates of the hamiltonian in the absence of the interaction term.

Consider a weak, short-range interaction of the form

V (r1 − r2) =
λ

ν
δ (r1 − r2) (3.13)

where λ is some generic dimensionless parameter, controlling the interaction strength and
the δ function means simply that the decay of the potential is exponential and the range is
much smaller than the electron mean free path, with some characteristic scale given by the
localization length ξ.

Following the exposition of [65], the relevant energy scale in a problem where a the wave-
function is exponentially decreasing away from a given site, with localization length ξ, is the
energy spacing between states localized nearby, which can be written as

δξ =
1

νξd
(3.14)

where ν is the one-particle density of states. We can moreover write the typical value of the
interaction matrix element as V ' gδξ. In the many-body problem, one has that the energy
mismatch of a virtual two-body transition is given by |hα + hβ − hγ − hδ|, which has typical
value δξ.

The matrix element (3.12) embodies the process of the decay of a fermion in the state α,
which is one single-particle excitation, into two fermions in the states γ and δ, plus an hole in
the state β̄. During time evolution, under the action of (3.13), newly produced single-particle
excitations (electrons injected in the sample) will decay on their turn into more and more
single-particle excitation.

|α〉 →
∣∣β̄, γ, δ〉→ |ε̄, σ̄, ω; ρ, . . .〉 → . . . (3.15)

The actual weight of the newly-created excitations into the resulting many-body wavefunction
depends on the matrix elements (3.12). In particular, a localized state is the superposition
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of very few quasiparticle states, which possess a su�ciently well-de�ned energy, so that the
initial electron is never completely decayed by adding orders in perturbation theory. On
the other hand, delocalized states possess components with higher and higher number of
single-particle excitations, and the original single-particle excitation spreads irreversibly (in
an in�nite system) onto all the accessible many-body states.

The issue can be looked also from the perspective of the quasiparticle spectral function

A(ε)α =
∑
k

∣∣∣〈Ψk| c†α |Ψ0〉
∣∣∣2 δ(ε+ E0 − Ek) (3.16)

seen as a function of the interaction strength. In facts, the eigenstates of the interacting system
can be obtained in perturbation theory, which in turn de�nes a perturbative expansion for
the spectral function

A(ε)α =
∑
n

A(n)
α λn (3.17)

The initial bare particle peak corresponds to A(0)). Each order in perturbation theory will
spread this peak either further and further, or conversely on nearby energies, retaining the
shape of a well-de�ned resonance.

A result corresponding to a localization in the many-body Fock space was found in [64] for
the hamiltonian (3.11), by using many-body perturbation theory. Two phases where found:
a metallic and an insulating phase. A metal-insulator transition was shown to take place at

Tc =
δξ

C2g log(1/g)
(3.18)

where C2 is a model-dependent constant.
Consider a many-body eigenstate |Ψj〉 of the full hamiltonian (3.11). If one creates an

electron-hole pair on top of this state, the outcome will not be an eigenstate any more, but
may still be expanded in terms of all the other eigenstates as

|Ψj;αβ〉 = c†αcβ |Ψj〉 =
∑
k

Cα,βj,k |Ψk〉 ;
∑
k

|Cα,βj,k |
2 = 1 (3.19)

The quantity characterizing the localization of a state |Ψj;αβ〉 (on the "computational" basis
or con�guration space C) is the inverse participation ratio:

I =

( ∑
s1,...,sN

| 〈s1, ..., sM |Ψj;αβ〉 |4
)−1

(3.20)

where s1, ..., sM is the con�guration of the noninteracting system, either given in terms of
spins or of level occupation number. An insulating phase corresponds to localized many-body
states, such that the inverse participation ratio does not diverge in the thermodynamic limit

lim
size→∞

1∑
k |C

α,β
j,k |4

<∞ (3.21)

which signals that the excitation cannot propagate over all states. Conversely, when an
in�nite number of eigenstates enters the expansion (3.19)

lim
size→∞

1∑
k |C

α,β
j,k |4

=∞ (3.22)
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we call the many-body state extended and the corresponding phase metallic. This is not
equivalent to ergodicity within a given energy shell, since for the latter property to occur, one
needs the many-body wavefunction to be almost uniformly delocalized over the whole energy
shell and not simply over an extensive subspace. Then the expectation value over the exact
many-body state is equivalent to averaging over the microcanonical distribution around the
state energy E.

Assuming thermal equilibrium can be done only in the latter scenario, in the thermody-
namic limit. In this situation, the de�nition

CV =

(
∂E

∂T

)
V

(3.23)

holds and can be used to connect the energy of a many-body state to a temperature. In
particular, the critical temperature Tc in (3.18) corresponds to a mobility edge, above which
states are conductive and below which are insulating. An important di�erence with respect to
the single-particle-localized scenario discussed above is that the dependence of conductivity
from the temperature is di�erent, when taking the in�nite volume limit. In facts, assuming
a Gibbs distribution at temperature T for the eigenstates, we have:

σ(T ) =
∑
k

Pkσ(Ek) =

∫
dEσ(E)N(E)e−E/T∫
dEN(E)e−E/T

(3.24)

where N(E) is the number of states at a given energy E, i.e., by de�nition N(E) = esize×s(E)

where s(E) is the intensive Boltzmann entropy. The temperature de�nes a dominant energy
E(T ) via the saddle-point approximation of the integral, when the size of the system tends
to in�nity. It follows from the vanishing of conductivity of localized states that in an in�nite
system

σ(T ) =

{
σ(T ) = 0 E(T ) < E
σ(T ) = σ(E(T )) E(T ) < E (3.25)

which represents a striking feature of the conduction mechanism.
To conclude, the possibility of studying some version of (3.11) exactly is of extreme inter-

est. In this perspective, the Richardson hamiltonian is a simple version of the one studied in
[64], where all the matrix element between levels are equal to gδξ ∼ g/N . This is the scaling
which will be adopted in 3.2.

Thermalization

Note that the above considerations can be rephrased into an analogue analysis about the time
evolution of a weakly interacting system after the interaction g has been suddenly turned on
at, say, time t = 0. The time evolution of the expectation value of some observable O soon
after the switching on, by the aid of the Zassenhaus formula, can be written as:

〈Ψ0| ei (H0+g HI) tO e−i (H0+g HI) t |Ψ0〉 = O+i 〈Ψ0| [H0 + gHI ,O] |Ψ0〉 t

−1

2
〈Ψ0| [H0 + gHI , [H0 + gHI ,O]] |Ψ0〉 t2

− i

3!
〈Ψ0| [H0 + gHI , [H0 + gHI , [H0 + gHI ,O]]] |Ψ0〉 t3 +O(t4) (3.26)

As time goes by, higher and higher orders in the interaction become relevant, and the resulting
state will be a more and more complicate superposition of states which are further and
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further away (in the Hilbert space) from the original eigenstate. After long enough time,
a sort of "ergodic" behaviour may e�ectively emerge and one can therefore expect that the
delocalization/localization properties may be connected with the appearance of thermalization
after a quantum quench of its absence [76], when the system size goes to in�nity.

3.1.3 A large critical region

The problem of localization on the Fock space is also intimately connected to the lifetime of
single-particle excitations over the many-body ground state, as discussed in [77]. This paper
pictures the many-body delocalization process as a di�usion on a simpli�ed Hilbert space and
provides a convenient framework for the analysis of the spreading in the Fock space of the
exact many-body eigenstates, as resulting from the particles interaction.

Given the M -particle vacuum |M〉 of the free hamiltonian, obtained by �lling the �rst M
levels, one can consider all the Slater determinants constructed by creating m holes and m
particles in the state

ΨM = c†αm . . . c
†
α1
cβm . . . cβ1 |M〉 (3.27)

where the βs are below and the αs above the Fermi level. This state has an energy which is
given by the sum:

EΨM =

m∑
j=1

(
εαj − εβj

)
(3.28)

and can be represented by a string of zeros and ones to label the occupation number nα of
the states.

ΨM = |0, . . . , 0, 1αm , 0, . . . , 0, 1α1 , 0, . . . , 1F , 1, . . . , 0βm , 1, . . . , 1, 0β1 , 1 . . .〉 (3.29)

The Hamming distance is de�ned on the many-body Hilbert space as the number of labels
which di�er in the two con�gurations:

d
(
Ψ,Ψ′

)
=
∑
α

(
nα(Ψ)− nα(Ψ′)

)2 (3.30)

It follows that the interaction term in (3.11) connects only states at distance d = 0, 2, 4.
It is useful to think to the Hilbert space as divided in generations, arising from the

hierarchical processes described in (3.15). Given the ground state with M − 1 particles
|M − 1〉, all states of the form b†α |M − 1〉 with one particle in the state α added to the
ground state, are in the �rst generation, while those of the form b†αb

†
βbγ |M − 1〉 are in the

third generation and generation 5 is composed by all states like b†αb
†
βb
†
γbδbε |M − 1〉. It is

essential that any state from generation n + 1 is connected by (3.11) only to those states
within the same generation or in generations n+ 3 or n− 1.

We now add a particle over the ground state with energy ε > εF , therefore obtaining a
state of generation 1. A quick computation shows that the density of states coupled to the
starting one in generation 3 with the same energy is

ν3(ε) =

∫ ∞
0

d ε1
d

∫ ∞
0

d ε2
d

∫ 0

− εF

d ε3
d
δ(ε− ε1− ε2 + ε3) =

ε2

2 d
(3.31)

with d being the quasiparticle level spacing. Iterating the process (taking care that states of
further generations are unconstrained provided n <

√
ε /d) analogous considerations show
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Figure 3.1: Bethe lattice with connectivity K = 3.

that for the (n + 1) − st generation the density of states grows like 1
(2n)!

ε
2 d . Note also that

the number of particle is conserved throughout all the hierarchy, which represents a major
simpli�cation in computational approach.

However, in order to split this contribution in elementary steps, we focus on the contribu-
tion to the amplitude of a state in generation (2n+ 1) stemming from the direct access from
a given state of generation (2n − 1), which is given by ν2n+1 = ν3/n, as only one particle
can decay out of n. The starting state under the action of HI may also annihilate one of
the n particles with one of the n − 1 holes and jump back to the previous generation, with
associated density of states n(n− 1)(2n− 3)/∆, or stay within the same generation with an
associated density of states ε /∆2. For su�ciently small n, the latter are considerably smaller
than the "forward" contribution.

To sum up, looking to the e�ect of interactions as a succession of elementary contributions
on a given starting state and selecting only the most relevant ones yields a picture of the
process as taking place on a Bethe lattice, in which each site is a many-body eigenstate,
identi�ed by an occupation con�guration. From each site of generation (2n− 1), the system
can jump to the (2n+ 1)-th generation.

Please note that this analysis, up to now, is valid for the fairly general hamiltonian of
spinless electrons of the previous section. The somewhat drastic, yet useful, approximation
that allows the problem to be treated is that of assuming all the matrix element in (3.11) to
be equal Vαβ,γδ ∼ g, which brings the hamiltonian (1.86) in the game.

Let us re�ne the predictions of perturbation theory for the Richardson model with coupling
g/N . Let us start at g = 0 from state a, with energy Ea. The states at distance 2 from a
have energies

∆(2) = hα − hβ (3.32)

where the couple (α, β) ∈ S↑×S↓ de�nes the spins which have been �ipped up and down

in going from a to b. The typical value of ∆(2) is
√〈

(∆(2))2
〉

=
√

2 = O (1) however the
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minimum value is O
(
N−2

)
which we write x(2)/N2 where x(2) = O (1). So the corresponding

term in perturbation theory for the wave function is

Ab =
(g/N)

x(2)/N2
=
gN

x(2)
. (3.33)

In this way we can go on at arbitrary distance 2n, to the state bn, the amplitude thus having
n denominators of O

(
1/N2

)
Abn =

(gN)n

x(2)x(4)... x(2n)
, (3.34)

where x are random variables of O (1). For any given a there are only O (1) neighboring
states with ∆ ∼ 1/N2, so the number of such bn states at distance 2n from a is O (1) out
of N2n (also the number of relevant paths does not grow as n!). These can be called a
direct or percolating contribution. However already at distance 4 we observe another type of
contribution, which one is tempted to dub a tunnelling contribution, in which although the
�nal denominator ∆(4) = hα − hβ + hγ − hδ = z(4)/N4 each of the two paths leading to the
minimum hα − hβ ' −(hγ − hδ) = y(2) = O (1), where α, γ ∈ S↑ and β, δ ∈ S↓. Again this
contribution is of order:

Ab =
(g/N)

y(2)

(g/N)

z(4)/N4
=

(gN)2

y(2)z(4)
, (3.35)

while the amplitudes corresponding to the distance-2 intermediate steps are O (1/N). The
distribution of x, z can be found by using the theory of extreme value statistics [78], while y's
are typical values of �eld di�erences and none of these distribution depends on N . We will
stop here our analysis of perturbation theory as this would require a separate work by itself.
It is su�cient for us to notice that only the combination gN appears in all terms of the series.

In our fully connected model, we have a well-de�ned connectivity, which is

K =
( εF

2 d

)2
(3.36)

at half �lling.
The problem of estimating the degree of localization of quasiparticle on the Fock space

is then reduced to the localization on a Bethe lattice of a many-body state. This has been
studied in [79] through the computation of the behaviour of the particle self-energy in the
thermodynamic limit. The answer provided in the case of uniformly distributed on-site en-
ergies in the interval [−W,W ]1 was that there exist a localization-delocalization transition
determined by the condition

K g

W
logK ∼ 1 (3.37)

Instead of considering the original derivation, one has a clear picture by focusing on the
amplitude, at given energy ε, connecting a site of the �rst generation to site in the (2n+1)-th
a matrix element g. The term (3.34) is the biggest amplitude that connects a given initial site
to one site in generation 2k + 1. For a generic state in the same generation, the amplitude
reads:

An =

n∏
j=1

g

ε− εj
(3.38)

1computations for any other distribution are not so simple. This provides anyway a reasonable estimate
also in other cases.
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In [77], the probability that this quantity is signi�cant after n steps is p(|An| > C), where C
is some arbitrary O(1) threshold value. One can de�ne

log |An| = n log
g

W
+ Yn (3.39)

with Yn =
∑n

j=1 yj and yj = log
∣∣∣ W
ε− εj

∣∣∣. Under the assumption that energies are independent
and identically distributed random variables, the probability distribution for the yjs is

P (yj) = e−yj (3.40)

from which the probability for Y can be obtained and consequently for the amplitude

P (|An|) =
g/W

(n− 1)!

1

|An|2
[log (|An|(W/g)n)]n−1 (3.41)

Then the probability that the module of An exceed some value C ∼ 1, in the case of weak
interactions, is

p(|An| > C) ' 1

(n− 1)!

1

C log CWn

gn

[
g

W
log

WnC

gn

]n
(3.42)

from which it follows that the probability that there are no direct paths between the original
site to any of the states in the (2n+ 1)-th generation is

e−fn = (1− p(|An| > C))K
n

(3.43)

When the probability is much smaller than one and n � 1, (3.42) provides a criterion of
localization by considering the behaviour of

fn '
1√

2πnC

1

log(W/g)

[
gKe

W
log

W

g

]n
(3.44)

If the expression above increases at large n, then for far enough generations one has fn � 1,
signalling a large "�ux" of amplitude away from the �rst generation. Conversely, small values
of (3.44) mean localization in the Hilbert space. A transition between the two scenarios takes
place when the last factor in the previous equation takes unit value, which determines a
critical g as a function of the e�ective connectivity (3.36) and of the noise width

g∗∗Ke

W
log

W

g∗∗
= 1 (3.45)

In addition to this, we can focus only on a one-step contribution to the di�usion: the
condition that all generations are well connected with the �rst is

f1 =
K g

W C
> 1 (3.46)

, which provides another critical value g∗ for the coupling.
An articulated picture arises at this point. In the localized phase g < g∗∗, the �rst

generation is weakly connected with the rest of the network. Therefore, the exact eigenstates
are written as a superposition of few occupation con�gurations; similarly any injection of a
further electron (or �ip of a spin) will overlap with few exact eigenstates. For g > g∗, there are
signi�cant trajectories that connect all the generations and we call the states delocalized. This
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may still not be su�cient to give ergodic behaviour, since only a portion, although extensive,
of the Hilbert space may be covered. For intermediate regions g∗∗ < g < g∗, there are paths
that connect generation 1 to any generation, yet eigenstates of the noninteracting problem
are connected to few states in the various generations. For a given realization of the energy
levels, a �nite number of generations is connected to the initial state. Moreover, di�erent
initial states will be arguably spread onto di�erent states of any given generation.

Our work, in the following section, will show that the the the second scenario is the one
met for the physical scaling of the interaction as 1/N , where the condition g > g∗ is satis�ed.
In particular, despite being the spreading on the Hilbert space extensive in the size of the
system, only a small portion of it is occupied by typical states.

3.2 Numerical study

The Richardson model (1.86) can accommodate quenched randomness in the arbitrary choice
of the �elds hα. As it is clear from the construction, these �elds are just the anisotropies in
the monodromy matrix, hence they can be assigned arbitrarily while � remarkably enough �
retaining integrability. From earlier studies on the disordered model, it was concluded [80]
that the e�ect of disorder is that of enhancing pairing correlations, while not modifying the
crossover. In this section, we choose a Gaussian distribution for them, with mean h = 0 and
variance h2 = 1.

Since the total spin Sz is conserved, a simpli�cation comes from focusing on the subspace
Sz = 0 (which exists for even N). Moreover, the integrability of the model allows us to go
to spin numbers (N = 50 spins for single states and we will collect extensive statistics up to
N = 40) which are sensibly higher with respect to those achievable by exact diagonalization
and therefore allows to make some educated guesses on the thermodynamic limit of the
system.

The picture that emerges from this analysis is that there is no many-body localization-
delocalization phase transition in this model although the states appear de-localized on the
computational basis for any �nite g, the average single-spin observables are always localized.

3.2.1 Entanglement, average Hamming radius of an eigenstate and a local

entropy

We will see that for all g > 0, log I ∝ N , so an exponential number of sites of the hyper-
cube of spin con�gurations is covered, although by the de�nition common in (single-particle)
Anderson localization studies we would always �nd satis�ed the limit

lim
N→∞

I(
N
N/2

) → 0, (3.47)

which �ags instead a single-particle localized phase. In facts, the analysis of single-particle
observables will con�rm this scenario.

The amplitudes 〈s1, ..., sN |E〉 can be calculated as ratio of determinants of (N/2)× (N/2)
matrices (therefore in time ∼ N3) once the roots wj are known. However the number of
terms in the sum is exponential in N so the calculation of I requires an exponential number
of terms2 and we are limited again to twenty spins or so.

2We have looked for a shortcut to evaluate this sum but to our knowledge integrability does not help us
here.

62



We found two ways around this di�culty, they are complementary and we checked one
against the other for consistency. First, we devised a Montecarlo algorithm for the evaluation
of I. De�ne the probabilities pa = | 〈a|E〉 |2 where a ∈ C stands for one of the

(
N
N/2

)
allowed

con�gurations of spins which constitute the con�guration space C. We perform a random
walk with the probabilities pa's, namely start from a random con�guration a and we try to
move to a random one of the (N/2)2 neighboring states, say b, by accepting the move with
probability min(1, pb/pa). This involves only one computation of pb, which takes time ∼ N3.
The random walk proceeds in this way, generating a history of con�gurations a for which we
can take the average over Montecarlo time of pa. The inverse of this value gives I.

The intensive quantity is log I /N , which can then be averaged over di�eren states and
realizations. We observe that for all g = O (1) the value of ln I ∝ N , testifying then that
each state occupies an exponential number of states in the con�guration space.

The second method is to �nd another quantity which can be computed in polynomial time
and to link it to I. Since the average values 〈E| szα |E〉 can be expressed again in terms of
determinants they can be calculated in O

(
N3
)
time: therefore one is led to consider a micro-

canonical version the Edwards-Anderson order parameter associated to a single eigenstate

q(E) =
4

N

N∑
α=1

〈E| szα |E〉
2 , (3.48)

with this normalization q ∈ [0, 1]. The average over eigenstates is

q =
1

2N

∑
E

q(E). (3.49)

Following [70] we start with a slightly magnetized spin α in an in�nite temperature state:

ρ0 = (1+εszα)/2N (3.50)

with magnetization 〈szα〉0 = Tr [ρ0s
z
α] = ε/4 (as s2

z = 1/4). The same magnetization at large
time t in the diagonal approximation reads

〈szα〉∞ = lim
t→∞

Tr
[
e−iHtρ0e

iHtszα
]

=
ε

2N

∑
E

〈E| szα |E〉
2 . (3.51)

Therefore, averaging over α we obtain the equality with eq. (3.49):

q =
1

N

∑
α

〈szα〉∞
〈szα〉0

, (3.52)

namely the previously de�ned EA order parameter is the average survival fraction of the
initial magnetization after very long times.

We notice two more things:[81] one, that q is related to the average purity of the state
(here we use the total Sz = 0):

q =
2

N

∑
α

Tr
[
ρ2
α

]
− 1 (3.53)

and two, that q is related to the average Hamming distance of the points in con�guration
space when sampled with the probability distribution pa:

da,b =
N∑
α=1

1− 4 〈a| szα |a〉 〈b| szα |b〉
2

, (3.54)
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and multiplying by pa, pb and summing over a, b we �nd:

L ≡ 〈d〉 =
N

2
(1− q). (3.55)

So q is computationally easy and it captures both some geometric properties of the covering
of the con�guration space by an eigenstate and the long-time correlation function for sz. We
averaged q over the spectrum (sample over typical states) and then over realizations (the
number of which depends on the size of the system but it will never be less than 100).

We found this average q as a function of g for g ∈ [0, 40] and N = 16, ..., 38 and studied
the pointwise �nite-size scaling (in the form qN (g) = q(g)+c1(g)/N+c3(g)/N3) to obtain the
thermodynamic limit of q (see Figure 3.2). We �t the data using a ratio of polynomials with
the condition that q(0) = 1 and we found that averaging over the state and the realization of
disorder

q =
1 + 3× 10−8g

1 + 1.003g + 0.009g2
' 1

1 + g
(3.56)

works in the whole range of data to an error of at most 0.5%. We therefore conjecture this
to be the correct functional form of the EA order parameter at in�nite temperature.
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Figure 3.2: The pointwise extrapolation of the function q as a function of g. The �t q =
1/(1 + g) is not distinguishable from the data.

We can now go back to the relationship between the IPR and q, better expressed as a
relation between log I and L. We notice a one-to-one correspondence between average values
these two quantities already at the level of second-order perturbation theory in g starting
from a given state with N/2 spins up S↑ and N/2 spins down S↓:

I = 1 +
2g2

N2
A+ o(g2) (3.57)

where we de�ned a sum over pairs of up and down spins of the given state:

A =
∑

α∈S↑, β∈S↓

1

(hα − hβ)2
(3.58)

Since A is dominated by small denominators, it will be typically A = O(N4) and therefore
from the expression for IPR we see the perturbative regime is valid for g � 1/N . With an
analogous computation we get:

L =
4g2

N2
A+ o(g2) (3.59)
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Eliminating g between the two relations and using (3.55) one gets, independently of the state
and of the quenched randomness (therefore the relation holds also on average):

log I ' L

2
. (3.60)

So the relation is linear for small g. To see how this relation is modi�ed at higher values of
g we have again to resort to numerics. From the data it is clear that a strict relation exists
between log I and L as one can see in Figure 3.3
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Figure 3.3: log I as a function of the average distance L. The points are (blue, pink, yellow)
N = 28, 30, 32 averaged over 100 realizations: the dashed straight line is the second order
perturbation theory approximation Eq. (3.60).

By using the previous Montecarlo calculation for I we can plot log I vs. L, showing that
the relation is almost linear. The degree of non-linearity is measured by the ratio

s =
log I
2L

(3.61)

which can be interpreted as a local entropy[82]. In fact, 2L = N(1 − q) can be interpreted
as the number of free spins (whose value of sz is close to 0) while I is the number of con�g-
urations. If we want 2L spins to be responsible to I states then each of these spins should
account for a degeneracy of es, from which the interpretation as an entropy density.

The distribution of L over states and realizations becomes more and more peaked as N
grows, since we observe the variance δL2 ∝ N . The same occurs to log I, whose variance
goes ∝ N in the region of g considered. Therefore the average value of s becomes typical in
the large-N limit.

In the curves of Figure 3.4 the entropy s grows from the value of 1/4 = 0.250 predicted
by perturbation theory to an asymptotic value of s = 0.383 ± 0.003.3 This value is not
what one would expect from a uniform superposition over

(
N
N/2

)
states, since in that case

L = N/2, log I ' N log 2 and the familiar value s = log 2 = 0.693 is roughly twice as much
as we expect. This leads us to think that the most probable structure of the delocalized state
at increasing g still retains a pair structure. We can build a toy model of delocalization in

3In the �gure we show also a rational function best �t s(g) = 0.403 0.452+g
0.656+g

, which has however an error
of 5% in the asymptotic value s(∞) = 0.403 instead of 0.383, the value obtained by averaging on many more
realizations and including smaller N in the �t.
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Figure 3.4: Local entropy as a function of g. The points are N = 28, 32, 36 (blue, pink,
yellow) all averaged over 100 realizations. The �t is a (1,1)-Pade' approximation conditioned
to s(0) = 1/4.

the typical eigenstates, by assuming that Nq spins are localized on their g = 0 values and
that the remaining N(1− q) spins are instead divided into couples, where couples are formed
between almost resonating spins of opposite orientation. The couples are in one of the random
valence bond states |↑↓〉 ± |↓↑〉 which are indeed the two Sz = 0 eigenstates of the two- body
hamiltonian

H2 = − g

N
(s+

1 s
−
2 + s+

2 s
−
1 )− h(sz1 + sz2) (3.62)

where we have assumed that h1 ' h2 = h. This predicts that

I ∼ 2N(1−q)/2 = 2L (3.63)

and so that we should have a constant entropy s = log(2)/2 = 0.347, slightly smaller than the
observed value at large g and o� by 40% at small g. The pair structure of a given eigenstate
can be observed in Figure 3.5 where we plot the values of m2

n ≡ 〈E| szn |E〉
2 for a given

eigenstate |E〉, ordering the spins by increasing hn (so that almost-resonant spins are nearest
neighbours). We see a clear valence bond-like pair correlation in the values of the squared
magnetization.

With the available data, we can discuss issues like the presence of multiple clusters in
the same energy level |E〉. In fact, by randomly restarting the Montecarlo routine with the
same pa's if multiple clusters exist, we would expect to sample them according to their basin
of attraction. Moreover we can rely on analytic results (such as those for q) to compare
the Montecarlo averages with: clusterization and ergodicity-breaking would translate in a
di�erence between these two results (as the random-walk would get stuck in a cluster and
would not explore the whole con�guration space). In the region where we can trust our
numerics (g & 0.02) Montecarlo averages converge to the analytic results, though a slowdown
of the dynamics is observed (see below).

3.2.2 Dynamics of Montecarlo and other quantities

The Montecarlo routine which allows for importance sampling of the distribution pa allows
other measures of the geometry of the state. We can now study the similarities between the
dynamics of importance sampling on pa and that of random percolation on the hypercube,
which has been proposed as a model of relaxation in a glassy system [82]. We will �nd that

66



0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

n

m
n

2

Figure 3.5: Squared magnetizations for increasing g (from white to black), where the spins
are ordered by increasing magnetic �eld hn. A consistent number of valence bond pairing is
observed as a good fraction of neighboring spins (e.g. n = 8, 9, n = 15, 16 and n = 31, 32)
have the same speed.

in both cases, a stretched exponential is the best �t and that the exponent depends on the
coupling constant g. This, we believe, is a remarkable similarity.

An important quantity in this sense is the time dependence of the average distance from
the starting point. Consider the Hamming distance H(t) (t is Montecarlo time) from the
starting point H(t) = |a(t) − a(0)|. For t � 1, H(t) is �t quite accurately by a stretched
exponential ansatz of the form:

H(t) = L

(
1− e−( tτ )

β
)
, (3.64)

where L is the average distance introduced before and β is a new characteristic exponent. Let
us consider the behaviour of the exponent β with respect to g, as plotted in Fig. 3.6. Even if
the results become quite noisy for small g, we can still see that for small values of g, β stays
close to 1 (with some noise) as g increases, β decreases, although quite slowly. Instead for
the time-scale τ we �nd, apart from the monotonic decrease with g, which is to be expected
on general grounds, that for g & 1 τ ∝ N3/2, which we propose without explanation.

The small time behaviour of H(t) can be used to obtain some information about the local
structure of the state. In particular we can set

k ≡ H(1)

2
=

4

N2

∑
〈a,b〉

min(pa, pb) (3.65)

where the last equality follows from the Montecarlo rate and the sum is over nearest-neighbour
states. This quantity can be considered as a measure of the local connectivity, that is, the
average fraction of active links.

From Fig. 3.7, we may deduce two things: one is that the connectivity stays well below 1
even for large g, con�rming, as we claimed before, that the typical state is never uniformly
spread over the hypercube; the second is that the connectivity scales with N as N−1 for small
g and with N−1/2 for large g (a �t k = A/Nα shows a continuously decreasing α from 1 to
1/2). Since the number of diverging roots is proportional to the total spin of the eigenstate
at in�nite g, and since the more roots diverge the more equally distributed the terms of each
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Figure 3.6: Left. The stretched exponential exponent β data as a function of g for N =
28, 32, 36 (blue, pink, yellow) together with a �t of the form (1 + a1g)/(b0 + b1g + b2g

2).
Right. The timescale τ as a function of g for N = 18, 20, ..., 34 (red to green). The scaling
τ ∝ N3/2 is evidently good, in particular in the region g > 1.
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Figure 3.7: Local connectivity as a function of g. Di�erent lines corresponds to N = 18, 24, 30
(blue, pink, yellow)
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creation operator B are, we can argue the state will be better spread for larger total spin S.
As for large N , the total spin of a typical state will increase only as

√
N this explains the

depletion of the local connectivity.

3.2.3 Setup of an exponential IPR

From perturbation theory (and from the Bethe-lattice approximation result [79]) one could
argue that, if a phase transition occurs, it is at g ∼ 1/N (with or without the extra 1/ logN ,
which would however not be noticed for our moderately large N). But does a phase transition
in the geometric properties of the eigenstate occur?

First we analyze the quantity for which we have more extensive statistics (because of his
polynomial complexity), L. A phase transition in L would mean that, set γ = gN , there
exists a γc > 0 such that for γ < γc, L/N → 0 and for γ > γc, L/N ∼ (γ − γc)δ where δ is a
critical exponent. We have analized our data for g > 0.01 and g < 0.2 and we can conclude
that this is not the behaviour observed. The behaviour is more consistent with γc = 0, δ = 1
or with a crossover, in which the limit L/N when N → ∞ is a smooth function of g which
vanishes at g = 0. The matching with the part of the curve at �nite g is smooth and the
limiting behaviour is as described before.
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Figure 3.8: The logarithm of the inverse participation ratio divided by the size for N between
8 and 18, computed exactly and averaged over states and realizations. This graph shows no
hint of a phase transition at g . 1/N .

There is the possibility however that although L ∼ N always, we have two phases: log I ∼
1 and log I ∼ N between which a transition occurs. This could happen if an eigenstate spread
along one (or a few) directions without covering an exponential number of spin con�gurations.
We have excluded this by both direct analysis of log I /N data and by the observation that
the relation between log I and L remains valid all the way to small g (small here means
g . 1/N). As log I /N becomes soon independent of N without any scaling of g needed (see
Fig. 3.8) we are led to conclude that no phase transition occurs as the system occupies an
exponential number of sites of the computational basis for any g > 0.

3.2.4 Breaking of integrability

By considering the Richardson model essentially as a hopping process on the hypercube with
random site energies given by the unperturbed energies we have found that the eigenstates are
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always covering an exponential number of spin con�gurations but nonetheless q > 0 meaning
thermalization is not achieved. From this point of view it is not clear which role, if any,
integrability plays.

On the other hand, one would infer that the integrability of the model must play and es-
sential role beyond providing the methods used for its solution. In particular, if the integrals
of motion are too much �local", integrability can have the e�ect of freezing the expectation val-
ues of local quantities. To support such a claim we investigated a very similar non-integrable
model, in which the hopping coe�cients are not uniformly equal to g as in (1.86) but instead
N(N − 1)/2 random variables gα,β = g(1 + εηα,β) where ηα,β = ηβ,α = ±1 with probability
1/2. Randomness in the �elds is retained. The hamiltonian is

H = − g

N

∑
α,β

g(1 + εηα,β)s+
α s
−
β −

∑
α

hαs
z
α. (3.66)

We observe a decrease of the value of q (averaged both over E, η and h) as expected, in
particular for su�ciently large g we are con�dent to say that q → 0 for N → ∞ and the
system becomes ergodic.
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Figure 3.9: Averaged microcanonical q for the non-integrable hamiltonian eq. (3.66) for up:
g = 0.1, ε = 0.4 and down: g = 4.1, ε = 0.4. The data in the lower panel are �t by a power
law aN−γ with a = 290 and γ ' 4. The exponent γ seems to be g-dependent.

For small g however the situation is not so clear. The limit N →∞ could actually be zero
or not, what is clear is that the N -dependence is not settled (compare the upper and lower
panel of Figure 3.9) for N = 16, the largest system size that we can attain. This leads to
two competing scenarios: in the �rst we have ergodicity as soon as ε > 0; in the second, one
could identify a �nite gc(ε) such that for g < gc, q > 0 and for g > gc we have q = 0 in the
thermodynamic limit. The latter would have a many-body localization transition at the said
gc. Much more extensive numerical work is needed to decide between these two scenarios.
We leave the resolution of this issue for the future.

3.2.5 Conclusions and some directions for further work

We have performed a numerical study of typical states of the Richardson model with quenched
disorder (an example of Gaudin magnet and an integrable system). We have found no evidence
of a full delocalization phase transition although typical eigenstates occupy an exponential
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number of states in the basis of szi 's for any g > 0. This better clari�es the �delocalized�
scenario that has been introduced in previous works.

We have devised a method to calculate the IPR without summing over exponentially many
states and studying its connections with a microcanonical version of the Edwards-Anderson
order parameter, which measures the fraction of surviving magnetization at in�nite temper-
ature and for long times. Of this order parameter, we have conjectured the thermodynamic
limit at in�nite temperature as q = 1/(1 + g). We were unable to obtain the temperature de-
pendence of this quantity, as sampling from the Boltzmann distribution is not straightforward
within our framework.

For what concerns the absence of a many-body localization phase transition we can point
out two peculiarities of our system as responsible for its absence. One is integrability and the
other is the in�nite range of the hamiltonian. We have therefore studied small-size systems
(up to N = 16 spins) with an extra integrability breaking term of size ε. We observe a sharp
reduction of q, which in some range of parameters could lead to think to a phase transition
where q = 0 for g > gc(ε). However it is possible that in the complementary region (g < gc(ε))
the decrease with N starts from a value of N impossible to reach with our limited numerics
so we are unable to see that q = 0 for all g as soon as ε > 0. Unfortunately this dichotomy is
unlikely to be settled with the currently accessible values of N .

We point out that the Richardson model is one of a family of integrable spin systems
(generalized Gaudin's magnets, see [83]) which can be studied with minor modi�cations of
the methods introduced in this paper.
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Part II

Integrability in �eld theory
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Chapter 4

A review of integrable �eld theories in

condensed matter

A system of particles moving in one dimension has no single-particle, but only collective
excitations. This allows to treat the low-energy part of the spectrum of a wide class of
problems, characterized by the feature of not showing gap in the thermodynamic limit, by
the use of the same technique: it consists essentially in rewriting the Hamiltonian in terms
of a �free� scalar bosonic �eld, a procedure that can be implemented e�ectively even for
interacting systems [84].

As will be seen in the following, if one considers a one-dimensional system of fermions
with a fairly general interaction, the density and the spin excitations can be decoupled.
In particular, one can write a free e�ective action for the density part (Luttinger liquid),
whereas for the spin part an additional term appears in the action, which may produce a
gapped spectrum. This action is that of a particular integrable �eld theory: the sine-Gordon
theory.

Moreover, even if one considers more general (bosonic, spin, ...) models or spinless
fermions, there are many kinds of perturbations that can drive the action out of the Lut-
tinger liquid point and produce a gap in the spectrum. We will recall, in particular, some of
the (several) perturbations that produce an action of the sine-Gordon kind.

This chapter serves as a review of some aspects of quantum �eld theory in 1+1 dimension.
The techniques that connect many problems of one-dimensional quantum physics with a fairly
general low�energy action of quantum �eld theory are brie�y reviewed in section 4.1, while
we will focus onto the formalism of integrable �eld theories in section 4.2. The aim is to show
that the original work on sine-Gordon presented in the next chapter has a general interest in
one-dimensional physics.

4.1 Lattice systems in one dimension

Consider a system of fermions on a line. For the moment, following [18], we shall take them
to be spinless and subject to the Tomonaga-Luttinger Hamiltonian:

H = −vF
∑
k

(k − kF ) c†kck (4.1)

where the Fermi velocity vF and momentum kF are parameters of the model.
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Particle-hole excitations have a de�nite energy, which is independent of kF and are there-
fore well-de�ned excitations that can be quantized. They are created by the transform of the
density operator

: ρ(x)r :=: ψ†(x)rψr(x) : (4.2)

where the subscript r stands either for R,+ (right) or L,− (left). Excitations with de�nite
momentum are created by the operator

ρ†r(q) =

{ ∑
k c
†
r,k+qcr,k q 6= 0∑

k : c†r,kcr,k := Nr q = 0
(4.3)

where the momentum q is measured with respect to kF for right movers and to −kF for left
movers. Being ρ(x) real, we have ρ(p)† = ρ(−p).

It follows from the expression above that

ρ†L(p > 0) |0〉 = 0 , ρ†R(p < 0) |0〉 = 0 (4.4)

which is to say that left movers with positive energy have negative momenta (less than the left
Fermi edge), while right movers have positive momenta (bigger than the right Fermi edge).

One can show (see [18]) with periodic boundary conditions that

[ρr(q), ρs(p)] = −r q L
2π

δr,sδp,−q (4.5)

The ground state |0〉 of (4.1) is the state in which all the levels with negative energy are
occupied and all the ones with positive energy are empty. According to this, let us now de�ne
bosonic creation and destruction operators as follows:

b†q =

√
2π

L|p|
ρ†sgn(q)(q)

bq =

√
2π

L|p|
ρ†sgn(q)(−q) (4.6)

A remarkable property of these operators is that also the operators associated to fermionic
degrees of freedom can be written in terms of the (4.6). In particular, the Hamiltonian reads

H = vF

∑
p 6=0

|p|b†pbp +
π

L
N2
r

 (4.7)

Single-particle operators can be determined as well [84]: their expression is

ψr(x) = Ure
∑
p e
ipx

ρ†r(−p)
(

2πr

pL

)
(4.8)

in which the operator Ur is a Klein factor, that suppresses one fermion of species r uniformly
on the state where it acts and commutes with the boson operators.

It is convenient to introduce the �elds

φ(x) = −π
L

(NL +NR)x− i π
L

∑
p 6=0

e−α|p|/2

p

(
ρ†R(p) + ρ†L(p)

)
(4.9)

θ(x) =
π

L
(NL +NR)x+ i

π

L

∑
p 6=0

e−α|p|/2

p

(
ρ†R(p)− ρ†L(p)

)
(4.10)
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Figure 4.1: Counting function for a given number of particles in an homogeneous and a non
homogeneous con�guration: the slope of the function is proportional to the local density.

where a cuto� α has been introduced to regularize the in�nite sum. Then (4.8) becomes

ψr(x) = Ur lim
α→0

eir(kF−πp/L)x

√
2πα

ei(θ(x)−rφ(x)) (4.11)

and the density of the two species of excitations can be reproduced as

∇φ(x) = −π [ρR(x) + ρL(x)] (4.12)

Formula (4.12) suggests a clear interpretation of the bosonic �eld φ as a counting function.
To be precise, suppose that the position x of the n−th particle is identi�ed by the condition

φ(xn) = 2πIn (4.13)

where In is some integer. Note that, since we are in one dimension, we can de�ne an ordering
for the particles, so that the function φ is always monotonic. It follows that in the regions in
which the increase is the steepest, it will cross many quantization points in a relatively short
interval, signalling a high density; conversely, regions in which φ is almost �at correspond to
a low concentration of particles.

By rewriting the expressions above in terms of the bosons as from (4.6), one can show
that in the in�nite-volume limit

[φ(x), θ(y)] = i
π

2
sgn(y − x) (4.14)

hence the �eld
Π(x) =

1

π
∇θ(x) (4.15)

is canonically conjugated to the φ �eld

[φ(x),Π(y)] = iδ(y − x) (4.16)

and the action becomes

H =
vF
2π

∫
dx
[
(πΠ(x))2 + (∇φ(x))2

]
(4.17)
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Note that the relation πΠ = ∂tφ/vF − π(NR − NL)/L holds. The action associated to this
Hamiltonian is the free Gaussian action

S0 =
1

2π

∫
dτdx

[
(∂τφ)2 − (∇φ)2

]
(4.18)

after the change of variable τ → vF τ .

Interactions

It is now possible to consider interactions among fermions, in the rather general form

HI =

∫
dxdyV (x− y)ρ(x)ρ(y) (4.19)

In this situation, we cannot expect the dispersion relation to be linear as in the Tomonaga-
Luttinger Hamiltonian. Nevertheless, if one considers low temperatures, in such a way that
the excitations involve only a small region of the whole spectrum and that the curvature of
the spectrum is not sensed, it is reasonable to linearize the dispersion relation in the vicinity
of the two Fermi edges.

Figure 4.2: Linearization
of the dispersion relation
around the Fermi edges

The fermionic �eld then becomes

ψ(x) ' 1√
L

 ∑
k∼−kF

eikxck +
∑
k∼kF

eikxck

 (4.20)

and the density-density interaction can be rewritten in terms
of left and right �elds.

In a low energy description, interaction processes involve
scattering of quasiparticles only in proximity of the Fermi edges
and can be grouped in three categories [85]. They correspond
to the terms that appear when using (4.20) to rewrite (4.19).
The corresponding e�ective strengths are g1, g2 and g4. In the
�rst kind of process, a particle is scattered from the "left" to
the "right" side of the Fermi sea, thus gaining a momentum

q ∼ 2kF , while another one loses the same momentum and goes from around the "right"
to around the "left" edge. The "g2" process, instead, involves only the transfer of a small
amount of momentum q � kF from one particle to another on opposite sides of the Fermi
sea. Note that, in the absence of any internal degree of freedom, such as a spin, it will
be undistinguishable from the �rst. The g4 scattering, instead, is the momentum exchange
among particles on the same side of the Fermi sea.

Approximating the two-body potential by a delta function one obtains momentum inde-
pendent couplings, and the corresponding terms in the action are given by

g4(ψ†RψRψ
†
RψR + ψ†RψRψ

†
RψR) =

g4

(2π)2

[
(∇φ)2 + (∇θ)2

]
(4.21)

g2ψ
†
RψRψ

†
LψL =

g2

(2π)2

[
(∇φ)2 − (∇θ)2

]
(4.22)
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The g1 processes, being the particles not provided with an internal degree of freedom, are not
distinguishable from those of the g2 type. The e�ect of the g4 term is that of renormalizing
the velocity of the excitation away from the Fermi velocity to

u = (vF +
g4

2π
) (4.23)

Moreover, with respect to the the free bosonic action, the term g2 represents a marginal
perturbation, which can be absorbed at the Lagrangian level in a rede�nition of the �eld. A
new parameter K ' 1− g2

2πvF
can be de�ned.

All the terms obtained are expressible by means the scalar �elds (4.9), so that the �nal
form only contains derivatives of θ and of φ in the quadratic e�ective Hamiltonian

H =
u

2π

∫
dx

[
K (πΠ(x))2 +

1

K
(∇φ(x))2

]
(4.24)

where u sets the energy scale and K is a dimensionless parameter. Both are model-dependent
and contain all the information about interactions of the original system. If these are weak,
u and K can be determined perturbatively, while in the general case one needs to rely on the
computation of thermodynamic quantities by other means, such as algebraic Bethe ansatz,
to obtain them.

The corresponding action is given by:

S = −
∫ β

0
dτ

∫
dx

[
1

π
∂xθ∂τφ−

1

2π

(
uK(∂xθ)

2 +
u

K
(∂xφ)2

)]
(4.25)

but is more conveniently written in momentum space as:

S =
1

2βL

∑
b

k
(
θ∗q, φ

∗
q

) 1

π

(
q2uK ikωn
iqωn q2u/K

)(
θq
φq

)
(4.26)

with the notation q = (ωn, q)
If one is only interested in expectation values of composite operators of the �eld φ, such

as, e.g., the magnetization correlation function in the Heisenberg chain, then the �eld θ can
be integrated out by completing the corresponding square, which yields:

e−S = exp
{ 1

Lβ

∑
q

[
− ω2

n

2πuK
φ(q)φ(−q)

−uKq
2

2π

(
θ(q) +

iωn
uKq

φ(q)

)(
θ(−q) +

iωn
uKq

φ(−q)

)
− uq2

2πK
φ(q)φ(−q)

]}
(4.27)

Then one is left with a gaussian integral in the variable θ, which cancels with the partition
function in the correlators. Then, it is possible to write an action with respect to a single
scalar �eld only as:

S =
1

2πK

∫ L

0
dx

∫ β

0
dτ

[
1

u
(∂τφ)2 + u (∂xφ)2

]
(4.28)

Another way of obtaining this action is by noting that at the Gaussian point, the momentum
is (proportional to) the derivative ∂τφ. With either the above action or its analogue containing
only the θ variable one can obtain [18] the correlation functions〈

(φ(r)− φ(0))2
〉

= KF1(r)〈
(θ(r)− θ(0))2

〉
=

1

K
F1(r) (4.29)
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with

F1(r) =
1

2
log

x2 + (u|τ |+ α)2

α2
(4.30)

while the mixed ones can be extracted from the complete action (4.26), by Fourier transform

〈φ(r)θ(0)〉 =
1

2
F2(r) (4.31)

where
F2(r) = −i arg (uτ + α sgn τ + ix) (4.32)

It is su�cient to apply these formulas for evaluating all expectation values. For a quadratic
Hamiltonian, in facts, one has〈

ei
∑
j(Ajφ(rj)+Bjθ(rj))

〉
= e1/2

∑
j<k[(AjAkK+BjBkK

−1)F1(rj−rk)−(AjBk+AkBj)F2(rj−rk)] (4.33)

from which general correlation functions can be evaluated.
A remarkable advantage of the Luttinger liquid approach to the study of one-dimensional

problems is that most interacting systems of spinless fermions allow a description in terms of
a "free" bosonic e�ective model, under an appropriate choice of the parameters. Note that
the parameter u in (4.28) just sets the relative scale of space and time and is incorporated in
the time variable with τ → uτ .

The parameter that encodes the information about the large-scale behaviour of the inter-
acting system is K; according to (4.21), one has K < 1 for repulsive interactions and K < 1
for attractive interactions, at least at the perturbative level. Most importantly, it sets the
scaling dimension of the �eld: whether a perturbation is relevant or not with respect to the
Luttinger point ultimately depends on its value.

Fermions with spin

When fermions carry a spin degree of freedom it is again possible to use the boson represen-
tation (4.9), but one needs to treat separately the spin-up and the spin-down particles, by
introducing two sets of �elds φ↑, θ↑ and φ↓, θ↓. It turns out to be more convenient to separate
the charge and spin degrees of freedom by de�ning the corresponding densities as:

ρ(x) =
1√
2

[ρ↑(x) + ρ↓(x)] , σ(x) =
1√
2

[ρ↑(x)− ρ↓(x)] (4.34)

From these one writes the bosonic �elds

φρ(x) =
1√
2

[φ↑(x) + φ↓(x)] , φσ(x) =
1√
2

[φ↑(x)− φ↓(x)] (4.35)

θρ(x) =
1√
2

[θ↑(x) + θ↓(x)] , θσ(x) =
1√
2

[θ↑(x)− θ↓(x)] (4.36)

A general density-density interaction term appears to be

HI =
∑

σ,σ′=↑,↓

∫
dxdyV (x− y)ρσ(x)ρσ′(y) (4.37)

Also in this case one considers the excitations around the Fermi edges only and rewrites the
density-density interaction in terms of the analogues of the linearized fermion �eld. Again,
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we shall consider the contact approximation for the interaction in (4.37), and denote by the
subscripts || the strength of the interaction among electrons with parallel spin and by ⊥
the one among electrons with opposite spin. By using the �elds (4.35), we can write the
interaction terms as:

H4 =
1

2

∑
r=LR,σ=↑↓

∫
dx
[
g4 ||ρr,σρr,σ + g4⊥ρr,σρr,−σ

]
=

g4 || + g4⊥

4π2

∫
dx
[
(∇φρ)2 + (∇θρ)2

]
+
g4 || − g4⊥

4π2

∫
dx
[
(∇φσ)2 + (∇θσ)2

]
(4.38)

and

H2 =
∑
σ=↑↓

∫
dx
[
g2 ||ρR,σρL,σ + g2⊥ρR,σρL,−σ

]
=

g2 || + g2⊥

4π2

∫
dx
[
(∇φρ)2 − (∇θρ)2

]
+
g2 || − g2⊥

4π2

∫
dx
[
(∇φσ)2 − (∇θσ)2

]
(4.39)

Here an essential di�erence arises. In facts, when particles carry spin, the processes of the g1

kind that correspond to the scattering of a right mover with given spin to the left Fermi edge
and a left mover with opposite spin to the right Fermi edge are to be treated separately. It
can be split into two contributions. The �rst one is:

g1 ||
∑
σ

∫
dxψ†L,σψ

†
R,σψL,σψR,σ = −g1 ||

∑
σ

∫
dxρL,σρR,σ (4.40)

which is indeed equal to a g2 process. However, the term corresponding to the second contri-
bution is

g1⊥
∑
σ

∫
dxψ†L,σψ

†
R,−σψL,−σψR,σ =

∫
dx

(2πα)2
cos(2

√
2φσ(x)) (4.41)

Summing up, the Hamiltonian for the spin excitations is given by

H =

∫
dx

2π

[
uσKσ (πΠσ(x))2 +

uσ
Kσ

(∇φσ(x))2

]
+ 2g1⊥

∫
dx

(2πα)2
cos(2

√
2φσ(x)) (4.42)

This is a sine-Gordon type Hamiltonian. The e�ect of the cosine term is that of trying to
lock the �eld φσ into one of the minima of the cosine, therefore competing with the kinetic
part that allows the �eld �uctuate. The resulting ground state out of this competition, can
be determined from a renormalization group analysis. In Lagrangian form:

Sσ =
1

2πKσ

∫
dx

∫
dτ

[
uσ (∂τφσ)2 +

1

uσ
(∇φσ)2

]
− y

∫
dx

∫
dτ cos(2

√
2φσ) (4.43)

with y = g1⊥/(2πα)2.
The scaling dimension of the perturbing operator at the conformal point (4.25) can be

extracted from the operator product expansion of the operator with the energy-momentum
tensor (see, e.g. [86]). For the vertex operator

Vα =: eiαφ : (4.44)

it is given by:
yα = 2α2K/8 (4.45)
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which implies that the perturbing operator : cos(2
√

2φ) : is relevant for K < 1 and irrelevant
for K > 1.

Moreover, the appearance of a gap in the charge sector is also possible, when a relevant
operator perturbs the Luttinger point. This is associated with the so�called umklapp terms,
of type

ψ†L,↑ψ
†
L,↓ψR,↑ψR,↓ (4.46)

which usually occur at commensurate �lling. This general formalism has many applications
in one dimension. In particular, the XXZ spin chain (1.54) with interaction along the z axis
smaller (in module) than those along the other two axes can be mapped into a free bosonic
action; when the interaction parameter along z is antiferromagnetic and its absolute value
bigger than one, the spectrum becomes gapped and the sine-Gordon action describes the low
energy physics of the chain (see [18], [87]). Also, the chain in the regime 0 < γ < π with
total magnetization equal to zero (or when the number of ��ipped� spin with respect to the
reference state is a fraction of the length), it may develop a gap, depending on the parameter
γ and on the magnetization. Moreover, the Hubbard model, paradigm of hopping conduction,
can be rewritten in the continuum limit as the massive Thirring model and bosonized into
the sine-Gordon model. This and other examples are collected in [88].

4.2 Integrable massive �eld theories

In the spirit of section 4.1, we now turn to the de�nition of a class of two-dimensional quantum
�eld theories that emerges as perturbation [89] of conformal �eld theories.

S = SCFT + µ

∫
d2xΦ (4.47)

where Φ is a relevant operator of the conformal theory.
Su�cient conditions, ensuring that an in�nite set of commuting charges exists also outside

the critical point, can be given for certain families of perturbing operators [90, 89]. When
this requirement is met, the theory is called integrable: the particle content, the associated
scattering amplitudes and the two-point functions can be computed exactly.

4.2.1 Factorizable S-matrices

Let us denote the conserved charges by Qs, labelled by the corresponding spin s, which char-
acterizes the transformation under a Lorentz boost Lα. Given a boost that shifts the particles
of a state as Lα |θ1, . . . , θn〉 → |θ1 +α, . . . , θn +α〉, then the corresponding transformation of
the charge under the boost can be written as

ULαQsU
†
Lα

= esαQs (4.48)

The set of charges must include the light-cone momenta

p = p0 + p1 , p̄ = p0 − p1 (4.49)

with eigenvalues ω1 = meθ and me−θ, respectively. Under a Lorentz boost θ → θ + α,
they transform with spin ±1, according to the previous de�nition. The energy-momentum
operator, which is conserved after translational invariance in the two direction, is a linear
combination of the two.

80



Physically relevant problems involve generally interactions among �elds; nonetheless, hav-
ing in mind a scattering problem, it is convenient to consider a basis of ingoing or outgoing
asymptotic states, in which excitations are so far away one from the other that they do not
interact. Speci�cally, a "particle" basis can be de�ned by the requirement that all charges
act diagonally on it:

Qs |p1, . . . , pM 〉a1,...,aM =
M∑
j=1

ω
aj
s (pj) |p1, . . . , pM 〉a1,...,aM (4.50)

In particular, eigenvalues of all charges are additive in the particles.
Suppose to have a set of n particles with a species label a. In the remote past, particles

are arranged with decreasing momenta

|p1, . . . , pn〉ina1,...,an p1 > p2 > . . . > pn (4.51)

One may think to such a state, as an heuristic guide, as having the particles in de�nite
positions x1 < x2 < . . . < xn as well. A scattering process has taken place, in the far future,
particles are arranged with opposite ordering for coordinates and momenta

〈q1, . . . , qn|b1,...,bn q1 < q2 < . . . < qn (4.52)

These sets of states serve as a complete basis for the "in" and "out" Fock spaces.∑
M

1

M !

∫
dp1 . . . dpM |p1, . . . , pM 〉a1,...,aN .a1,...,aN 〈p1, . . . , pM | = 1 (4.53)

Then, a scattering matrix can be de�ned by

|p1, . . . , pM 〉ina1,...,aN =
∑
M

∑
q1,...,qM ;b1,...,bM

Sb1,...,bMa1,...,aN
(p1, . . . , pN ; q1, . . . , qM ) |q1, . . . , qM 〉outb1,...,bM

(4.54)
where the set {a} and {b} label the particle kind or any other internal quantum number. The
S-matrix can be de�ned as an operator by specifying its matrix elements

in/out
a1,...,aN

〈p1, . . . , pM | Ŝ |q1, . . . , qM 〉in/outb1,...,bM
(4.55)

In other words, it gives the probability amplitude of �nding the system in a given �nal state
long after the collision, given the speci�ed initial state long before the collision.

Pa1,...,aN→b1,...,bM =
∣∣∣a1,...,aN 〈p1, . . . , pM | Ŝ |q1, . . . , qM 〉b1,...,bM

∣∣∣2 (4.56)

The presence of these charges and the fact that they transform di�erently under the
Lorentz group implies [91] that, in any process, the scattering matrix (4.54) factorizes in the
product of two-particle S-matrices. Moreover, the fact that there are an in�nite number of
charges implies that in any scattering process particle production cannot take place, i.e., that
the �nal number of particles of given mass ma after a scattering process is the same as the
initial one, and that the �nal set of two-momenta is the same as the initial one [6].

In a particle description of a relativistic �eld theory, it is customary to parametrize the
energy-momentum of a particle by using a rapidity θ as

p0 = m cosh θ , p1 = m sinh θ (4.57)
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which ensures the on-shell condition (
p0
)2 − (p1

)2
= m2 (4.58)

By relativistic invariance, the two-particle scattering amplitude between a and b can
only be a function of a Lorentz scalar. In a two-dimensional world, there exist only two
such independent Mandelstam variables characterizing the process, namely s and t, which
correspond to the processes

s a+ b→ c+ d
t a+ d̄→ c+ b̄

in which the k̄ denotes the antiparticle of kind k. It is customary to use the total energy in
the center-of-mass frame:

s = (pa + pb)
µ (pa + pb)

ν ηµν = m2
a +m2

b + 2mamb cosh(θa − θb) (4.59)

In the "crossed" channel, the relevant variable is instead the relative squared momentum

t = (pa − pd)µ (pa − pd)ν ηµν = m2
a +m2

d − 2mamd cosh(θa − θd) (4.60)

From the parametrization (4.59), the two-particle S-matrix can be written as a function
of the rapidity di�erence and is de�ned as

|θa, θb〉ina,b =
∑
c,d

Sc,da,b(θa− θb) |θb, θa〉
out
c,d (4.61)

This matrix has to meet the analytic structure of a general scattering matrix [92], with
the major simpli�cation that no particle production can take place. When formulated in
terms of the rapidity variable, it is possible to identify a physical strip 0 < = θ < π, which is
separated by a cut from a second strip π < = θ < 2π. Because of the overall 2πi-periodicity
of the parametrization, these two strips determine the function over all the complex plane.

The Yang-Baxter equation is, in this context, a relation that constrains the two-particle
S�matrix of the theory. It can be derived as a consequence of the factorization of the full
scattering matrix, since the process involving three ingoing particles a, b, c with rapidities
θa, θb, θc and three outgoing particles a′, b′, c′ with permuted rapidities can be written as:

out
a′,b′,c′ 〈θa′ , θb′ , θc′ |θa, θb, θc〉

in
a,b,c =

Se,da,b (θ1,2)Sa
′,f
d,c (θ1,3)Sb

′,c′

d,f (θ2,3) = Sd,eb,c (θ2,3)Sf,c
′

a,e (θ1,3)Sa
′,b′

f,b (θ1,2) (4.62)

In other words, the S-matrix factorization is well-de�ned only if the Yang-Baxter equation
is satis�ed. This factorization can be argued by considering, instead of single-particle states,
wavepackets centred around a position. Then di�erent shifts of the centre of the packet can
be induced by the application of the di�erent charges, without changing the amplitude of the
process, which only involves momenta.

The relation (4.61) and orthonormality of both in- and out-states, together with the fact
that in an integrable �eld theory we cannot have intermediate states with a di�erent number
of particles, imply ∑

b1,b2

Sb1,b2a1,a2(θ)
[
Sc1,c2b1,b2

(θ)
]∗

= δc1a1δ
c2
a2 (4.63)
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Figure 4.3: Yang-Baxter equation in the context of integrable massive quantum �eld theories:
factorization of the three-particle scattering into a product of two-particle processes

Figure 4.4: Left: graphical representation of poles in the S�matrix. Right: the mass triangle.

which is the unitarity of the two-particle S-matrix and is the analogue of (1.3).
It is essential that quantizing a theory in a scheme where space and time are rotated by

π/2 gives the same scattering amplitude, which results in the requirement that the amplitude
is the same when θ → iπ/2−θ. Then a particle when the s and in the t channel are exchanged,
is the same:

Sc,da,b(θ) = C Sc,ba,d(iπ − θ) C (4.64)

with [93] the matrix C being a charge conjugation matrix that satis�es Ct = C and C2 =
1. This matrix acts on one particle space only and depends on the speci�c theory under
examination. We have C = iσ2 for the massive Thirring model and C = σ1 for the soliton-
antisoliton sector of the sine-Gordon S-matrix. this is called crossing invariance, and is
formally equivalent to (1.6) apart from the overall scalar function ρ.

Poles of the scattering amplitude, if present, correspond to bound states, either in the
direct or in the crossed channel. In the variable θ, they appear in the imaginary axis in the
physical strip. The residue is related to the on-shell vertex Γca,b of the incoming particles a, b
and the bound state c:

Se,fa,b (θ) ∼
iΓca,bΓ

c
e,f

θ−iuca,b
(4.65)

By specifying the parametrization (4.59), it is possible to recognise the triangular relation

m2
c = m2

a +m2
b − 2mamb cos ūcab (4.66)

among the masses of the particles involved, where ū = π − u (see Figure 4.4). Moreover, the
charges are conserved through the fusion processes a + b → c and it follows that the set of
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Figure 4.5: Graphical representation of the bootstrap equations

conserved charges of the theory, through the eigenvalues (4.50) for di�erent spins, provide
nontrivial constraints on the particle content of the theory.

The bootstrap approach to the problem of determining the scattering amplitudes assumes
that the set of intermediate bound states and the set of asymptotic states are the same. This
has the important consequence of allowing the determination of the scattering amplitude of
a particle, say d with a particle c in the various channels, by only knowing the scattering
matrices with the constituents a and d of c. This results in the bootstrap equations

ΓcabS
ef
dc (θ) = ΓfhjS

ih
da(θ − iubac̄)S

ej
ib (θ + iuābc̄) (4.67)

This together with (4.62) and the constraints of unitarity and crossing, allow to determine
both the particle content and the S-matrix iteratively [94].

4.2.2 Integrable deformation of free bosonic theories

According to section 4.1, one of the most interesting scaling models in one dimension is the
Gaussian �eld theory, with the action:

S =
1

8π

∫
dτ

∫ L

dx∂µφ(τ, x)∂µφ(τ, x) (4.68)

on a cylinder of circumference L. This action has conformal symmetry.
We require quasiperiodic boundary conditions for the �eld:

φ(τ, x+ L) = φ(τ, x) + 2πmR , m ∈ Z (4.69)

The latter amounts to say that when the spatial coordinate travels across the support, the �eld
winds m times around its compact target space, which is just a circle of radius R. It follows
from the mode expansion of the �eld (see [86]) that the eigenvalues of the �eld momentum:

π0 =

∫ L

0
dxπ(τ, x) , π(τ, x) =

1

4π
∇φ(τ, x) (4.70)

are quantized as n/R , n ∈ N/2, otherwise vertex operators are no longer well-de�ned. The
topological charge:

Q =
1

R

∫ L

0

dx

2π
∂xφ(τ, x) =

φ(τ, L)− φ(τ, 0)

2πR
(4.71)
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has integer eigenvalues, given by the winding number m. It is also useful to de�ne the fraction
of topological charge in a given interval:

Q(x) =
1

R

∫ x

0

dx′

2π
∂x′φ(τ, x′) =

φ(τ, x)− φ(τ, 0)

2πR
(4.72)

where translational invariance implies that only the width of the integration interval is rele-
vant.

It should be evident the relation of the compacti�ed (4.68) with the Luttinger action
(4.28). In facts, the velocity parameter u of the Luttinger model amounts to a rede�nition of
the time scale τ → uτ (the time direction is in�nite). One then sees that the model is free
for K = 1, which corresponds to a period of 2π on the target space of the free boson, i.e., to
a compacti�cation radius R = 1. On the other hand, a rede�nition of the �elds as

φ→ Rφ (4.73)

yields the condition (4.69) back in the "free" form, but with an explicit presence of the
compacti�cation radius in the action

S =
R2

8π

∫
dτ

∫ L

0
dx∂µφ(τ, x)∂µφ(τ, x) (4.74)

from which one obtains the relation
R2 =

4

K
(4.75)

so that, with respect to the action (4.74), the dimension of the vertex operator (4.44) is:

yα =
α2

R2
(4.76)

The action of the sine-Gordon �eld theory on a cylinder of radius L is usually found, in
literature, written as:

S =

∫ ∞
−∞

dτ

∫ L

0
dx

[
1

2β2
∂νφ∂

νφ− µ2

β2
cos (φ)

]
(4.77)

where µ and β are real parameters. With respect to the previous parametrizations, there
holds:

β2 =
4π

R2
= πK (4.78)

which implies that operators (4.44) have dimension

yα =
α2β2

4π
(4.79)

In other words, the cosine term in the action constitutes a relevant perturbation, provided

β <
√

8π (4.80)

Terms containing multiples of the �eld in the cosine, such as the ones arising from the per-
turbations studied above, can be equally treated, by proper resizing of the �eld. Only the
theory that contains one cosine term is integrable and will be considered in the following;
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nevertheless, multiple perturbations can still be treated with the formalism of integrable �eld
theory along the lines of [95, 96].

In in�nite volume, the fundamental excitations are known to be the soliton, with mass
m = m(µ2) and unit topological charge, and the antisoliton, with equal mass and opposite
charge. In particular, the mass gap is related to the mass parameter in the Lagrangian [97]
by:

µ =
2Γ(B)

πΓ(1−B)

√πΓ
(

1
2−2B

)
m

2Γ
(

∆
2−2B

)
2−2B

, B =
β2

8π
(4.81)

A soliton and an antisoliton can bind together and form a breather with mass

mBn = 2m sin
n pπ

2
(4.82)

and breather scattering can lead to the production of a higher mass breathers as well. To be
speci�c, bound states are labelled by integers and their number depends on the value of β. By
de�ning the parameter p = β2

8π−β2 , it is possible to distinguish two regimes: a repulsive one,
in which only the soliton and the antisoliton are present in the spectrum, and an attractive
one, in which a number b1/pc of bound states are allowed.

The sine-Gordon S-matrix has a structure which derives from the topological charge of
the elementary excitations and can be represented on the soliton-antisoliton sector, as:

SSG(θ) = S(θ)


1

b(θ) c(θ)
c(θ) b(θ)

1

 (4.83)

where the overall scattering phase is:

S(θ)++
++ = S(θ)−−−− = S(θ) = − exp

(∫
dx

x
e−2iθx sinh (1− p)πx

coshπx sinhπpx

)
(4.84)

and the soliton-antisoliton components are:

b(θ) = S(θ)+−
+− = S(θ)−+

−+ =
sinh(i θp)

sinh( iπ−θp )
S(θ)

c(θ) = S(θ)−+
+− = S(θ)+−

−+ =
sinh(iπ/p)

sinh( iπ−θp )
S(θ) (4.85)

Please note that, apart from the overall phase, it has exactly the same form as (1.4), with the
spin orientation degree of freedom replaced by the topological charge. Given the discussion of
Chapter 1, and in particular the underlying algebraic constraints (4.64,4.63,4.62), this should
not be surprising at all. Soliton-breather and breather-breather scattering can be determined
through the bootstrap equations above and can be found, e.g., in [98, 93].

The massive Thirring �eld theory describes an interacting Dirac fermion in two dimensions

S =

∫ ∞
−∞

dτ

∫ L

0
dx
[
Ψ̄(iγµ∂

µ +m)Ψ− g

2
Ψ̄γµΨΨ̄γµΨ

]
(4.86)
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where the gamma matrices are

γ0 =

(
1

1

)
, γ1 =

(
−1

1

)
, γ5 = γ0γ1 =

(
1
−1

)
(4.87)

and the spinor and the vector current are

Ψ =

(
ψR
ψL

)
, Jµ = Ψ̄γµΨ (4.88)

The S�matrix of the Thirring model has been determined in [99] and the scattering of
fermions was found to coincide with the one of sine-Gordon solitons, apart from an overall
phase factor. In the attractive regime, bound states of fermions are seen to scattered with
the amplitudes of the sine-Gordon breathers.

Both theories can be seen as relevant perturbations of a c = 1 conformal �eld theory. In
the sine-Gordon model, the theory is a free bosonic theory and the perturbation is given by
the cosine term in (4.77), while the massless Thirring model is a c = 1 theory of chiral free
fermions, perturbed by a mass term. Correlation function of the perturbing �elds Ψ̄Ψ and
: cosφ : are equal in the neutral sector [100], under the identi�cation

4π

β2
= 1 +

g

π
(4.89)

In facts, both models can be seen as perturbations by the same operator of two mutually
nonlocal sectors of the operator content of the Gaussian theory [101].

At the operator level, it was shown in [102] that a fermionic operator satisfying the massive
Thirring equation of motion can be constructed as a nonlocal functional of a bosonic �eld
that satis�es the sine-Gordon equation of motion. The boson and the fermion, however, are
not mutually local, hence they do not interpolate the same particle. In facts, the two theories
are not equivalent [101], since they can be seen as perturbations of the, respectively, bosonic
and fermionic c = 1 conformal �eld theories associated with the Gaussian �xed point.

Nevertheless, the charge associated to the lattice U(1) symmetry can be identi�ed and put
in one-to-one correspondence in the two theories at the operator level. Then, both theories
possess di�erent sectors labelled by the "topological charge" (in SG), or the "fermion number"
(in mT); in the common subspace with even topological charge, among which the vacuum
[100], the two theories are indeed equivalent.

4.2.3 Correlation functions in integrable �eld theories

Solving a quantum �eld theory means to be able to compute all its multipoint functions
exactly, the most relevant of which, being related to the response of the theory to the change
of external parameters, are two-point functions. In the case of �eld theories with factorized
scattering, an elegant and rather general approach for tackling the problem is provided by
the form factor approach.

We start from a genera two-point function 〈O(x, t)O(0, 0)〉. Let's suppose that we have,
within the operator content of our theory, a �eld such that

〈0|φI(x) |θ1, . . . , θn〉a1,...,an 6= 0 , n = 1, 2, . . . (4.90)

87



this �eld is said to interpolate the particles. Let us now exploit the completeness of the set
of asymptotic states to insert the decomposition of the identity in between of the operators:

∞∑
n=0

1

n!

∫
dθ1

2π
. . .

dθn
2π
|θ1 . . . θn〉〈θn . . . θ1| (4.91)

This de�nes [103, 104, 93] the form factor of the operator O

FO (θ1, . . . , θn)a1,...,an = 〈0| O |θ1, . . . , θn〉a1,...,an (4.92)

The basic assumption is that F is a meromorphic function of its arguments, i.e., the particles
rapidities θ1, . . . , θn, within the strip 0 < = (θi − θj). Moreover, it is possible to further
constrain the functional form by a set of equations derived from general principles of quantum
�eld theory and from the structure of the two-particle S-matrix.

• Relativistic invariance

FOn (θ1 + α, . . . θn + α) = esαFOn (θ1, . . . θn) (4.93)

where s is the Lorentz spin, that characterizes the transformation of the �eld O under
a boost.

• Watson theorem
transfers the notion of particle scattering as in (4.61) to the form factor analytic struc-
ture, by de�ning the analytic continuation to states where rapidities are not ordered.

FO (θ1, . . . θj , θj+1 . . . θn)a1,...,aj ,aj+1,...,an
=∑

Sb,caj ,aj+1
(θj − θj+1)FO (θ1, . . . θj+1, θj . . . θn)a1,...,b,c,...,an (4.94)

• Locality
An important concept in two-dimensional �eld theory is mutual locality. To be more
precise, one considers the the relative displacement of two �elds in terms of the variables
z = x + iτ and z̄ = x − iτ . Then, when performing a rotation eiαz , e−iαz̄ with
α = 0→ 2π, any correlator

〈. . . φj(z, z̄)φk(0, 0) . . .〉 → e2πiγjk 〈. . . φj(z, z̄)φk(0, 0) . . .〉 (4.95)

When not speci�ed otherwise, the notion of locality of a �eld is intended to be referred
to the Hamiltonian density h(x), i.e[

h(x), φ(x′)
]

= 0 , x 6= x′ (4.96)

The form factor inherits semilocality of the �eld O with respect to the �eld which
interpolates the particle

FO (θ1 + 2πi, . . . . . . θn)a1,...,an = e2πiγφa,OFO (θ2, . . . θn, θ1)a2,...,an,a1 (4.97)

• Crossing
Let us consider the matrix element

ā1〈θ1| O |θ2 . . . θn〉a2...an (4.98)
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The latter is interpreted as the interaction of a set of particles with labels from 2 to
n with the operator O, projected on an out state containing only one particle. If
the rapidity and the particle kind on the left correspond to one on the right, this is
interpreted like a process where one particle exits the process unscattered. This process
factorizes out the overlap

〈θ | θ〉 (4.99)

which, as common in quantum mechanics, is a δ(0) in in�nite volume. On the other
hand, if no such overlap takes place, it is possible to use the crossing symmetry of the
theory to consider the out state as the analytic continuation of an in state, where one
particle has been brought to imaginary part equal to iπ. We have then

ā1〈θ1| O |θ2 . . . θn〉a2...an = 〈0| O |θ1 + iπ, θ2 . . . θn〉a1,a2...an
+
∑
k 6=1

2πδ(θ1 − θk)〈0| O |θ1 . . . θ̂k . . . θn〉 (4.100)

with theˆdenoting exclusion.

• Kinematic pole relation
As a consequence of the crossing and of (4.94,4.97), one has

− iResθ′→θ F
O
n+2(θ′ + iπ, θ, θ1 . . . θn) =

(
1− e2πiγφa O

n∏
k=1

S(θ − θk)

)
FOn (θ1 . . . θn)

(4.101)
where for notational simplicity, only one particle kind has been considered and the
number of particles has been explicitly indicated. This is a recursion relation for form
factors, allowing to express Fn in terms of Fn.

• Bound state pole relation
Suppose the two-particle scattering matrix has a pole like (4.65)

San,an+1 (θ) ∼
i
(

Γban,an+1

)2

θn− θn+1−iuban,an+1

(4.102)

identifying a bound state. Then, as a consequence of (4.94), the form factors inherit
bound state poles from the S-matrix

FO (θ1, . . . , θn+1)a1,...,an+1
∼

iΓban,an+1

θn− θn+1−iuban,an+1

FO (θ1, . . . , θn−1, θ)a1,...,an−1,b

(4.103)
which relates di�erent families of form factors.

Altogether, the conditions (4.93-4.103) de�ne the boundary conditions of a Riemann-Hilbert
problem for the unknown function F of an assigned number of variables. It is then on physical
grounds that di�erent families of solutions are put in correspondence with given operator and
interpolating �eld.

It has been shown in a series of works (see, for instance [105]) that the spectral repre-
sentation for massive theories has a fast convergent behaviour, therefore accurate estimates
of correlators can be obtained by just using the �rst few exact terms in the form factor
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expansion of the correlation function. This feature can be ultimately tracked down to the
peculiar behaviour of the n�particle phase space in two dimension [98], when such particles
are massive.

However, not much of this analytic structure is left in �nite size L. In facts, not all the com-
binations of rapidities are allowed in the form factors (4.92), which makes problematic their
determination. Moreover, being proportional to the volume, kinematical poles are expected
to be smoothed out. In addition to this, whenever we cannot neglect exponential corrections
in the size e−µL, with µ of the order of the mass of the lightest excitation, the masses of
asymptotic particles themselves are corrected, which forces to reconsider (4.103,4.94). This
will be explored in the next section.

4.3 Field theories in �nite volume

We are interested in studying the e�ects of having an integrable quantum �eld theory de�ned
on a �nite geometry. The simplest situation is the one in which one dimension is compact
and runs on a circle of size L, in other words, when we study the theory on a cylinder.

Figure 4.6:

Finite size e�ects are known to play a fundamental role in sta-
tistical physics and are widely studied [106]. In particular, in a
certain interval around the critical temperature of a second order
phase transition, the divergence of the correlation length is necessar-
ily smoothed by the limited geometry. Analogously, the asymptotic
behaviour of correlation functions at the critical point is changed
from a power law to an exponential decay by the introduction of
a length scale [107]. In facts, it is known that no phase transition
takes place in a �nite volume; nevertheless, information about the
critical theory, such as the conformal charge, of lattice models can be
obtained from the �nite�size scaling of thermodynamic quantities.

In the approach of section 4.1 to the low-energy description of
one-dimensional quantum models, when these are de�ned on a �nite ring, �nite size e�ect
play a major role [108].

The interest also extends to the study of these systems in the scaling limit at �nite
temperature. The de�nition of a quantum �eld theory at �nite temperature is based on the
correspondence with statistical mechanics: a generic partition function for a quantum system
with Hamiltonian H with one or many degrees of freedom is

Z(L) = Tr
[
e−LH

]
(4.104)

and can be written as ∫
dq〈q|e−LH |q〉 (4.105)

in which the integration runs over all the possible con�gurations |q〉 of the system, hence it
represents a multiple integral if there are many degrees of freedom. The expression above
represents the evolution along an imaginary time direction of the state |q〉 according to the
Hamiltonian H, projected on the initial state 〈q| and then summed over all the possible initial
con�gurations |q〉. This can be written in a path-integral formalism as:∫

q(L)=q(0)
Dq(τ)e−

∫ L
0 dτ

∫
dxLE (4.106)
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When the number of degrees of freedom goes to in�nity, the latter can be used to de�ne a
quantum �eld theory at �nite temperature 1/L.

In facts, that there are two di�erent ways of de�ning a quantum theory on a cylinder. On
the one hand, the in�nite direction can be chosen as quantization line and the evolution of
the corresponding space of states takes place along the −x direction, where the sign is chosen
for preserving frame orientation. In this case the space would be in�nite, but the (imaginary)
time is periodic. On the other hand, one can consider the �eld theory states on the circle
and the vertical axis plays the role of time direction. From the �eld theory point of view, the
two ways of quantizing the theory generically amount to di�erent labels for space and time
directions in the Lagrangian and are therefore equivalent.

In the �nite�size case, the allowed momenta of one-particle states are quantized according
to

ei Lm sinh θ = (−1)F

with F the fermion number. For multiparticle states, a similar quantization condition should
be written, keeping into account the scattering of a particle with all the others. This is
straightforwardly done for diagonal S-matrices

ei Lma1 sinh θ1Sa1,a2(θ1,2)Sa1,a3(θ1,3) . . . Sa1,aM (θ1,M ) = (−1)F (4.107)

and similarly for all the other particles. These take the name of Bethe-Yang equations. In
the nondiagonal case, the complete scattering process should be diagonalized, which results
in a more sophisticated treatment (see e.g. [109]).

Integrability of certain 1 + 1�dimensional quantum �eld theories allows to computed ex-
actly the �nite�volume ground state energy (Casimir energy) from the thermodynamic ap-
proach [110] for theories with diagonal S�matrices or kink�like particle content, exploiting
the Bethe-Yang quantization. For the sine-Gordon model, instead, we need to �rst introduce
the nonlinear integral equation formalism, which will be done in section 5.1.3.

In an interacting quantum �eld theory, each particle can be seen as surrounded by a
vacuum polarization cloud of virtual particles. If we put the particle in a box of linear size L,
the cloud is somehow compressed into the box, and �nite-size mass shifts become appreciable
as soon as the cloud becomes of the same size as the box.

The leading �nite mass shift can be computed exactly [111] and is constituted by two
contributions. The �rst one arises from all the diagrams in which the worldlines of the virtual
particles of the cloud wind around the cylinder once before annihilating. This is called F�
term in the formula of mass correction. The second contribution comes from virtual processes
in which the original particle decays into two constituents, which travel around the compact
direction before recombining to give back the original particle. This is called µ�term.

Then both the particle content of the theory and the amplitude and its dynamical prop-
erties enter the determination of the mass shifts [112]. The mass correction formula take
a simpler form in 1 + 1 dimensions [113], where it can be written in terms of the exact
two-particle S-matrix:

∆ma(L) = −
′∑
b,c

Θ(m2
a − |m2

b −m2
c |)µabc(Γcab)

2

−
′∑
b

P
∫

dθ

2π
mb cosh θ

(
Sabab(θ + iπ/2)− 1

)
e−mbL cosh θ +O

(
e−σaL

)
(4.108)
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Figure 4.7: Left: one virtual particle is emitted and travels across the cylinder before anni-
hilating (F�terms). Right: an asymptotic particle decays into two virtual particles, which
recombine on the other side of the cylinder (µ�terms).

where Θ is the step function, µabc = mb sinucab = mc sinubac and we assume that Γcab = 0
if the particle c is not a bound state of a and b, i.e., if there is no bound state pole in the
c channel in the a + b scattering amplitude. The prime sign reminds not to include in the
sum any contribution which is smaller than the error term. This error term is estimated in
[113] as σa - µa11. We recognise in the �rst line the µ�terms and in the second the F�terms
contributions to the mass corrections, as depicted in �gure 4.7.

As we saw in section (4.2.3), the problem of computing correlation functions on the Eu-
clidean plane can be solved in a very elegant way by the standard form factor approach.
Conversely, for �nite size, while studies of form factors have been carried on in semiclassical
approximation in [114, 115], the lack of a simple expression for the vacuum of the theory and
its excitations still constitutes an obstacle for the method.

A possible way to tackle the problem may be that of considering the system at �nite
temperature. With this setting, it is possible to use the �infrared� form factors, but a suitable
regularization is nonetheless necessary. One-point functions can be e�ciently computed by
series [116, 117], while the formalism for two-point functions, perturbative in the exponential
corrections in the volume, relies on a double series expansion containing suitably regularized
in�nite-volume form factors [118].

Going back to the original perspective, it is known [111] that corrections to the particle
masses which constitute the spectrum in the infrared limit are exponentially suppressed in the
system size. This fact allowed the proposal [119] of a �nite-volume formalism, based on the
in�nite-volume form factors, that is correct up to terms which are exponentially suppressed
in the volume. The method has been applied to the sine-Gordon theory in [120, 121, 122] to
soliton and breather form factors. An alternative regularization has been proposed in [123]
and applied to the computation of the dynamical structure factor in prototypical integrable
�eld theories, although it is presently unclear how to extend the scheme to more general form
factors.
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Chapter 5

Correlation functions in �nite volume

from the light-cone lattice

regularization

This chapter presents the problem of computing correlation functions of the integrable sine-
Gordon �eld theory. We introduce a novel approach, by exploiting the algebraic construction
of its (known) lattice regularization. Necessary explanations, which range from the de�nition
of the lattice to the identi�cation of the necessary operators, are provided in section 5.1, while
the original contribution is presented in section 5.2.

5.1 The light-cone lattice approach

In this section, we will present the construction of [124], which shows how the massive Thirring
�eld theory can be discretized on a properly de�ned lattice. We shall pay some attention
to introduce this construction, since it is necessary for our purposes to identify the lattice
representation of the sine-Gordon �eld operator, as well as for �xing the notation. We will
then use the correspondence at the operator level of the U(1) charge in sine-Gordon and
Thirring models.

Let's begin by considering a square lattice, rotated by 45 degrees, as in the �gure below

This will be referred to as a light-cone lattice. One can think to this lattice as a discretization
of a two-dimensional Euclidean spacetime, by interpreting each site as an event and by as-
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signing time to the S → N direction and space to the W → E direction. A fermionic variable
will be de�ned on the links (which go either in the NW or in the NE direction).

The dynamics along the lattice links naturally de�nes a light-cone, or a set of events which
can be causally connected, both in the past and in the future. At each time step, a particle
can move on the edge of its light-cone either to the left with �xed "bare" rapidity −Λ or to
the right with rapidity Λ, so that we can divide them into left (L) or right (R) movers. A
local R-matrix is assigned to each lattice site and represents the scattering of left-movers on
right-movers. If unscattered, a particle will continue to move to the left or to the right with
lattice rapidity ±Λ, which therefore represents the maximum allowed, i.e., an UV cuto� for
the theory.

By imposing that the sum of ingoing particles, i.e. in the SW and SE directions from
each vertex, is equal to the sum of outgoing particles in the NE and NW directions one
exactly has an "ice rule" [2], which is equivalent to a requirement of conservation of the
number of particles. To be clear, by denoting |↑〉 = occupied and | | 〉 = empty, the allowed
con�gurations are

These con�guration are invariant under the U(1) transformation

| | 〉 → eiλ | | 〉 and | ↑ 〉 → e−iλ | ↑ 〉 (5.1)

for some real λ, whose associated charge is indeed the particle number (see 5.1.2 below).
Without loss of generality, one can naturally assume the normalization of the vacuum-

to-vacuum amplitude to be ω1 = 1. Moreover, symmetry under parity (L ↔ R) implies
ω5 = ω6 = c and ω3 = ω4 = b, while unitarity imposes

|b|2 + |c|2 = 1 b c∗ + b∗ c = 0 (5.2)

so that the local Ř matrix assumes the form (1.4):

Ř(λ) = PR(λ) = =


1

c(λ) b(λ)
b(λ) c(λ)

1

 (5.3)

in which a generic dependence from a complex parameter λ has been inserted and we have also
assumed that the vacuum-to-vacuum amplitude is equal to the particle-to-particle amplitude.

According to the discussion of Section 1.1, we can make sure that this system is integrable
at the lattice level by requiring that the local weights satisfy the Yang-Baxter relation (1.2).
The requirement of relativistic invariance of the scaling limit implies that this scattering is a
function only of the lattice rapidity di�erence Λ−(−Λ), which is constant through the lattice,
so that the local "weights" of the vertexes depend on a single parameter.
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5.1.1 Dynamics on the light-cone

Each link represents a possible portion of the particle wordline. A state of the system at a
given time will be represented as a vector |α1, . . . , α2N 〉 containing the occupation numbers
αj = 0, 1 of each link intersecting an horizontal line at a given vertical position.

The elementary dynamics on the light-cone lattice is generated by the operators U+ and
U−, which act as in �gure:

The operator U+ connects the, say, odd lines of the vertex model to the even ones, which
are displaced in the time direction by half a step in lattice units. On the other hand, the
operator U− connects the even lines to the odd ones, by producing a shift of a/2 in the vertical
direction.

In terms of the microscopic amplitudes, they read

〈α1, . . . , α2N |U+

∣∣α′1, . . . , α′2N〉 =

N∏
n=1

R
α2n−1,α2n

α′2n−1,α
′
2n

(5.4)

〈
α′1, . . . , α

′
2N

∣∣U− |α1, . . . , α2N 〉 =
N∏
n=1

R
α2n,α2n+1

α′2n,α
′
2n+1

(5.5)

The unit time translation operator can be chosen to be:

U = U+U− U ′ = U−U+ (5.6)

The one to be used depends on whether the initial state is on an odd or on an even line. In
general, it acts like:

U |α1, . . . , α2N , t〉 =
∣∣α′1, . . . , α′2N , t+ a

〉
(5.7)

and de�nes a light-cone transfer matrix.
One can similarly de�ne a translation operator V , that operates a shift by a/2 in the

horizontal direction, as:

V |α1, . . . , α2N , t〉 = |α2N , α1, . . . , α2N−1, t〉 (5.8)

or, in terms of the permutation operators de�ned in (1.15), as:

V = P1,2P2,3 . . . P2N−1,2N (5.9)

so that V 2 is the space translation operator by one lattice unit step to the right and is a
symmetry of the problem once we require periodic boundary conditions. Both U± and V are
unitary operators and the commutation relations[

V 2, U±
]

= 0 ⇒
[
V 2, U (′)

]
= 0 (5.10)
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hold. At the same time:
U± = V U∓V

† , U ′ = V UV † (5.11)

It is natural to identify these operators as the exponentials of the lattice Hamiltonian and
of the lattice momentum operators, generating a lattice unit time and space shift

U = e−iaH , V = e−iaP (5.12)

It is moreover useful to introduce operators that implement transport in the light-cone
directions. These are de�ned to be UR and U ′R, that produce translations by a/2 in the
vertical direction and by a/2 in the horizontal direction, and UL (or U ′L), that implements
translations by a/2 in the vertical direction and by −a/2 in the horizontal direction. In
formulas:

UR = V U− = U+V UL = U+V
† = V †U− (5.13)

U ′R = V U+ = U−V U ′L = U−V
† = V †U+ (5.14)

It should be clear that

UL = e−ia(H−P )/2 UR = e−ia(H+P )/2 (5.15)

5.1.2 Lattice fermion �elds

We can represent in our model of fermions the group relations of the previous section, by
de�ning a fermion �eld ψn de�ned on the links of the model. It turns out to be convenient
to use both the equivalent notations:

ψL,n = ψ2n−1 ψR,n = ψ2n (5.16)

where we de�ned left movers on the odd sites and right movers on the even ones. A reference
state at a given time is given by |0, . . . , 0〉. Lattice �elds will act on this as

ψ†n1
. . . ψ†nM |0, . . . , 0〉 = |0 . . . 1n1 , . . . 0 . . . 1nM . . . 0〉 (5.17)

The local R-matrix in (5.3) is a representation on the basis {|0〉n , |1〉n} of the operator

Rn,m = 1+bKn,m + (c− 1)K2
n,m (5.18)

with
Kn,m = ψ†nψm + ψ†mψn (5.19)

and reduces to the exchange operator (1.15) for special values of the parameters, such that
b = 1, c = 0:

Pn,m = 1+Kn,m +K2
n,m (5.20)

An essential point for the subsequent discussion, is that the fermion operators on a given
time slice can be constructed by means of spin operators through a standard Jordan-Wigner
transformation:

ψn = σ−n

n−1∏
l=1

σzl ψ†n = σ+
n

n−1∏
l=1

σzl (5.21)
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This implies that the Ř-matrix can be written in spin language as

Řm,n(λ) =
1 + c

2
1m,n +

1− c
2

σzmσ
z
n +

b

2
(σxmσ

x
n + σymσ

y
n) (5.22)

which allows us to exploit the discussion of Chapter 1 about integrable spin models.
An important consequence of the de�nition of the light-cone evolution operators UL/R

(5.13) and of the representations (5.4) and (5.9) is that

URψ2n−2U
†
R = ULψ2nU

†
L = Ř2n−1,2n ψ2n−1 Ř

†
2n−1,2n

URψ2n−1U
†
R = ULψ2n+1U

†
L = Ř2n−1,2n ψ2n Ř

†
2n−1,2n (5.23)

which allow, together with the de�nition (5.18), the computation of the lattice �eld equations

ULψ2nU
†
L = c∗ψ2n−1 + b∗ψ2n − (b∗ + b)N2n−1ψ2n + (c− c∗)ψ2n−1N2n (5.24)

URψ2n−1U
†
R = b∗ψ2n−1 + c∗ψ2n − (b∗ + b)ψ2n−1N2n + (c− c∗)N2n−1ψ2n (5.25)

where the local number operator
Nn = ψ†nψn (5.26)

has been introduced. These lattice �eld equations are local, involving only products of opera-
tors on neighbouring links. Moreover, they contain products of up to three operators, which
suggests that they may be seen as generated from an Hamiltonian with a quartic interaction.
In facts, one can regard the linear part of (5.24) as a "free" part and the cubic part as deriving
from interactions. By requiring c to be real and b to be purely imaginary one recovers the
noninteracting, massless case.

A reduction analogous to (5.23) holds also in the case of the bilinear �eld (5.26). Explicit
computation allows to check that

ULN2nU
†
L = URN2n−2U

†
R = N2n + |c|2(N2n−1 −N2n) + b∗c(ψ†2n−1ψ2n + ψ2n−1ψ

†
2n)

URN2n−1U
†
R = ULN2n+1U

†
L = N2n−1 − |c|2(N2n−1 −N2n)− b∗c(ψ†2n−1ψ2n + ψ2n−1ψ

†
2n)

(5.27)

A straightforward consequence is that the bare fermion number operator

Q =

2N∑
n=1

Nn (5.28)

is conserved. To show it, it is su�cient to evolve Jn = N2n−1 +N2n either by UL or by UR and
to sum over site indexes in (5.27). This charge, as we have seen, is associated to the invariance
under the U(1) transformation (5.1) of the lattice dynamics. In the sine-Gordon language, it
is the solitonic charge (4.71), the number of solitons minus the number of antisolitons present
in the state. In terms of the spin formulation associated with (5.22), it becomes

Q =

2N∑
n=1

(
1

2
+ Szn

)
(5.29)

which just counts the total number of up spins. We anticipate here that the normal ordering
prescription for these operators amounts to the subtraction of their expectation value on the
vacuum. It will be seen in section 5.1.3 that the vacuum can be speci�ed in terms of the roots
of the Bethe equations of this system. For the time being, we only need to state that it is
and half-�lled state in the fermionic formulation or, equivalently, has zero total spin in the
spin chain formulation. In other words, the normal ordered (5.29) is the total spin operator.
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Continuum limit

We now wish to identify the continuum limit of the lattice �eld equations (5.24) and de�ne
the interacting �eld theory according to such equations. The problem that is met when
performing this operation is that any Hamiltonian identi�ed in this way is to be considered
heuristic, since in general it must be renormalized in the scaling process.

The strategy followed in [124] is then to consider a "bare" continuum limit, which is
de�ned by letting the lattice spacing go to zero while keeping the size constant:

a→ 0 , N →∞ , L = 2 aN (5.30)

In a second step, the spectrum of the theory are computed exactly at any given value of a, N ,
Λ and is therefore free of renormalization e�ects: from that, it is possible to �x the correct
scaling of the parameters. With this at hand, it is possible to evaluate nonperturbatively the
scattering amplitudes of the elementary excitations of the theory and show that it agrees with
the scattering matrix of the sine-Gordon model [125].

With the scaling (5.30), the �eld has naïvely dimension
√
a on the plane, i.e., ψL/R,n →√

aψL/R(x). This means that when a = 0 exactly, the (5.24) reduce to

UL/Rψ(x)LU
†
L/R = b∗ψL(x) + c∗ψR(x)

UL/Rψ(x)RU
†
L/R = b∗ψR(x) + c∗ψL(x) (5.31)

To conveniently identify the right and left movers in this limit, we can assume that |c| = 1
and b = 0 when a = 0, by which the local scattering amplitude is reduced to (5.20). We can
then de�ne the quantity

lim
a→0

b

|b|
= eiγ (5.32)

and we refer to γ as anisotropy parameter, since it will be clear soon that it is exactly the
one appearing in (1.5). Then the spaces at two neighbouring links are at a distance a, which
implies that they will not be distinguishable in the thermodynamic limit and that

UL(a = 0) = UR(a = 0) = e−iγQ , Q =

∫ L

0

(
ψ†LψL + ψ†RψR

)
(5.33)

in which the operator Q is not normal ordered, yet. Analogously, we must have at least
that c ∝ a to meet the above requirements. Unitarity (5.2) implies that the proportionality
constant has a phase which is shifted by π/2 with respect to the one of b and one can set

c ∼ −ieiγm
2
a
(
1 +O(a2)

)
, b = eiγ

(
1 +O(a2)

)
(5.34)

wherem is a free parameter of the theory and is the fermion mass parameter in the Lagrangian
of the Thirring model and the mass of the elementary excitations in the sine-Gordon model.

One can de�ne two generators of translation along the light-cone edges as

HL/R = lim
a→0

1

a

(
e−iγQUL/R − 1

)
(5.35)

in such a way that
H = HR +HL P = HR −HL (5.36)

98



Using this de�nition, which amounts to the substitution UR/L ' eiγQ
(
1−iaHR/L + . . .

)
in

the lattice �eld equations, one obtains

[HR, ψR,n−1] = lim
a→0

i

a
|b|
[
ψR,n −

c

b
ψL,n −

1

|b|
ψR,n−1 −

(
1 + e2iγ

) (
NL,nψR,n −

c

b
ψL,nNR,n

) ]
[HR, ψL,n] = lim

a→0

i

a
|b|
[
ψL,n −

c

b
ψR,n −

1

|b|
ψL,n −

(
1 + e2iγ

) (
ψL,nNR,n −

c

b
NL,nψR,n

) ]
(5.37)

and analogous relations for the light-cone evolution of the other operators. Special care must
be kept when performing the continuum limit of composite operators, such as bilinear �elds
containing operators at adjacent sites. In particular, one must remember that (5.16) implies

ψR,n ∼
√
aψR(x+ 0) , ψL,n ∼

√
aψL(x− 0) (5.38)

We refer the reader to the original paper [124] about this aspect stating only that the pre-
scription is

1

a
ψR,nψL,n →

2

1− e2iγ
(ψRψL) (x) (5.39)

where the de�nition

(ψAψB) (x) =
1

2
(ψA(x+ 0)ψB(x− 0)− ψA(x− 0)ψB(x+ 0)) (5.40)

has been introduced. By substituting the latter into the two (5.37) and the two analogues
with exchanged chirality, we obtain the continuum �eld equations

[HR, ψR(x)] = i
∂

∂x
ψR(x)− m

2
ψL(x)− g

(
ψ†LψLψR

)
(x)

[HR, ψL(x)] = −m
2
ψR(x)− g

(
ψ†RψRψL

)
(x)

[HL, ψR(x)] = −m
2
ψL(x)− g

(
ψ†LψLψR

)
(x)

[HL, ψL(x)] = −i ∂
∂x
ψL(x)− m

2
ψR(x)− g

(
ψ†RψRψL

)
(x)

(5.41)

with the de�nition
g = −2 cot γ (5.42)

being the Thirring coupling constant.
Finally, from the equation of motion (5.41), one can recognize the Hamiltonian of the

massive Thirring model

H = HL +HR =

∫ L

0

[
−iΨ†

(
γ5∂x + imγ0

)
Ψ +

g

2
JµJ

µ
]

(5.43)

with mass m, coupling g and the matrices (4.87)
When changing the reference state from the state annihilated by all the ψn to a state

where the sea of negative energy levels is �lled up, it is necessary to normal order products of
operators, removing the leading singularities of the bilinears ψ†L/RψL/R. The issue is discussed
again in [124] and leads to the normal ordered version of (5.43).
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The requirement of integrability (1.2) at the lattice level, together with the unitarity
constraint, leaves the local R-matrices determined to be of the form (5.3,1.5). In particular,
one has a local Hilbert space associated to every link which is intersected by an horizontal
line, at any given time t = t0. These links are alternatively associated with a left- and a
right-mover, i.e., with a local lattice rapidity ∓Λ. The particular choice of the inhomogeneity
parameters which de�nes the sine-Gordon light-cone lattice regularization is then

hn = (−1)n+1Λ (5.44)

In the absence of interactions, these are the only allowed lattice rapidities. Conversely, in
the presence of a nontrivial local R-matrix, states with di�erent numbers of excitations, each
characterized by a set of bare rapidities, will be allowed. The purpose is then to determine
the eigenstates of the evolution generated by the Hamiltonian (5.43), which at the discrete
level amounts to diagonalizing the lightcone transfer matrix 5.13.

Algebraic formulation

We will use here the spin formulation of the lattice model to cast the problem in the algebraic
formalism. We follow the general procedure of Chapter 1 and write the monodromy matrix
(1.17) for these inhomogeneities:

T0(λ) = eiωσ
z
0R0,1(λ− Λ + iγ/2)R0,2(λ+ Λ + iγ/2) . . . R0,2N (λ+ Λ + iγ/2)

= eiωσ
z
0L0,1(λ− Λ)L0,2(λ+ Λ) . . . R0,2N (λ+ Λ) (5.45)

we remind the reader the expression (1.11) and write the associated transfer matrix [126] in
terms of

l(λ) = PL(λ) (5.46)

as
τ(λ) = Tr0

[
eiωσ

z
0P0,1l0,1(λ− Λ)P0,2l0,2(λ+ Λ) . . . P0,2N l0,2N (λ− Λ)

]
(5.47)

in which l(λ) has the property

l(−iγ/2) = PR(0) = 1 , l(−λ− iγ/2) = l(λ− iγ/2)−1 (5.48)

Specializing the argument and exploiting this property, one sees that

τ̂(−Λ− iγ/2) = Tr0

[
eiωσ

z
0P0,1l0,1(−2Λ)P0,2P0,3l0,3(−2Λ) . . . P0,2N

]
= P2N−1,2N . . . P1,2Ř1,2(−2Λ) . . . Ř2N−1,2N (−2Λ) = V †U †+ = U †R = ei

a
2

(H+P )

(5.49)

and

τ̂(Λ− iγ/2) = Tr0 [P0,1P0,2l0,2(2Λ)P0,3 . . . P0,2N l0,2N (2Λ)]

= P2N−1,2N . . . P1,2Ř2,3(2Λ) . . . Ř2N,1(2Λ) = V †U− = UL = e−i
a
2

(H−P )

(5.50)

apart from a proportionality constant. This shows that the eigenstates of the evolution
operator U generated by the lattice version the sine-Gordon/massive Thirring model are
those which diagonalize the light-cone transfer matrices derived from the spin monodromy
matrix (5.45) [124, 126].
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5.1.3 Bethe roots in the thermodynamic limit

As we have seen at the beginning of the section, the regularization features another parameter,
namely the rapidity of a particle moving on the light-cone Λ, whose scaling has not been �xed
yet. It will be done in this section, while studying the eigenvalues of the transfer matrix in
the thermodynamic limit.

We rewrite here the system of equations (1.51)relative to the eigenstate identi�ed by the
roots {µ}, for the above choice of the inhomogeneities, in the form:

B(x|{µ}, ω) = Bω
µ (x) =

a(x)

d(x)

∏
a

sinh(x− µa + iγ)

sinh(x− µa − iγ)
e2iω (5.51)

with, as in 1.44:

a(x) =

[
sinh(x− Λ− iγ2 ) sinh(x+ Λ− iγ2 )

sinh2(x− Λ)

]N
d(x) =

[
sinh(x− Λ + iγ2 ) sinh(x+ Λ + iγ2 )

sinh2(x− Λ)

]N
(5.52)

The Bethe equations are then written as:

Bω
µ (µj) = −1, j = 1, . . . ,M (5.53)

In the following, it will turn out to be useful the use of the rescaled variables (the �rapidi-
ties� of the �eld theory) and inhomogeneities, and in particular of:

θj =
π

γ
µj , Θ =

π

γ
Λ (5.54)

The logarithmic form of (5.51), i.e., of (5.53) when considered as a function of one rapidity
µj , de�nes in this region the counting function:

Z(x) = −i logB(
γ

π
x) (5.55)

which takes its name from the fact that solutions of the logarithmic form of the Bethe equa-
tions are characterized by:

Z(θj) = 2πIj , Ij ∈ Z +
1 + δ

2
, δ = (N − S)mod2 (5.56)

for some integer or half-integer I, with δ = 0, 1 specifying the sector of the �eld theory the
state belongs to, as explained in [127, 128, 129, 130]. In the perspective of section 4.1, this
procedure is in a way analogue to the one used to associate a function to a con�guration. For
the roots on the real axis, the situation is exactly as depicted in 4.1; in addition, there can
appear complex Bethe roots as well, yet a counting function can still be de�ned as a function
of the complex plane through the same quantization condition.

Setting

φ(θ, ν) = −i log
sinh γ

π (iπν − θ)
sinh γ

π (iπν + θ)
(5.57)

the counting function can be written as

Z(θ) = N [φ (θ+Θ, 1/2) + φ (θ−Θ, 1/2)]−
M∑
k=1

φ (θ− θk, 1/2) + 2ω (5.58)
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We specify that the branch cut of the logarithm runs along the negative real semiaxis and
that it is taken in the fundamental determination (FD) in (5.57), with −π < =(log arg) < π.
Moreover, using the representations (5.50,5.49) for the lightcone evolution operators in terms
of the transfer matrix, one has:

E({λ}) =
1

a

M∑
j=1

(φ(Θ + λj , 1/2) + φ(Θ− λj , 1/2)− 2π)

P({λ}) =
1

a

M∑
j=1

(φ(Θ + λj , 1/2)− φ(Θ− λj , 1/2)) (5.59)

for the energy and momentum of a state de�ned by the set {λ} of roots.
The Bethe roots are obtained as zeros of the equation

1 + (−1)δei Z(λ) = 0 (5.60)

Solutions can be classi�ed according to their position in the complex plane:

• real roots of the equation (5.60) constitute the Dirac sea in the �eld theory limit. They
will be labelled by using a tilde on the variable and their set by {λ̃}.

• holes are real solutions of (5.60) that are not among the Bethe roots. Their number is
NH .

• special solutions are real solutions of (5.60) in which the counting function has a negative
derivative (Z ′ < 0). Their number is denoted by MS .

• close roots are present in pairs and have imaginary part in the strip between−min(p, 1)π
and min(p, 1)π. Their number is MC .

• wide roots are present in pairs and have the absolute value of the imaginary part in the
strip between min(p, 1)π and π(p+ 1)/2. There will be MW wide roots.

• self-conjugated roots sit on the boundary of the periodicity strip and have imaginary
part equal to π

2 (p+ 1).

The analytic structure, and in particular the width of the fundamental strip, of the counting
function may or may not coincide with the one of φ, depending on whether the roots in the
state are all real or there appear complex pairs.

Elementary excitations and conserved charges

Quite remarkably, the conserved charges of the "infrared" sine-Gordon �eld theory are also
correctly reproduced by the light-cone regularization. In order to see this, one has to evaluate
the scaling limit of the perturbed model in such a way that the physical size of the system L→
∞ together with the number of lattice sites. In this section, we show how the computation
[125] works for the repulsive regime γ < π/2.

For the antiferromagnetic ground state, one can argue from the quantization of rapidities
in the thermodynamic limit (see below) that the separation between two successive roots
scales like ∼ 1/L. This means that in in�nite volume, roots are conveniently described by
means of a density ρ(θ) = 1

2πNZ
′(θ) of solutions. The latter can be obtained in the ground
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state directly from the de�nition by using (5.58) and transforming the sum on the RHS in an
integral.

ρ(θ) =
1

2π

[
φ′(θ+Θ) + φ′(θ−Θ)

]
−
∫
d θ′

1

2π
φ′(θ− θ′)ρ(θ′) (5.61)

Then, solving explicitly for ρ by Fourier transform, one can see that:

ρ(θ) =

∫
dk

2π
eik θ

cos(kΘ)

cosh γk
2

(5.62)

The simplest excitation is constituted by one hole in the Dirac sea. Due to the interacting
nature of the system, the removal of one roots from the Dirac sea determines a variation of
the whole root distribution. This can be taken into account by explicitly inserting the term
containing the hole position

ρ(θ) =
1

2π

[
φ′(θ+Θ) + φ′(θ−Θ)

]
−
∫
d θ′

1

2π
φ′(θ− θ′)ρ(θ′) +

1

2πN
φ′(θ−h)− 1

N
δ(θ−h)

(5.63)
in which the last term arises from the removal of the root at θ = h [131, 132]. One can solve
then for the variation in the particle density

δρh(θ) =

∫
dqeiq θ

2π

2π + φ̃′(q)

(
1

2π
φ̃′(q)− 1

)
(5.64)

This expression is interesting in connection with the excitation energy, which we can compute
by using (5.59).

Eh − E0 =

∫
d θ [φ(Θ− θ) + φ(Θ + θ)− 2π] δρh(θ) =

2

a
arctan

coshπh/γ

sinhπΛ/γ
(5.65)

while its momentum reads

Ph =

∫
d θ [φ(Θ− θ)− φ(Θ + θ)] δρh(θ) = −2

a
arctan

sinhπh/γ

sinhπΛ/γ
(5.66)

From these expression we can �x the scaling of the inhomogeneity parameter Λ with respect
to the lattice spacing. In facts, from the expansion

arctanx = x− x3

3
+O(x5) (5.67)

we see that, making use of the rescaled rapidity θh = πh/γ, a relativistic spectrum is associ-
ated to the hole

P0(θh) = m cosh θh P1(θh) = m sinh θh (5.68)

This is true only in the double scaling limit

Θ =
π

γ
Λ , Θ→∞ , a→ 0 , a eΘ = const =

4

m
(5.69)

with m being the soliton mass (4.81). This �xes the scaling of the last parameter of the
lattice regularization [125]. Analogous treatment can be carried on for multiparticle states,
and allows to identify the kind of excitation (solitons, antisolitons, breathers...) from their
scattering properties. We shall come back to this point later on.
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It is also possible to compute [125] the eigenvalues of the transfer matrix τ̂(λ), as de�ned
from (5.45) in the in�nite volume limit. The eigenvalue τ(λ) of τ̂(λ) on a generic k−particle
state can be read o� as

τ(
γ

π
λ) = exp

{
−2i

k∑
n=1

arctan eλ−θn

}
(5.70)

where the θn = π
γλn are the rescaled (physical) particle rapidities. As we have seen in

Chapter 1, one can obtain a set of commuting charges from the expansion of the logarithm of
the transfer matrix in the rapidity parameter. In this case, since the cuto� rapidity Θ→∞,
we obtain operators which commute with the evolution operators generated by the transfer
matrix by expanding around λ = ±∞, which will be nonlocal with respect to the spin chain
sites. Applying this procedure to the eigenvalues, with expansion parameter z = e∓πλ/γ , we
have that:

± i log τ(z) =
∑
j

(
(−1)j

j + 1/2

∑
e±(2j+1)θn

)
z2j+1 (5.71)

From this expression, one can reconstruct the identity in operator form:

± i log τ̂(λ) =
∞∑
j=0

(
4z

m

)
Î±j (5.72)

For instance the combinations of the light-cone energy and momentum I+
0 ± I−0 yield the

energy and momentum of the multisoliton solution. Analogously, eigenvalues of the higher
conserved charges are reproduced:

I±j =
(−1)j

j + 1/2

k∑
m=1

(m
4
e±θn

)2j+1
(5.73)

and can be compared with the general eigenvalues (4.50) and with the results of [133] for
sine-Gordon.

The nonlinear integral equation and a useful summation formula

Given that the twist parameter ω is a real number, the counting function Z is real analytic

Z(θ∗) = Z(θ)∗ (5.74)

In order to derive a single equation for Z in the thermodynamic limit, a strategy has been
set in [125, 134, 135, 127]. Details of the derivation, that we brie�y summarize here below,
have been provided in [136]. To avoid dealing with logarithmic cuts, it is convenient to take
the derivative of the counting function and to separate the contributions coming from the
di�erent kinds of roots:

Z ′(θ) = N
[
φ′(θ+Θ, 1/2) + φ′(θ−Θ, 1/2)

]
−

(
MR∑
r

+

NH∑
r

)
φ′(θ−λr)

+

NH∑
h

φ′(θ−λh)−
MC∑
c

φ′(θ−λc)−
MW∑
w

φ′(θ−λw) (5.75)
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Assuming that a function f is analytic in a connected region of the complex plane, that
contains all the roots {λ}, satisfying (5.53), we want to compute the sum of the function
when evaluated in the position of the roots. To begin, we write it as:

∑
j

f(λj) =

∮
du

2πi

i (-1)δ Z ′(u)eiZ(u)

1 + (-1)δ eiZ(u)
−

NH∑
h

f(λh) +

MC∑
c

f(λc) +

MW∑
w

f(λw)−
NS∑
s

f(λs)(5.76)

in which the contour in the �rst term surrounds the real axis and no other root and accounts
then for the sum over holes and real roots. Holes are subtracted by the second term, while
the other families of roots are separately added by the successive summations. Then we make
use of the simple relation:

i (-1)δ Z ′(u−)

1 + (-1)δ e−iZ(u−)
= iZ ′(u−)

(
1− (-1)δ

1 + (-1)δ eiZ(u−)

)
(5.77)

to obtain ∑
j

f(λj) =

∫
du

2π
Z ′(u−)−

∑
σ=±

∫
du

2π

(-1)δ Z ′(uσ)

1 + (-1)δ e−iσZ(uσ)

−
NH∑
h

f(λh) +

MC∑
c

f(λc) +

MW∑
w

f(λw)−
NS∑
s

f(λs) (5.78)

By applying the above to the sums of φ′ in (5.75), one can write∫ [
δ(θ − x) +

1

2π
φ′(θ − x)

]
Z ′(x) = N

[
φ′(θ+Θ, 1/2) + φ′(θ−Θ, 1/2)

]
+

NH∑
h

φ′(θ−λh)

−
MC∑
c

φ′(θ−λc)−
MW∑
w

φ′(θ−λw) +
∑
σ=±

∫
dx

2π
φ′(θ − xσ)

(-1)δ Z ′(xσ)

1 + (-1)δ e−iσZ(xσ)
(5.79)

It is useful at this point to introduce the inverse of the integral operator 1+ φ′

2π appearing in
the left hand side of this equation. It is de�ned through its Fourier transform

∆̃(k) =
1

1 + 1
2π φ̃

′(k)
(5.80)

Note that the convolution of ∆ with φ′ can be performed exactly by using the Fourier trans-
form:

φ̃′ν(k) = 2π
sinh

(
π
2 − νγ

)
k

sinh πk
2

(5.81)

assuming the argument is on the real axis. The result is:∫
dx∆(θ − x)φ′(x±Θ, 1/2) =

1

cosh(θ±Θ)
(5.82)

We hereby de�ne the kernel by the integral

G(θ) =

∫
dk

2π

φ̃′

2π + φ̃′
= (p+ 1)

∫
dk

2π

sinh p−1
2 k

cosh πk
2 sinh πpk

2

cos(θk) (5.83)
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The second expression holds as long as the imaginary part of the argument remains in the
fundamental strip |=θ| < min(1, p)π, since the function (5.83) has a singularity in those points.
Nevertheless, the de�nition is still valid also outside this domain, but special care must be
taken when one performs the Fourier transform of (5.81) through the residue theorem and
the imaginary part of the argument lies outside the above range. Then the function GII is
de�ned [125] for |=θ| > min(1, p)π:

2πGII(θ) =


i sgn= θ

p

[
coth θ

p − coth θ−iπ sgn= θ
p

]
p > 1

i sgn= θ
[

1
sinh θ −

1
sinh(θ−iπp sgn= θ)

]
p < 1

(5.84)

In terms of the function G, one can also write

∆(x) = δ(x)−G(x) (5.85)

Denoting x± = x±iη, with η some small real quantity, the derivative (5.75) of the counting
function can now be rewritten as

Z ′(θ) = N

[
1

cosh(θ + Θ)
+

1

cosh(θ −Θ)

]
+

NH∑
h=1

2πG(θ − λh)

−
MC∑
c=1

2πG(θ − λc)−
MW∑
w=1

2πG(θ − λw)− i
∑
σ=±

∫
dxG(θ − xσ)

i (-1)δ Z ′(xσ)

1 + (-1)δ e−iσZ(xσ)

(5.86)

We now pause a bit on the last term of the above expression and connect it to the logarithmic
derivative of the quantity f(x + iη) = 1 + (-1)δ eiZ(x+iη). It is possible that the latter may
cross the branch cut of the logarithm, in which case the latter has a discontinuity ±2πi. This
happens when

=Z(x+ iη) < 0 , (5.87)

and
=ei<Z(x+iη) = 0 , < (-1)δ ei<Z(x+iη) < 0 (5.88)

By expanding in the shift from the real axis, one sees that the condition (5.87) is met for
Z ′ when η → 0, while (5.88) de�nes in the same limit a root (5.56). In other words, in the
presence of special roots the logarithm of f in the fundamental determination has a jump
discontinuity. However, the last ratio in (5.90) has no such a discontinuity, so that the correct
manipulation (see [125, 136]) is

± (-1)δ iZ ′(x±)

1 + (-1)δ e∓iZ(x±)
=

d

dx
log
(

1 + (-1)δ e±iZ(x±)
)
∓ 2πiδ(x− ŷ) (5.89)

where ŷ stands for a special root. We can then manipulate further the derivative of the
counting function

Z ′(θ) = N

[
1

cosh(θ + Θ)
+

1

cosh(θ −Θ)

]
+

NH∑
h=1

2πG(θ − λh)−
MC∑
c=1

2πG(θ − λc)−
MW∑
w=1

2πG(θ − λw)

−
NS∑
y

2π
(
G(θ − ŷ+) +G(θ − ŷ−)

)
− i

∑
σ=±

σ

∫
dxG(θ − xσ) log′

(
1 + (-1)δ e−iσZ(xσ)

)
(5.90)
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With this expression and (5.89) at hand, the sum (5.78) may be written as

∑
j

f(λj) =

∫
du

2π

(
N

cosh(u−Θ)
+

N

cosh(u+ Θ)

)
f(u)−

Nh∑
k=1

(∆ ? f)(hk)

+

Mc∑
k=1

(∆ ? f)(ck) +

Mw∑
k=1

(∆II ? f)(wk) + 2

Ms∑
k=1

(∆ ? f)(sk)

+i
∑
σ=±

∫
du

2π
(∆ ? f)(uσ) log′FD

(
1 + eiσZ(uσ)

)
(5.91)

where the symbol ? represents the convolution and the operator (5.80) appears, having used
(5.85) with slight abuse of notation and the understanding that the δ, when integrated with
a function, yields the function evaluated in the point that corresponds to the zero of its
argument, even if such a zero is outside the real axis. By the aid of this expression, one can
compute the scaling limit of the spin chain form factors.

By integrating (5.90) and performing the scaling limit (5.69), one obtains the nonlinear
integral equation (NLIE) for the counting function:

Z(θ) = mL sinhθ + g(θ| {I})− i
∑
σ=±

∫
dxG(θ − xσ) logFD

(
1 + (−)δeiσZ(xσ)

)
+ α (5.92)

with α = p+1
p ω for neutral states and ω < π/2.

g(θ| {I}) =

NH∑
h

χ(θ − λh)−
MC∑
c

χ(θ − λc) (5.93)

−
NS∑
s

(
χ(θ − ŷ−) + χ(θ − ŷ+)

)
−
MW∑
w

χII(θ − λw)

χ(θ) = 2π

∫ θ

0
G(x)dx (5.94)

(5.95)

The subscript �II� reminds that the function χ must be considered in the second determina-
tion when the imaginary part of its argument exceeds min(1, p)π, as in the case of wide roots.
It is computed [136] from (5.84) as:

χII(θ) =

 i sgn= θ
[
log sinh θ

p − log sinh θ−iπ sgn= θ
p

]
p > 1

i sgn= θ
[
log
(
− tanh θ

2

)
+ log

(
tanh θ−iπp sgn= θ

2

)]
p < 1

(5.96)

By this equation [135, 127], one accounts for an in�nite number of Bethe equations
and substitutes the computation of a thermodynamic number of Bethe roots with the self-
consistent determination of non-extensive number of e�ective excitations.

The ground state of the sine-Gordon model is realized as the unique state which has all
the roots on the real axis, quantized with all consecutive half-integer quantization numbers.
In the scaling limit, excited states are seen to have positive energy with respect to this state
and to be completely speci�ed by the quantum numbers of the holes and of the complex roots,
whose combinations correspond to the IR excitations. The rapidities corresponding to these
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objects are determined according to (5.56), and self-consistently determine the source term
in (5.92), hence the counting function itself.

As seen in section 5.1.2, the total spin of an excited state above the antiferromagnetic
ground state is, in �eld-theoretical language, the topological charge Q of the state itself. One
can paraphrase the relation (1.53) for the total spin in terms of the excitations de�ned above
as:

Q = 2S = NH −MC − 2NS − (1 + sgn(p− 1))MW (5.97)

In general [135], it can be stated that in the repulsive regime, each hole in the source terms
carries a unit U(1) charge, which in the language of spin chain corresponds to a unit spin, i.e.,
to a missing creation operator. Such a charge is lowered by one for every close root and by
two for every wide root. On the other hand, in the attractive regime, wide roots correspond to
independent excitations, not carrying any U(1) charge. We then expect that the wide roots
correspond to creation operators, therefore lowering the spin by one, only in the repulsive
regime p > 1. Conversely, in the attractive regime p < 1, wide roots enter the expression
of a state only through their e�ect on the other roots and the determination of a counting
function.

With respect to the infrared description of the spectrum, it is known [127, 128, 129] that

• soliton and antisolitons correspond to holes in the Fermi sea, quantized with half-
integers.

• the solitons polarization states are described by arrays of the �rst kind, having common
real part and containing in any case exactly one pair of close roots. The position of
the roots for asymptotically large volumes [125] can be determined with exponential
precision in the size and is reported here below. Arrays can be either:

� odd degenerate

θ0 = θ + iπ
p+ 1

2
, θk = θ ± iπ

(
1− p

2
− kp

)
k = 0, 1, . . . ,

⌊
1

2p

⌋
(5.98)

with real θ;

� even

θk = θ ± iπ
(

1

2
− kp

)
k = 0, 1, . . . ,

⌊
1

2p

⌋
(5.99)

• the breather degrees of freedom, when p > 1, are described by arrays of the second kind,
containing wide pairs only. These are, for mL→∞:

� odd degenerate

θ0 = θ + iπ
p+ 1

2
, θk = θ ± iπ

(
1− p

2
− kp

)
k = 0, 1, . . . , s (5.100)

� even

θk = θ ± iπ
(

1

2
− kp

)
k = 0, 1, . . . , s (5.101)

with 0 ≤ s ≤ 1
2p − 1 and real θ. In particular, they describe the 2s+ 1 and the 2s + 2

breather, respectively.
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For simplicity, we will consider in the following only states in which the number of special
objects is null and the counting function is monotonic on the real axis, which is the case
for su�ciently large values of the size. With proper modi�cation, the treatment can be in
principle extended to account also for non monotonic counting functions, but this appears to
be more cumbersome and will not be reported here.

The function Z(θ) is suitable for numeric computation and can be determined in a time
of the order of minutes for the simplest root con�gurations. For a fairly larger amount of
time, one can determine the counting function on a suitable grid on the complex plane, even
if only its knowledge on three contours surrounding the real axis and the complex roots will
be needed in the following.

5.2 Finite volume correlation functions of the sine-Gordon the-

ory

The goal of this section is that of deriving an exact expression for the generating function of
correlation functions in �nite volume, including exponential corrections in the size. We will
show that the �nite-volume vacuum expectation value of the generating function is given by
the expansion: 〈

eiα(φ(x)−φ(0))
〉
L

= Gα(L)
∑
Ψ

e−i(E(Ψ)−E0)t+iP(Ψ)xAL(Ψ) (5.102)

where the brackets on the left-hand side denote the vacuum expectation value in �nite volume
L and on the right there appear the �nite�size energies and momenta of the exact eigenstates
Ψ and the generating functions of the �nite-size form�factors.

The framework will be that of lattice integrable regularizations of the SG �eld theory and
in particular of the one proposed in [124]. The expression derived will be written in terms
of the counting function which solve the Destri-De Vega nonlinear integral equation (NLIE)
as an expansion over the basis of the eigenstates of the theory: despite being in principle
numerically computable, it assumes the knowledge of the solutions of the NLIE relative to
the system with given coupling in a given volume, that is only partly available at the moment.
We will moreover take advantage of the algebraic Bethe ansatz results relative to the one-
dimensional (inhomogeneous) Heisenberg magnet and in particular of the computation of the
matrix elements of the magnetization operator in the limit [137, 138] in which the number of
sites goes to in�nity.

By means of algebraic Bethe ansatz, a determinant representation for the generating
function has been the goal of [139], a work based on the lattice sine-Gordon regularization
proposed in [140]. We believe that the subsequent advances on quantum spin chains (such as
[13]) allow more explicit results. In connection with the inhomogeneous XXZ spin chain, the
one-point functions of primary �elds and their descendants in the sine-Gordon model have
been analysed in the framework of the recently explored fermionic structure of the model in
[141, 142], while the computation of form factors by separation-of-variables has been tackled
in [143] recently.

5.2.1 The generating function

A convenient method for writing connected correlation functions is by di�erentiation of a
generating function. In particular, we are interested in the expectation value on the vacuum
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of the operator: 〈
e−2iπω/β(φ(x)−φ(0))

〉
L

(5.103)

in which ω is here a real number and the subscript L stands for the size of the system. The
�eld in the exponent is proportional to the fraction of topological charge in the interval [0, x]
(see [124]) and is realized on the lattice by a string of operators acting on the local spin
Hilbert spaces as:

(φ(x)− φ(0)) =
β

2π

2m∑
l=1

σzl (5.104)

with σz the usual Pauli matrix. A similar operator, the sum over projectors on the spin-up
state, reads:

Q2m+1 =
1

2

2m∑
l=1

(1− σzl ) (5.105)

A convenient representation of the exponential of the operator (5.105) was provided in
[137] in terms of the transfer matrices τ̂0, τ̂ω of two spin chains: one corresponding to the
actual physical system, and the other to an analogous system in which a twist in the boundary
condition ω had been introduced the results presented in section 1.3.2, the solution of the
inverse scattering problem for arbitrary inhomogeneities ξl l = 1, . . . , 2N . The expression for
the magnetization operator (1.68) allows to write down [137] the generating function in the
inhomogeneous chain as:

e−iω
∑m
l=0 σ

z
l =

m∏
l=0

e−iω τ̂ω

(
(−1)lΛ− iγ/2

)( m∏
l=1

τ̂0

(
(−1)lΛ− iγ/2

))−1

(5.106)

We will associate here the set of rapidities {µ} to the ground state and introduce a complete
set of eigenstates of the twisted transfer matrix on the right of this operator. The transfer
matrices act diagonally on the respective eigenstates, so that the expression obtained is:〈

{µ}
∣∣∣eiω∑m

j σzj

∣∣∣ {µ}〉
L〈

{µ}
∣∣∣{µ}〉

L

=
∑
{λ}ω

A({λ})
m∏
l=1

e−iω
τω((−1)lΛ− iγ/2|{λ}ω)

τ0((−1)lΛ− iγ/2|{µ})
(5.107)

with

A({λ}ω) =
|〈{λ}ω|{µ}〉L|

2

〈{µ}|{µ}〉L 〈{λ}|{λ}〉L
(5.108)

The product on the right hand side yields, in the scaling limit, the phase:

m∏
l=1

e−iω
τω((−1)lΛ− iγ/2|{λ}ω)

τ0((−1)lΛ− iγ/2|{µ})
→ e−ix(P({λ}ω)−P({µ})) (5.109)

which has been seen in section 5.1.2.
What written above is then a formal decomposition of the generating function of con-

nected correlation functions. Its derivatives with respect to the twist ω provide a form factor
expansion familiar in the framework of �eld theory. For simplicity, we retain the form (5.107)
and refer to it as amplitude expansion.

Once properly normalized, the overlap of any twisted state on the ground state is a
complex number with modulus between zero and one; nonetheless, it will be convenient for
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comparison with the �eld theory formalism to compute the scaling limit with respect to a
reference amplitude:

A({λ}ω, {µ}ω, {µ}) =
〈{µ}ω|{µ}ω〉L
|〈{µ}ω|{µ}〉L|

2

|〈{λ}ω|{µ}〉L|
2

〈{λ}ω|{λ}ω〉L
(5.110)

Hence, we rewrite the above generating function in �nite volume in terms of �normalized�
amplitudes as:

〈
e2iωQm

〉
L

= A0

1 +
∑

excited {λ}ω

e−ixP{λ}A({λ}ω, {µ}ω, {µ})

 , (5.111)

where

A0 =
|〈{µ}ω|{µ}〉L|

2

〈{µ}|{µ}〉L 〈{µ}ω|{µ}ω〉L
(5.112)

The amplitudes in (5.107) will be the object of our concern in the next sections. The factor
A0 represents an overall normalization of the exponential operator. Its physical meaning in
the scaling limit can be argued by considering very large values of x, in which all the terms
in the expansion become rapidly oscillating except the �rst one1: we therefore expect it to
correspond to the (squared) vacuum expectation value of the operator e2πiω/βφ(x) in �nite
size.

The intermediate states are de�ned by the root structure which is encoded in the source
term of (5.92), i.e., by the number of holes, close, ... roots and by their quantization numbers.
The question about the completeness of the presently known solutions of the nonlinear integral
equation is still open, to our knowledge.

5.2.2 The result

Suppose the ket |0〉L to be the (�nite volume) vacuum, which corresponds to the state in
which all the roots lie on the real axis and are quantized by half-integers, without holes. The
set of integers {Ī} de�nes instead an the excited state in the twisted system. The sine-Gordon
sector [127, 128, 129] is reproduced by the con�guration of roots having 2S + δ + Msc ∈ 2Z
and we will consider, for de�niteness, half-integer quantization numbers for the rapidities, i.e.
δ = 0. Hence, in the following, the number of self-conjugated roots is required to be even. To
have a non vanishing matrix element, it is moreover necessary that the total number of roots
in the excited state is the same as that of the ground state.

The amplitudes have the property:

A({Ī}, x, t) = e−iP({λ})x+i(E({λ})−E0)tA({Ī}, 0, 0) (5.113)

where P({λ}) is the total dressed momentum of the state Ψ({λ}) and E({λ}) its energy, while
E0 refers to the energy of the ground state. Then,

P =

Nh∑
j

m sinhhj −
Ns∑
j

(
m sinh y+

s +m sinh y−s
)
−

Mc∑
j

m sinh cj −
Mw∑
j

m sinhwj

− 1

π

∫
dθ′ cosh θ′= log(1 + eiZ(θ′+)) (5.114)

1upon subtraction of the bulk momentum 2ω.
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E − Ebulk =

Nh∑
j

m coshhj − 2

Ns∑
j

m cosh ys −
Mc∑
j

m cosh cj −
Mw∑
j

m coshwj

− 1

π

∫
dθ′ sinh θ′+= log(1 + eiZ(θ′+)) (5.115)

for which explicit computations can be found in [136, 144, 127, 128, 129, 134, 135]. The time
shift phase comes from applying the double-row transfer matrix along the vertical direction.

Here below and in the following, we will denote the indexes relative to the holes of the
excited states by h and the ones relative to the complex roots, generically, by a c. This
shouldn't generate confusion with the �close� roots, as notation will be clear from the context.
Moreover, to shorten notations, we write the signs {cj}, with the convention that choles =
1, ccomplex roots = −1. We de�ne hereby the functions:

ϕρ(x, y) =
mL sinh γ

π (x− y)

Zρ(x)− Zρ(y)
(5.116)

Lσ0 (x) =

∫
du∆(x− u) log(1 + eiσZµ(uσ))

Lσλ(x) =

∫
du∆(x− u) log(1 + eiσZλ(uσ))

Lσ(x) =

∫
du∆(x− u) log

1 + eiσZ(uσ)

1 + eiσZ0(uσ)
(5.117)

With this notation, the expression for the amplitude de�ned by the twisted excited state
{λ}, evaluated in the origin, is:

|A({I})|2 = aω
S Φ D
cosh2 Σ

∏
c

C(λc)
∏
h

H(λh)R (5.118)

in which there appear the quantities:

R =

∣∣∣∣∣∣
det
[
1− Ŵµ,λ

]
det
[
1 + (A+ − 1) Ĝ−ω

]
det
[
1− Ŵµ

] det
[
1− Ŵλ,µ

]
det
[
1 +

(
A−1

+ − 1
)
Ĝω

]
det
[
1− Ŵλ

]
∣∣∣∣∣∣

(5.119)

D =

∏
c 6=c′ sinh γ

π (λc − λc′)
∏
h6=h′ sinh γ

π (λh − λh′)∏
ch sinh γ

π (λc − λh) sinh γ
π (λc − λh)

(5.120)

aω =

∣∣∣∣∣∣
det
[
1 + K̂ω

]
det
[
1 + K̂

]
∣∣∣∣∣∣
2

(5.121)
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C(λc) =
π

γ

cos Z0(λc)
2

Z ′(λc)
exp

[
− 2γ

π2

∫
du=L+(u) coth

γ

π
(λc − u)

+2

∫
du

(∑
h

G(λh − u)−
∑
c

G(λc − u)−
∑
w

GII(λw − u)

)
log sinh

γ

π
(λc − u)

]
H(λh) =

π

γ

cos Z0(λh)
2

Z ′(λh)
exp

[
− 2 sgn(1− p)Mw

+2

∫
du

π
=
(
L+

0 (u)∂x logϕ0(λh, u
+)− L+

λ (u)∂x logϕλ(λh, u
+)
)

−2

∫
du

(∑
h

G(λh − u)−
∑
c

G(λc − u)−
∑
w

GII(λw − u)

)
logϕλ(λh, u

−)
]
(5.122)

Φ = exp
[ ∑
j,k=h,c

∫
dxcjG(λj − x)

∫
dyckG(λk − y) logϕ(x, y)−M2

W

−
∑

σ,σ′=±

σσ′

(2π)2

∫
dxLσ′(x)

∫
dy
[
Lσλ(x)∂2

x,y logϕ(xσ, yσ
′
)− Lσ0 (x)∂2

x,y logϕ0(xσ, yσ
′
)
]

+
∑
α

cα

∫
dx

π
G(λα − x)

∫
dy=

[
L+
λ (x)∂y logϕ(x, y+)− L+

0 (x)∂y logϕ0(x, y+)
] ]
(5.123)

S = exp
[γ2

π2

∑
σσ′=±

σσ′

(2πi)2

∫
dx

∫
dyLσ(x)Lσ′(y)

1

sinh2 γ
π (xσ − yσ′ − iπ)

+

∫
dx

∫
dy∆̂(x)∆̂(y) log sinh

γ

π
(y − x− iπ)

+
γ

π

∑
σ=±

σ

2πi

∫
dx

∫
dy∆̂(x)Lσ(y)

sinh γ
π (yσ − x)

sinh γ
π (yσ − x− iπ) sinh γ

π (yσ − x+ iπ)

]
(5.124)

We have made use of the notation ∆̂ to denote:∫
du∆̂(u)f(u) =

′∑
j

cjf(λj)−
∑
j

cj

∫
duG(λj − u)f(u) (5.125)

where the sum is over all the sources appearing in (5.92) and the prime excludes the wide
roots from the sum if p < 1.

Σ =

∫
dx

2π
x
(
Z ′(x)− Z ′0(x)

)(∑
σ=±

(
1

1 + eεσ(x|{λ}) −
1

1 + eεσ(x)

)
− 1

)
−
∑
j

cjλj (5.126)

The soliton and antisoliton pseudoenergies [145] satisfy the integral equations:

ε+(θ) = mL cosh θ −
∫
dθ′G+(θ − θ′) log(1 + eε+(θ′)) +

∫
dθ′G−(θ − θ′) log(1 + eε−(θ′))

ε+(θ|{λ}) = mL cosh θ + ig(θ + iπ/2|{λ})−
∑
σ=±

∫
dθ′G±(θ − θ′) log(1 + eεσ(θ′|{λ}))(5.127)
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and
ε−(θ) = ε̄+(θ) G+(θ) = G(θ) G−(θ) = G(θ + iπ−) (5.128)

With these functions, one can express the integral operators appearing in the overlap
determinant. They depend either on two complex variables w, v and on two species indexes
σ, σ′ = ± (�bulk� parameters) or on the rapidities that de�ne the excitations. They read:

W σ,σ′

λ,µ (w, v) =
1

2π

A(w + iσπ/2)

1 + eεσ(w)

(
G−ω

(
w − v + i

σ − σ′

2
π−
)

+ F σ,σ
′

−ω (w, v)

)
Wλ,µ(λc, v)σ

′
=

ResA(λc)

1 + eiZ0(λc)

(
G−ω

(
λc − v − i

σ′π

2

)
+ F σ

′
−ω (λc, v)

)
Wλ,µ(w, λc)

σ =
1

2π

A(w + iσπ/2)

1 + eεσ(w)

(
G−ω

(
w − λc + i

σ

2
π
)

+ F σ−ω (w, λc)
)

Wλ,µ(λc, λc′) =
ResA(λc)

1 + eiZ0(λc)
(G−ω (λc − λc′) + F−ω (λc, λc′)) (5.129)

W σ,σ′

µ,λ (w, v) =
1

2π

A−1(w + iσπ/2)

1 + eε(w|{λ})

(
Gω

(
w − v + i

σ − σ′

2
π−
)

+ F σ,σ
′

ω (w, v)

)
W σ′
µ,λ(λh, v) = −A

−1(λh)

Z ′(λh)

(
Gω

(
λh − v − i

σ′π

2

)
+ F σ

′
ω (λh, v)

)
W σ
µ,λ(w, λh) =

1

2π

A−1(w + iσπ/2)

1 + eε(w|{λ})

(
Gω

(
w − λh + i

σ

2
π
)

+ F σω (w, λh)
)

Wµ,λ(λh, λh′) = −A
−1(λh)

Z ′(λh)
(Gω (λh − λh′) + Fω (λh, λh′)) (5.130)

and

A(w) = exp
[
i
γ

π

∑
σ=±

σ

∫
dx

2π

(
coth

γ

π
(w − xσ − iπ)− coth

γ

π
(w − xσ)

)
Lσ(x)

+i

∫
dx∆̂(x) log

sinh γ
π (x− w − iπ)

sinh γ
π (x− w)

]
(5.131)

and in particular:
A(w + iπ/2) = A+(w) = e−i(Z(w)−Z0(w))−2iω (5.132)

The determinants are of the Fredholm type, integrals are performed on the real axis and the
the species indexes and the excitations variables are summed over as well. In facts, complex
roots of the bra state must be explicitly summed over as well as holes of the ket, if any,
subtracted. Strictly speaking, the above representation is valid only for p > 1/2. However, it
will be clear how to extend it for smaller values once the derivation is made in section 5.2.4.
The source function needs, for some con�gurations, to be evaluated in regions in which the
imaginary part of the argument exceeds min(p, 1)π: it is therefore necessary to use the second
determination.

The integral operator Gω is de�ned as:

Gω(w) =

∞∫
−∞

dk

2π
ei k w

sinh
[(
π
2 − γ

)
k − iω

]
e−iω sinh πk

2 + sinh
[(
π
2 − γ

)
k − iω

] (5.133)
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which reduces to (5.83) for ω → 0. Moreover,

F σ,σ
′

ω (w, v) =
∞∑
n=1

∫
dx1 . . . dxnGω

(
w − x1 + i

σ − 1

2
π−
)

(1−A+(x1))Gω (x1 − x2) . . .

. . . (1−A+(xn))Gω

(
xn − v + i

1− σ′

2
π−
)

(5.134)

with and obvious extension to the case where one or both rapidities in the argument appear
in the source.

For evaluating the overall normalization amplitude A0 one also needs the factor aω in
(5.118), with kernel:

Kω(x) = coth
γ

π
(x− iπ)− e2iω coth

γ

π
(x+ iπ) (5.135)

and x on the real axis. The latter determinants are not of trace class and we have not found
a way of evaluating them so far.

For what the norm determinants are concerned, their expression can be written as:

det
[
1− Ŵx

]
(5.136)

where x stands for one of the two states and:

W σ,σ′
µ (w, v) =

1

2π

1

1 + eεσ(w)
G

(
w − v + i

σ − σ′

2
π−
)

W σ,σ′

λ (w, v) =
1

2π

1

1 + eεσ(w|{λ})G

(
w − v + i

σ − σ′

2
π−
)

W σ′
λ (λh, v) = − 1

Z ′(λh)
G

(
λh − v − i

σ′π

2

)
W σ
λ (w, λh) =

1

2π

1

1 + eεσ(w|{λ})G
(
w − λh + i

σ

2
π
)

Wλ(λh, λh′) = − 1

Z ′(λh)
G (λh − λh′) (5.137)

where the �holes� terms are present for a generic excited state.
An interpretation in terms of pseudoparticles is therefore possible: the �nite-size vacuum

can be written in terms of the fundamental excitations (solitons and antisolitons) of the
infrared theory, which occupy the available levels according to a �lling fraction containing the
vacuum and excited pseudoenergies. Excitations constructed upon such a vacuum interact
both among them and with the background pseudoparticles and the matrix elements of the
operators show such features of the theory.

5.2.3 Scalar products and norms

We need to perform the computation of the scalar products of the ground state with a
generic �twisted� state. The computation of scalar products in the framework of algebraic
Bethe ansatz has a long history. We use below the formulas of section 1.3.2. From eq. (1.65),
we can extract both the overlaps and the norms of the states after some manipulation, in
which we make explicit use that the rapidities {λ} also satisfy (5.53).

115



Two alternative expressions, which are suitable for the scaling limit, can be provided for
the overlap. We refer the reader to [137], where the determinant of the overlap matrix was
written as a Fredholm determinant on a contour. With some variation of their method, in
which use of the Bethe equations and of the de�nition (5.51) is explicitly made, the scalar
product (1.65) can be written in a form which is more suitable for subsequent manipulation.

To compute the determinant, we multiply the matrix H by a conveniently de�ned matrix
M and its inverse. In the case of a twisted state de�ned by the roots {λ} and the state de�ned
by the roots {µ}, we consider the matrix

Mj,k =
cosh(µj − λk)

∏
l 6=k sinh(µj − λl)∏

l 6=j sinh(µj − µl)
(5.138)

whose elements are iπ-antiperiodic functions of the rapidity µj . Its determinant is

detM =
∏
j<k

sinh(λj − λk)
sinh(µj − µk)

cosh(
∑
l

λl −
∑
l

µl) (5.139)

Then the matrix product H̃jnMnk can be computed by considering the integral∮
dw

2πi

sinh(−iγ)

sinh(w − λj) sinh(w − λj ± iγ)

cosh(w − λk)
∏
l 6=k sinh(w − λl)∏

l sinh(w − µl)
(5.140)

which is vanishing when the contour of integration surrounds the real axis and the strip
[−π/2, π/2] along the imaginary axis.

Then the result of the matrix multiplication is

[Hω ·M ]a,b = (−e−2iω)d(λa) (1 +Bω
λ (µa))

∏
l

sinh(λl − µa + iγ)

∏
l 6=a sinh(µa − µl)∏
l sinh(µa − λl){

δab −
∏
l sinh(µa − λl)
1 +Bω

λ (µa)

1∏
l 6=a sinh(µa − µl)

sinh(µa − µl − iγ)

sinh(µa − λl − iγ)(
coth(µa − µb − iγ)− e2iω coth(µa − µb + iγ)

)}
(5.141)

from which the Fredholm determinant in the limit in which the size of the matrices goes to
in�nity can be recovered.

In the following expressions, the quantity ω denotes the relative twist of the state |Ψω{λ}〉.

〈ψ({λj})|ψ({µ})〉 =
e−2iωM

∏
j d(λj)d(µj) (1 +Bµ(λj))

cosh(
∑
λl −

∑
µl)

∏
j,k

sinh(µj − λk + iγ)

sinh(µj − λk)
det
(

1− Û−ω
)

=

∏
j d(λj)d(µj) (1 +Bλ(µj))

cosh(
∑
λl −

∑
µl)

∏
j,k

sinh(λj − µk + iγ)

sinh(µj − λk)
det
(

1− Ûω
)

(5.142)

with the matrix

U−ωj,k =
K−ω(λj − λk)

1 +Bµ(λj)

∏
l sinh(λj − µl)∏
l 6=j sinh(λj − λl)

∏
l

sinh(λj − λl − iγ)

sinh(λj − µl − iγ)
(5.143)

Uωj,k =
Kω(µj − µk)
1 +Bλ(µj)

∏
l sinh(µj − λl)∏
l 6=j sinh(µj − µl)

∏
l

sinh(µj − µl − iγ)

sinh(µj − λl − iγ)
(5.144)
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and the function (5.135).
For the computation of norms, one considers the limit {λ}, {µ} → {ν}, for which the

matrix above becomes simply:

Uωνj,k =
K(νj − νk)
1 +Bων

ν (νj)
(5.145)

For the remaining part of the section, we shall be using rescaled rapidity variables. More-
over, unless otherwise speci�ed, we shall consider the state µ to be the ground state of the
(untwisted) inhomogeneous chain, while the state {λ} is considered as having a twist.

As a preliminary step, one observes that by applying the de�nition of counting function
and a representation of the cosine as an in�nite product:

1 +Bω
µ (x) = 2e−i/2 Zµ(x)

∞∏
k=−∞

(
1− Zµ(x)

2π(k − 1/2)

)
(5.146)

from which, considering the ground state with 2M roots {µ}, having labels ranging on half-
integers between −M + 1/2 and M − 1/2, we have:

1 +Bω
µ (x) = 2e−i/2 Zµ(x)

M−1/2∏
I=−M+1/2

(
Zµ(µI)− Zµ(x)

Zµ(µI)

)
Γ(M + 1

2)2

Γ(M + 1
2 −

Zµ
2π )Γ(M + 1

2 +
Zµ
2π )

(5.147)
The last ratio tends to unity in the limit in which the number of roots goes to in�nity and will
not be rewritten in the following. The case in which there is a �nite number of excitations
yields the same result, if one considers in the product above the set {µ̃} of all the real roots
of (5.60).

We underline that for the states in which the Bethe roots are quantized with integers,
an analogous product representation for the sine allows to rewrite the factor 1 − Bω

µ (x) in
terms of di�erences of counting functions evaluated at distinct values of the argument. All
the subsequent scheme of calculation can be straightforwardly adjusted.

Having established this fact, we consider the state {λ} to be excited and the state {µ}
to be the vacuum, identi�ed hereby by the subscript 0. We are moreover interested in the
normalized matrix elements, so we divide the overlap by the norm of the two states.

Let us multiply and divide by the holes and the complex roots, in order to obtain ex-
pressions in which all and only the real solutions appear. This is convenient in that we
can consider the ratio between each hyperbolic sine appearing in the denominator of the ex-
pressions (5.142) and the di�erences of the counting function computed at the points in the
argument of the sine, as arising from the product representation (5.147). Following [137] this
de�nes the functions (5.116).

After illustrating the general procedure, it is simpler to consider two additional states,
whose rapidities we label by {ρ}, {ν}: at the end of the computations, we will send {ρ} → {λ}
and {ν} → {µ} and show that the poles arising from the factors of the kind (5.60) are cancelled
by the zeros of the hyperbolic sines in the expression for the scalar product. In order to obtain
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a product involving only the real solutions, we consider the ratio:∏
j,k

sinh γ
π (λj − ρk) sinh γ

π (µj − νk)
sinh γ

π (λj − νk) sinh γ
π (µj − ρk)

=

∏
cc′ sinh γ

π (λc − ρc′)
∏
h,h′ sinh γ

π (λh − ρh′)∏
ch sinh γ

π (λc − ρh) sinh γ
π (ρc − λh)∏

j,k

sinh γ
π (λ̃j − λ̃k) sinh γ

π (µj − νk)
sinh γ

π (λ̃j − µk) sinh γ
π (ρ̃j − µk)

∏
h

∏
j

sinh γ
π (λh − µj) sinh γ

π (ρh − µj)
sinh γ

π (λk − ρ̃j) sinh γ
π (ρh − λ̃j)∏

c

∏
j

sinh γ
π (λc − ρ̃j) sinh γ

π (ρc − λ̃j)
sinh γ

π (λc − µj) sinh γ
π (ρc − µj)

(5.148)

On the other hand, for what the factor involving the counting function is concerned, we can
write:

∏
j

1 + eiZ0(ρj)

1 + eiZ(ρj)
=
∏
c

1 + eiZ0(ρc)

1 + eiZ(ρc)

∏
h

1 + eiZ0(ρh)

1 + eiZ(ρh)

∏
h

(
1 + eiZ(ρh)

1 + eiZ0(ρh)

)2∏
j

1 + eiZ0(ρ̃j)

1 + eiZ(ρ̃j)
(5.149)

By multiplying the �rst and the second product with the �rst ratio of (5.148) and taking the
limit to coinciding states, we obtain the term (5.120), which already contains a �nite number
of rapidities, apart from a phase factor.

The factors in the �rst term that contain the same index for the hole, together with the
third term of (5.148) and the third term of (5.149) yield:

∏
h

H(λh) , H(λ(h)) =
1 + eiZµ(λh)

iZ ′λ(λh)

∏
j

ϕ0(λh − µ̃j)2

ϕ(λh − λ̃j)2
(5.150)

while the last of (5.149), accompanied by the corresponding product in the µ rapidities, with
the second in (5.148) provide the factor:

Φ =
ϕ0(µj , µk)ϕ(λ̃j , λ̃k)

ϕ0(µj , λ̃k)ϕ(µj , λ̃k)
(5.151)

From all the previous expressions, one also obtains a phase factor containing sum over ra-
pidities of the di�erence of the two counting functions, that will be of no relevance in the
following.

The last product in (5.148) is already in a form suitable for the scaling limit; together
with the part of the product in the �rst term that contains the same index for the close root,
it may be rewritten as:

∏
c

C(λc) , C(λC) =
1 + eiZµ(λc)

iZ ′λ(λc)

∏
j

sinh γ
π (λc − λ̃j)

sinh γ
π (λc − µ̃j)

2

(5.152)

and constitutes a multiplicative contribution from complex roots.
According to our previous analysis, we write:

|〈Ψ({λ})|Ψ({µ})〉|2

‖Ψ({µ})‖2 ‖Ψ({λ})‖2
= S D Φ

∏
h

H(λh)
∏
c

C(λc)

∣∣∣∣∣∣
det
(

1− Uωλ,µ
)

det
(

1− U−ωµ,λ
)

det (1− Uλ) det (1− Uµ)

∣∣∣∣∣∣
(5.153)
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Where the de�nitions (5.120) and

S =
∏
j,k

sinh(µj − λk − iγ) sinh(λj − µk − iγ)

sinh(µj − µk − iγ) sinh(λj − λk − iγ)
(5.154)

have been used.

5.2.4 The scaling limit

The determinants

We want to reduce the expressions above to a standard Fredholm determinant form det(1 +
K) = e

∑
n(−1)n−1 Tr[Kn]/n. For an analytic function (at least on the real axis), one can write∑

j

f(λj)∏
l 6=j(λj − λl)

=

∮
dw

2πi

f(w)∏
l(w − λl)

(5.155)

This is applied to the matrices (5.141), by considering the variables λa, λb as two complex
variables w, v integrated on a closed contour. In order to do so, one employs the function:

A(w) =
∏
l

sinh γ
π (w − µl)

sinh γ
π (w − µl − iπ)

sinh γ
π (w − λl − iπ)

sinh γ
π (w − λl)

(5.156)

The latter expression contains both the poles in the values of the λ roots to be summed over
and the zeros in the values of the µ roots to be avoided, a fact that allows us to keep the
contour of integration under control for every couple of states. Be the reader aware that we
are using rescaled variables.

If we consider �rst the state {µ} to be associated with a (twisted) excited state and the
state {λ} with the ground state, it is su�cient to consider a contour that encircles the real
axis. We underline that all the zeros of the factor

1 +Bω
µ (λa)→ 1 + eiZ

ω
µ (w)

are all the real roots and holes in the state {µ}. This means that the product∏
l

sinh
γ

π
(w − µl)

will cancel all the poles corresponding to real roots, but not the ones corresponding to holes,
which will be treated separately.

With w a generic complex variable, having 0 < |=w| < πmin(1, p) strictly, it is possible
to exponentiate the product and apply the formula (5.91) to the sum of logarithms. It is
however necessary to choose the contour in a way to avoid the branch cuts, which is simply
done, also numerically, if γ is not close to π or to zero. The result of this is the expression
(5.131).

It is necessary to subtract from the sum over poles the unwanted ones corresponding to
holes, which is done by using a term like:

γ

π

∑
holes

1

sinh γ
π (w − µh)

A(µh)

2π Z ′(µh)
K(µh − v) (5.157)
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Figure 5.1: contours surrounding roots of the Fermi sea on the real axis and complex roots
for p < 1. The dotted lines are at =θ = ±π

2 ,±πp.

as long as the number of holes is of order of unity.
It is also possible to extend our analysis to the case of {µ} being the ground state and

{λ} an excited state: holes need not to be subtracted anymore (the ground state has all the
Dirac sea �lled), but complex roots outside the contour need to be explicitly added when
computing the Fredholm determinant.

This cannot always be done by deforming contours, because of the poles in the kernel
at u − v = ±π,±πp. It then follows that roots lying beyond min(π2 ,

πp
2 ) must be treated

separately and enclosed in di�erent contours.
Taking into consideration neutral states with rapidities quantized with half-integers [127,

128, 129] the close pairs of complex roots approach their in�nite-volume position (5.99) keep-
ing their distance larger than π. Moreover, as was observed in Section 5.1.3, the wide roots
do not correspond to any creation operator in the attractive regime, since their presence does
not modify the total spin. Then, in the attractive regime, the prescription for the external
contours is to surround the region whose imaginary part is π

2 < |=θ| < πp. On the other
hand, it is known that the antisymmetric soliton-antisoliton states are described by a pair of
close roots, so once again, the prescription applies.

The Fredholm determinants are computed on a contour:

det
[
1− γ

π
Ô
]

= exp

{∑
n

1

n

(γ
π

)n ∮ dv1

2πi
. . .

∮
dvn
2πi

Ô(v1, v2)Ô(v2, v3) . . . Ô(vn, v1)

}
(5.158)

The contours have to surround the real axis; moreover, for excited states, they also need to
encircle the complex roots. In principle, one can surround each root by a small circle, taking
care to avoid that two points in contours may be separated by πp

2 , i
πp
2 . This is the prescription

for the repulsive regime.
In the attractive regime, the contours encircle only close roots, with |=θ| < π p. In

particular, it is known that the pair of close roots describing the polarization of a soliton-
antisoliton pair, has an imaginary part which reaches the values ±iπ2 from above. The same
arguments extend to all the close roots quantized with half-integers. Hence, our contours
surround the region of the complex plane π

2 < |=θ| < πp.
Indicating by a subscript the states that enter in the matrix element, the overlap kernels,
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as function of the �eld theory (rescaled) rapidities, are:

Wλ,µ(x, y) =
1

2πi

A(x)

1 + eiZ0(x)
K−ω(x− y)

Wµ,λ(x, y) =
1

2πi

A(x)−1

1 + eiZ(x)
Kω(x− y)− γ

π

∑
h

1

sinh( γπ (x− λh))

A(λh)−1

2πZ ′(λh)
Kω(λh − y)(5.159)

and the norm kernels

Wµ(x, y) =
1

2πi

1

1 + eiZ0(x)
K(x− y)

Wλ(x, y) =
1

2πi

1

1 + eiZ(x)
K(x− y)− γ

π

∑
h

1

sinh( γπ (x− λh))

1

2πZ ′(λh)
K(λh − y)(5.160)

The previous expressions are valid in the scaling limit, provided w is not on the real axis.

More on determinants

Note that the integral operators above are not of trace class. To proceed with the numerical
evaluation, one is forced to introduce a cuto�. However, the function A above, which is
present in the overlap integrals, tends exponentially to unit value when its argument has
large real part, for any couple of the states. It follows that the asymptotic behaviour for large
rapidities of the �overlap� kernels is the same. Then, by considering ratios of overlaps as in
(5.110), one can argue that the result is independent from the cuto� and the di�erence of
series (5.158) is �nite.

Given an integral operator Q and the kernel K, we have that:

det [1− (Q−K)] = det

[
1−Q ∗ 1

1 +K

]
det [1 +K] (5.161)

This can be seen by taking the logarithm of the above expression, expanding and reordering
terms:

Tr
[

log [1− (Q−K)]
]

= Tr
[
K − 1

2
K∗2 +

1

3
K∗3 − 1

4
K∗4 +

1

5
K∗5 − . . .

−
(
Q−Q ∗K +Q ∗K∗2 −Q ∗K∗3 +Q ∗K∗4 . . .

)
−1

2

(
Q∗2 − 2Q∗2 ∗K + 2Q∗2 ∗K∗2 + (Q ∗K)∗2 − 2(Q ∗K)∗2 ∗K . . .

)
−1

3

(
Q∗3 − 3Q∗3 ∗K + 3Q∗3 ∗K∗2 + 3Q ∗K ∗Q∗2 ∗K + . . .

)
−1

4

(
Q∗4 − 4Q∗4 ∗K + . . .

) ]
− . . .

= Tr
[
log
(
1−Q ∗

(
1−K +K∗2 −K∗3 + . . .

))]
+ Tr [log (1 +K)]

(5.162)

which is used both for the norm and for the overlap kernel, with di�erent Qs and either
Kω or K0. note that when taking the ratio of amplitudes in the expansion (5.111) the last
trace will not play any role, being independent from the states considered. It only enters the
computation of A0.
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Considering the kernel in the expression of the norm, we note that the integral on the
contour can be written as:∮

dw

2πi

K(w − v)

1 + eiZ(w)
=

∫ ∞
−∞

dw

2πi

(
K(w+ − v)

1 + e−iZ(w+)
+
K(w− − v)

1 + eiZ(w−)
−K(w+ − v))

)
(5.163)

By writing down explicitly the �rst terms of the Fredholm determinant expansion with this
form for the kernel and noting that the function K has no poles on the real axis, it is possible
to see that:

∑
n

1

n

∮
dw1

2πi
. . .

∮
dwn
2πi

K(w1 − w2)

1 + eiZ(w1)
. . .

K(wn − w1)

1 + eiZ(wn)
= Tr log

[
1− iK̂

2π

]

+
∑
n

1

n

∑
σ1...σn=±

∞∫
−∞

dw1

2π
. . .

∞∫
−∞

dwn
2π

(
G(wσ11 − w

σ2
2 )

1 + e−iZ(wσ1 )
. . .

G(wσnn − w
σ1
2 )

1 + e−iZ(wσ1 )

)
(5.164)

where we have used the fact that the kernel in the NLIE (5.92) can be expressed [124] in
terms of the spin chain kernel as:

G(w) =
∞∑
n=1

(−1)n−1(−iK)?n(w) =

∞∫
−∞

dqeiwq
−iK̂(q)

1− iK̂(q)
(5.165)

in which the superscript ?n denotes n-times convolution. In order to deal with the overlap
determinant, one can similarly set:

Gω(w) =
∞∑
n=1

(−1)n−1(−iKω)?n(w) =

∞∫
−∞

dqeiwq
−iK̂ω(q)

1− iK̂ω(q)
(5.166)

The Fourier transform is performed by separating the asymptotic behaviour of the function
and by regularizing through a damping exponential. In the end of the computation, the
regularization parameter is sent to zero, therefore obtaining the �dressed� kernel (5.133). A
reasoning analogous to that for the norm leads to the following overlap determinant:

det

1−
∑

σ,σ′=±
Uλσσ′(w, v)


Uλσσ′(w, v) =

1

2π

(
A(wσ)

1 + e−σiZ0(wσ)
− δσ,+

(
A
(
w+
)
− 1
))

G−ω(wσ − v) (5.167)

which is manifestly of trace class due to the presence of the soliton and antisoliton �lling
fractions and to the asymptotic behaviour of the function A.

The contour indexes will be interpreted as species indexes. This is so because, by deform-
ing the contour up to |=w = π/2| and following [145], one can de�ne the (complex) soliton
and antisoliton pseudoenergies (5.127) as:

ε+(θ) = −iZ(θ + i
π

2
)

ε−(θ) = iZ(θ − iπ
2

) (5.168)
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and understand the factor containing the exponentiated counting function as a �lling fraction.

W σ,σ′

λ,µ (w, v) =
1

2π

(
A(w + iσπ/2)

1 + e−iσZ0(w+iσπ/2)
− δσ+ (A+(w)− 1)

)
G−ω

(
w − v + i

σ − σ′

2
π−
)

Wλ,µ(λc, v)σ
′

=
ResA(λc)

1 + eiZ0(λc)
G−ω

(
λc − v − i

σ′π

2

)
Wλ,µ(w, λc)

σ =
1

2π

(
A(w + iσπ/2)

1 + e−iσZ0(w+iσπ/2)
− δσ+ (A+(w)− 1)

)
G−ω

(
w − λc + i

σ

2
π−
)

Wλ,µ(λc, λc′) =

(
ResA(λc)

1 + eiZ0(λc)
− 1

)
G−ω (λc − λc′) (5.169)

W σ,σ′

µ,λ (w, v) =
1

2π

(
A−1(w + iσπ/2)

1 + e−iσZ(w+iσπ/2)
− δσ+

(
A−1

+ (w)− 1
))

Gω

(
w − v + i

σ − σ′

2
π−
)

W σ′
µ,λ(λh, v) = −A

−1(λh)

Z ′(λh)
Gω

(
λh − v − i

σ′π

2

)
W σ
µ,λ(w, λh) =

1

2π

(
A−1(w + iσπ/2)

1 + e−iσZ(w+iσπ/2)
− δσ+

(
A−1

+ (w)− 1
))

Gω

(
w − v + i

σ − σ′

2
π−
)

Wµ,λ(λh, λh′) = −
(
A−1(λh)

Z ′(λh)
− 1

)
Gω (λh − λh′) (5.170)

It is then possible to apply again the partial summation of some families of terms in the
Fredholm determinant series along the route described above. Unfortunately, it is not as easy
as in the previous case to Fourier transform and sum over all the terms, so that the result is
given in the rather implicit form (5.134).

The expressions above imply explicit subtraction of holes in the ket and summation of the
complex roots of the bra.

The prefactor

We start by the analysis of the factor (5.154). Here the complication lies in the double product,
but there are no conceptual di�culties in exponentiating this expression and performing the
sum of the resulting logarithms with the procedure described above, since the arguments of
the logarithms never cross the cut. The �rst step is∑

j,k

(
log

sinh(λj − µk − iγ)

sinh(λj − λk − iγ)
+ log

sinh(µj − λk − iγ)

sinh(µj − µk − iγ)

)

=
∑
j

{
−
∑
σ=±

σ

2πi

∫
dx

(
∆ ? log′

1 + eiσZ0

1 + eiσZ

)
log

sinh(λj − xσ − iγ)

sinh(µj − xσ − iγ)

+

∫
du∆̂(u) log

sinh(λj − u− iγ)

sinh(µj − u− iγ)
(5.171)

Then one is to apply again (5.91) to the j index. After passing to the scaling limit (5.69) we
�nd the result (5.124).

The complex roots are, by de�nition, away from the real axis. Since in the product de�ning
the complex root factor (5.152) there appear all and only the real solutions, it is natural to
consider the logarithm and chose a suitable contour around the real axis to perform the sum
over roots. The resulting expression is given in (5.122).
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We turn to the analysis of the factor containing the position of the holes. The counting
function itself may be non monotonic in some region of the real axis for some class of states
and at small volumes mL ∼ O(1), a circumstance which is connected with the appearance of
special roots when the counting function also crosses a quantization point within that region.
We assume that this is not the case, even if, in principle, such a case can be worked around
by splitting the sum over di�erent regions in which the counting function is monotonically
increasing. Having written the product (5.150) in terms of positive functions, we can now
take the logarithm and perform the scaling limit.

Such limit is somewhat simpli�ed by the fact that the sum is performed only over real
solutions of the (5.60). It can be performed by standard techniques, but some details are in
order. After applying the summation procedure, one of the terms has the form

I0 =

∫
du

2π

(
N

cosh(u−Θ)
+

N

cosh(u+ Θ)

)
log

ϕ0(x, u)

ϕ(x, u)
(5.172)

This integral is similar to the ones needed for the computation of energy and momentum
([135, 127, 128, 129], see also [136, 144]): one uses the fact that the counting function has a
well de�ned limit when the argument is sent to in�nity{

Z(+∞) = Nπ + p−1
p+1πS + 2π sgn(p− 1)MW↓ + 2ω

Z(−∞) = −Nπ − p−1
p+1πS − 2π sgn(p− 1)MW↑ + 2ω

(5.173)

where MW↓ and MW↑ are for the number of wide roots below and above the real axis. It
follows that:

I0 = sgn(p− 1)MW (5.174)

This integral enters both in the evaluation of the �hole� factor and in the product (5.151).
Here below, we report the result of the summation an the �rst index:

∑
j,k

log
ϕ(λ̃l, λ̃k)ϕ0(µj , µk)

ϕ(λ̃l, µk)ϕ0(λ̃j , µk)
=

∑
j

{∑
σ=±

∫
du dx

2πiσ
log′

1 + eiσZ(uσ)

1 + eiσZ0(uσ)
∆(u− x) log

ϕ0(µ̃j , x
σ)

ϕ(λ̃j , xσ)

+
∑
α

cα

∫
duG(λα − u)

(
logϕ(λ̃j , u

−)− logϕ0(µ̃, u−)
)}

(5.175)

the second step, again by taking into account the asymptotic behaviour (5.173), can be
analogously performed and yields (5.123) as a result.

5.2.5 Conclusions

We have presented an exact expression for the generating function of connected correlation
functions on a cylinder, with compacti�ed space direction and in�nite time direction, for the
sine-Gordon quantum �eld theory.

To take into account corrections which enter as exponentials in the size, the knowledge
of the spectrum and of the form factors of the theory in in�nite volume is not enough. To
circumvent this problem, the computations were carried on in the framework of the Destri-De
Vega lattice regularization, formulated in terms of an inhomogeneous XXZ spin chain.

In this framework, the problem was similar to the study of the expectation value of the
magnetization of the spin chain in a given interval: due to the available results for this model,
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the most important of which is the solution of the quantum inverse scattering, we have written
the matrix elements and performed the appropriate scaling limit to obtain the result (5.118).

The expression is written as an expansion on the states of the �eld theory in �nite volume
of the generating functions of form factors. The determination of such states relies on the
ability of solving self-consistently the Destri-De Vega nonlinear integral equation for all the
allowed source terms, which is in general a di�cult task and limits for the moment the
practical applicability of the method to some classes of �nite volume states.

Having shown its relevance in the computation of correlation functions, we hope to be able
to extend the analysis of the nonlinear integral equation in the future. Further work would
be moreover required to explore the advantages and limitations of this kind of formalism in
the actual computation of correlation functions, as well as to identify the features which may
be generally valid for other integrable �eld theories.
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Summary

In this work, we have studied three problems of current interest in condensed matter and
statistical physics. Despite looking very di�erent at �rst sight, they are intimately connected
from the point of view of their algebraic structure, as shown in Chapter 1.

The Josephson currents between two Richardson Hamiltonians coupled by a tunnelling
term have been analysed in Chapter 2. By the use of the exact solution of the separate
systems we were able to implement an algorithm that allows to study the exact dynamics of
the system after the tunnelling term is switched on. In particular, the phase relation among
the two parts of the system and the population-phase diagram were studied. The question of
scaling with the size and the e�ect of the charging energy are for the moment open, yet the
approach is promising and allows useful insight on the physics of Josephson currents. This
formalism serves as a basis for the study of �nite�size e�ects in BCS superconductors.

An example of exactly solvable interacting and disordered system was presented in Chap-
ter 3. The properties of its eigenstates were studied with respect to the interplay between
disorder and interaction and to the many-body localization characteristics. It was shown
how a delocalization transition happens only at the trivial noninteracting point and how a
delocalized, yet nonergodic phase is set. It is an interesting question, not fully addressed yet,
to study how the breaking of integrability a�ects this scenario.

The sine-Gordon integrable �eld theory was studied in Chapter 5. An exact formula for the
generating function of connected correlation functions in arbitrary �nite volume was derived,
by the use of an integrable lattice regularization of the theory. This expression encodes the
exponential contributions that the asymptotic approaches presented so far were not able to
include. Nevertheless, its use appears to be rather cumbersome for numeric, at the moment,
and will �nd its application in the study of single form factors.

All these achievements were possible by the use of the algebraic Bethe ansatz technique.
In particular, the recent progresses in the computation of the exact matrix elements have
been widely exploited in this thesis. The common structure shared by both integrable lattice
models and integrable �eld theories is ultimately at the roots of part of the work, and is worth
further attention. Such a beautiful algebraic structure proved to be versatile enough to tackle
very di�erent problems, arising in sectors of physics which are far one from the other.
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