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I

Introduction

Most of the studies of the transition between a liquid and a glass rely on classical Statistical Me-

chanics. In many cases neglecting quantum fluctuations is in fact a reasonable assumption, as the de

Broglie wavelength is typically much smaller than the inter-particle distance and quantum effects are

expected to be irrelevant. However, in the light of several recent experiments and possible interesting

applications, it is important to account for an inherent quantum behavior. In this thesis quantum

effects are introduced in the framework of a mean-field description of the glassy phase. We consider

many-body quantum systems that are accessible to an analytical treatment mainly because of their

simplified spatial structure, and we study their most relevant thermodynamical aspects. Moreover we

analyze a case of out-of-equilibrium quantum dynamics exploiting ideas and tools originally developed

for classical glassy models.

As we mentioned, there are several and quite disparate motivations that encouraged us for this work,

which are outlined in Section I.3 of this Introduction. Before though, in Sections I.1 and I.2, we

want to touch upon the intriguing features pertaining to the physics of classical glasses, and how

these features emerge in a broader range of problems that can actually extend over various domains.

Likewise, these many facets coexist also when one studies quantum effects, which are indeed much

less understood.

We conclude the Introduction with a summary of the results presented in this thesis, together with

the outline of their presentation in Section I.4. In Section I.5 we report the references to the original

works where they have been discussed.

I.1 Classical glasses

Glass-forming materials are characterized by their tendency to avoid crystallization during cooling

below the melting temperature Tm. Upon approaching the glass transition Tg the relaxation time

of glasses increases very fast. The temperature Tg is actually not a true phase transition, but a

conventional value below which the system does not flow over any reasonable experimental time scale,

due to the dramatic increase of its viscosity. Once quenched below Tg, glasses look like amorphous

solids, with an infinite viscosity but without any hint for an obvious long-range order. Indeed glasses

present an atomic structure close to that of liquids but mechanical properties of solids. In this respect

they are like “liquids that can not flow”. The understanding of this rigidity is a basic problem of

condensed matter, that is susceptible of controversial explanations. In crystals there is a manifest

order that emerges abruptly in correspondence of a first-order phase transition. Translational and

vii
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Figure I.1: Different systems, spanning several length scales, develop analogous glassy properties at

low temperature or high density. (Top left) atomic force spectroscopy image of an alloy, (top right)

colloidal systems, (bottom left) a beer foam, (bottom right) granular materials. From [1].

rotational invariances are broken and the particles, on average, are identified with the coordinates of

a lattice. The thermodynamics of glasses is instead that of a second-order phase transition, there is

no latent heat and the relaxation time increases progressively.

When the relaxation time exceeds the experimental time scale, the system is no longer able to equi-

librate and inevitably falls out-of-equilibrium. The peculiar way in which this dynamical regime

develops is the hallmark of glassiness. It is important to mention that very different materials show

the same glassy behavior, and more specifically analogous dynamics. Glassy physics covers a broad

range of time and length scales, such as in atomic, colloidal systems, foams and granular materials (see

Fig. I.1). Although the microscopic mechanism responsible for such a slowing down is unknown - and

might be different in different cases - the out-of-equilibrium dynamics presents very similar properties

like aging, memory effects, hysteresis and the emergence of effective temperatures [2].

I.2 Optimization over complex energy landscapes: many glasses

in science

A typical problem that is encountered in almost all branches of science is that of optimizing irregularly

shaped cost functions.

In classical combinatorial optimization one considers discrete variables and assigns a cost function

to each of their configuration. The cost function is the result of competing local interactions and

this frustration inherent to optimization problems is the essential ingredient that preludes to glassy

physics. Due to such frustration, the problem of finding the optimal configuration minimizing the cost

function turns out to be very hard, typically intractable.

Indeed the cost function displays many local minima separated by extensive barriers. These minima
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represent generically metastable states that are ubiquitous in the physics of glasses and are responsible

for their slow relaxation, since they trap the system dynamics for long times. For the same reason

a local algorithm that performs a dynamical search in phase space, such as (thermal) simulated

annealing [3], fails to find the optimal solution of the problem.

The study of the average properties of these models revealed in fact a phenomenology intimately

related to that of mean-field glassy systems. The understanding of this analogy has proven particu-

larly fruitful, leading to the development of powerful techniques (replica and cavity method, survey

propagation, . . . ) able to tackle rough cost functions and finite connectivity graphs. Remarkably, the

combination of these approaches allowed one to unveil several features and phase transitions in the

configuration space of optimization problems when a control parameter (typically the ratio of the

number of constraints in the cost function to the number of variables) is tuned [4, 5, 6].

I.3 Restoring ~: when quantum fluctuations matter

I.3.1 Quantum annealing for hard problems

The appealing possibility to exploit quantum mechanics to solve hard optimization problems is at the

core of the theoretical and experimental research in quantum computation. In the idea of quantum

annealing [7, 8] resides the suggestion that if the energy barriers are sufficiently “narrow”, regardless of

their height, quantum fluctuations allow tunneling processes to connect local minima, more efficiently

than the “jump over” mechanism induced by thermal activation, typical of simulated annealing. This

intuition is supported, for instance, by the application of the WKB approximation to the study of a

particle in a one dimensional double well potential [9]. From this example one learns that even if the

barrier is infinitely high the particle has a finite probability to tunnel through it, and this probability

decreases exponentially with the width of the barrier.

In practice, with the quantum annealing, the problem is encoded in a physical system described

by a time dependent Hamiltonian that interpolates between a term whose ground state is known

(and easy to prepare) at time t = 0, and the problem Hamiltonian (the classical cost function) at

the end of the process t = T , where T is the total duration of the annealing. This interpolating

process, i.e. the annealing, takes place at zero temperature and must occur slowly enough, in such

a way to maintain the system in the instantaneous ground state of the Hamiltonian. The fact that

an infinitely slow annealing maintains the system in its ground state is assured by the adiabatic

theorem. Algorithmically though, the interest is in a fast protocol and a reliable criterium to control

the speed of the annealing. According to the adiabatic theorem, the probability of a transition to

excited states during the annealing is controlled by the minimum spectral gap of the Hamiltonian.

Thus, the efficiency of the algorithm is determined by the scaling of the gap with the size of the

system and it is limited by the presence of quantum phase transitions or avoided level crossings, at

which the gap becomes extremely small. All this highlights that, for a better understanding of these

new computational tools, it is necessary to understand the physics of quantum optimization problems.

The thermodynamical and spectral properties of these models will be the subject of the first part of

this thesis.

I.3.2 Low temperature properties of disordered systems

The presence of frustration and disorder in quantum systems leads to a rich and complex behavior,

manifested in unconventional phases and phase transitions, high density of low-energy states and



x I. INTRODUCTION

peculiar dynamical properties [10]. The complexity of these phenomena often lacks a solid theoretical

understanding and sometimes also defies a detailed experimental investigation.

Among the motivations that stimulated the first theoretical studies on quantum glasses [11, 12, 13] are

some experiments carried out with the dipolar magnet Li HoxY1−xFe [14] that point to the importance

of the interplay of glassiness and quantum effects. This compound shows a phase transition from a

paramagnetic to a spin-glass ordered phase which is second order at low transverse field whereas it

becomes first order at low temperature and larger transverse field, when it is driven by quantum

fluctuations. Besides this example there are several observations of quantum glassy phases in electron

systems [15] and other structural glasses [16], and, very interestingly, the proposal of a spin-glass

phase in the phase diagram of high temperature superconductors [17].

More recently, many experiments on supersolid Helium [18] have raised new excitement in this di-

rection, related to the possibility for (disordered) solid samples of developing off-diagonal long range

order [19]. The idea that a solid, crystalline or amorphous, could display a Non-Classical Rotational

Inertia (NCRI), interpreted as a superfluid density component, was actually proposed already in the

1970s by Leggett [20] and other authors. The proposal was interesting enough to induce many exper-

imental groups to look for the predicted effect. However only in 2004 the phenomenon of NCRI has

been detected experimentally. Lately, the enhancement of the phenomenon with highly disordered

samples, obtained by fast quenches that some identified as glasses [21], has been pointed out [22].

Despite these efforts though, a complete explanation of the NCRI mechanism and its relation with

disorder is still lacking.

These interesting results naturally draw the attention to the role of quantum fluctuations, and to the

possible existence of superfluid phases in amorphous systems, such as glasses or more general frustrated

systems. Moreover a new phase of matter, named “superglass”, has been proposed in some theoretical

works, based on analytical [23, 24] and numerical results [25, 26]. However, a precise characterization

of this phase has not been achieved yet and it remains unclear whether it is possible to recover it

from the Hamiltonians of classical structural glasses by simply adding a non-commuting term that

induces quantum dynamics. The call for a deeper understanding of quantum glasses demanded by

the reconstruction of this puzzling picture inspired the second direction of our study. In particular

the major question here is whether off-diagonal long range order and glassy behavior can coexist.

I.3.3 Out-of-equilibrium and non-ergodicity

The hallmark of glassy systems is aging and the associated slow, out-of-equilibrium dynamics. Their

dynamics is stuck around few amorphous configurations and they can not freely explore the available

phase space. Although one-time quantities may look stationary in the long time limit, two-time

correlations show remarkable off-equilibrium effects, depending explicitly on both times. This non-

equilibrium regime represents the major difficulty that renders their study particularly hard: most

of the postulates of statistical mechanics apply in fact only to equilibrium systems. As a result this

has stimulated the physics community to develop several tools and ideas for the non-equilibrium.

The main questions posed in this context concern the spatial structure of microscopic components,

the relaxation time, the possibility to define effective temperatures or, more generally, an effective

thermodynamic description [27, 28]. Including quantum fluctuations in this framework, or better,

addressing these questions for the quantum dynamics, is definitely an important issue.

Quantum effects further enrich the spectrum of dynamical behavior. We already presented some of

the experimental motivations for their investigation. Moreover, the experimental interest is sustained

by the overwhelming progress in the field of cold atoms that allows one to explore dynamical aspects
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of inherent quantum nature [29]. The level of accuracy and precision achieved in this field allows

the realization of perfectly tunable quantum systems, much more controllable than other standard

condensed matter materials like electron or magnetic systems. A remarkable example that deals with

disorder is the recent realization of Anderson localization with cold atoms.

Localization and thermalization are intertwined because of the lack of ergodicity caused by the transi-

tion to localized states which spoils the possibility to approach thermal equilibrium [30]. Understand-

ing ergodicity and thermalization in quantum systems is an open and very broad problem; important

distinctions regarding the environment and the interactions are mandatory. Notably, localization in

many-body problems [31, 32, 33] is a topic of ongoing research in this direction, where glassy prop-

erties are expected, but not necessarily relying on microscopic Hamiltonians as the standard ones for

classical glasses. Purely quantum properties may lead to a slow relaxation.

As the study of the quantum dynamics is a very hard problem and many aspects are still poorly

understood, in this part of work we consider a simpler situation, avoiding disorder and complex energy

landscapes. The non-equilibrium behavior is induced by a sudden change in one of the parameters in

the Hamiltonian and the dynamics is unitary, the system being isolated. The third and last problem

we focused on in this thesis concerns the study of this dynamical regime and its characterization in

terms of the ideas originally proposed for glassy systems out of equilibrium.

I.4 Outline of the presentation and main results

As anticipated in the previous Sections of the Introduction, we organized the thesis into three topics

that are the subjects of three Parts:

• Part A: Quantum optimization problems

• Part B: Quantum glasses

• Part C: Out-of-equilibrium quantum dynamics

Clearly they all deal with quantum systems, and they are strongly influenced by important ideas

developed in the context of classical statistical mechanics. Motivated by the theoretical ideas and

the experimental facts mentioned in the previous Sections, all the works started from the intuition

that those “classical” ideas are relevant also for a quantum description. The first Chapter of each

Part is devoted to the presentation of the classical context where such ideas naturally apply and have

been developed, and to the discussion of the quantum aspects that we aim to understand, i.e. the

framework where we have applied them. These introductory Chapters are listed and summarized

below.

Introductory and review Chapters

• Chapter 1 (Part A): Introduces the definitions and some relevant aspects of classical optimiza-

tion problems. Afterwards, it focuses on quantum computation and specifically on the problem

of the quantum annealing. It describes how this applies to optimization problems and discusses

the relevant ideas in the literature that motivated our works.

• Chapter 5 (Part B): Presents the phenomenological aspects of glassy systems (as inferred

from experimental evidences and numerical simulations). It introduces the experimental set-

up in which the non-classical rotational inertia (NCRI) was first observed in solid Helium and
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the reason to ask about the role of disorder in the samples. The rest of the Chapter outlines

the theoretical framework on which we base our understanding of “classical” glasses and the

theoretical results reported in the literature that stimulated our investigation.

• Chapter 8 (Part C): Describes the dynamical aspects of glasses and how they can be recon-

ciled with a thermodynamical picture through the study of generalized fluctuation-dissipation

relations (FDRs). In particular it introduces the concept of effective temperature defined from

FDRs. We discuss the problem and the motivation for the study of the unitary dynamics in

quantum systems out of equilibrium, in particular when a parameter in the Hamiltonian is

suddenly changed, a quantum quench. We discuss how a definition of effective temperature

naturally emerged in this context and the role of the integrals of motion.

• Chapter 2 (Part A): This Chapter introduces concepts and tools that are recalled also in

other Parts of the thesis. Moreover it describes how we extend the statistical treatment from a

classical to a quantum description. It presents the theoretical view that we followed and that

is able to capture and characterize the average properties of optimization problems as well as

glassy systems (in a mean-field framework at least). We present these ideas together with the

cavity method, which is actually a way to derive them precisely. We describe how the cavity

method has been generalized to quantum systems, what are the natural degrees of freedom and

the equations that characterize their probability. We present the way in which we sample from

this probability.

On the basis of these introductory Chapters, the remaining Chapters are devoted to the presentation

of our results.

Chapters presenting novel results

• Chapter 3 (Part A): In this Chapter we present the study of the quantum version of a simple

case of optimization problems, the so-called random subcubes model. The classical definition

of the model was presented in [34] and quantum fluctuations are introduced by the action of a

transverse field. The classical model displays in a simple manner the most relevant transitions

which appear in standard optimization problems. In particular it captures the phenomenon of

“clusterization” of solutions and of the finite entropy which persists at zero temperature. In

all the studies considered so far in the literature of mean-field glassy models with a transverse

field this feature was in fact missing and it is supposed to give rise to important effects, due

to the sensitivity of degenerate states to external fluctuations. Overall, this toy model shows

that the low-energy spectrum of quantum optimization problems can be very complex, and be

characterized by different level crossings: internal level crossings in the spin glass phase, or

the crossing between the spin glass and the quantum paramagnet giving rise to a first-order

phase transition. Moreover, both entropic and energetic effects are important. Finally we find

a reentrant condensation transition as a function of the transverse field, meaning that quantum

fluctuations favor the glassiness of the system. The properties of the model have been derived

analytically. They combine the probabilistic treatment that was introduced for the classical

model [34] together with the study of the spectrum of the non-diagonal quantum Hamiltonian.

Additional results exploit exact diagonalization of finite instances of the system. The results

presented in this Chapter have been published in [P1].
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• Chapter 4 (Part A): In this Chapter we present the study of the k-XORSAT problem with

transverse field on a c-regular random graph. The model is relevant because, contrary to the

random subcubes model, it represents a “realistic” optimization problem. The results concern

the phase diagram for k=3 and c=3, k=4 and c=3 and k=3 and c=4. The three models are

characterized by different classical phase diagrams and at T = 0 they are in the SAT or UNSAT

phase depending on the ratio c/k. The phase diagrams for the quantum problem, as a function

of the temperature and of the transverse field are obtained mainly with the quantum cavity

method and quantum Monte Carlo simulations. At low temperature they display a first-order

phase transition as a function of the transverse field between a quantum paramagnetic state

and the spin-glass phase. Moreover the classical glass transitions extend approximately up to

the first-order phase transition with the quantum paramagnet. The first-order phase transition

together with the spectral properties of the gap is also studied via exact diagonalization in

the case of degenerate and non-degenerate spectrum. Most of the results have been presented

in [35]. My contribution concerns the study of the degenerate spectrum, c = 3 and k = 4,

with a numerical exact diagonalization procedure. This, together with the complete description

outlined in the Chapter 4 will be presented in [P6].

• Chapter 6 (Part B): This Chapter presents the generalization of a classical model, the Biroli-

Mézard model [36], that is believed to capture the physics of structural glasses, to the quantum

case. The model involves a particle system on a lattice, governed by many-body repulsive

interactions where quantum fluctuations are introduced through hopping between neighboring

sites. The model can be solved on a particular class of lattices through the cavity method,

combining an analytical and a numerical treatment which is particularly suited for disordered

and frustrated systems.

The crucial difference compared to other systems showing glassy behavior and already studied

in the literature is that classically the model presents a glass transition as a function of the

density at zero temperature, where quantum fluctuations are most relevant. Associated with

this transition there is a complex organization of the massively degenerate classical ground states

which is expected to be very sensitive to quantum perturbations. One of the most interesting

results concerning the phase diagram is the emergence of a reentrant behavior of the glass

transition as a function of the quantum parameter, meaning that in some regimes quantum

fluctuations enhance the glassiness of the system, instead of competing with it. We found the

same mechanism in the random subcubes model, presented in Chapter 3, and on the basis of this

analogy we devised an explanation which has a general interpretation as an order-by-disorder

mechanism, which selects some ground state for entropic reasons. The second point of interest

is a phase coexistence between a homogeneous superfluid phase and a glass phase induced by

a first order phase transition which could be relevant for some experimental observations. The

results of this work have been published in [P2].

• Chapter 7 (Part B): This Chapter is devoted to the study of a variational bound on the

superfluid fraction in a solid proposed by Leggett [20], which is generalized to the case of an

amorphous solid. The analysis concerns on the one hand the numerical investigation of the

bound, on the other hand the simulation of the imaginary time quantum dynamics of a system

of 4He together with a comparison of the classical dynamics of a glassy system, interacting via a

Lennard-Jones potential. These estimates suggest that, at least at the level of the upper bound,

there is not much difference in terms of superfluid fraction between a glass and a crystal at the
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same density, and that possible enhancement of superfluidity due to the disorder of the crystal

samples could be attributed to non-equilibrium phenomena. The results have been published in

[P3].

• Chapter 9 (Part C): This Chapter presents the study of the out-of-equilibrium dynamics fol-

lowing a quantum quench in the transverse Ising chain. The aim of the study is to address

the issue of thermalization in closed quantum many-body systems from the perspective of the

fluctuation-dissipation relations (FDRs). FDRs provide a unique definition of the temperature

of equilibrium systems, through a relation between dynamical correlations and responses. The

same relation can be used in an out-of-equilibrium dynamics in order to define an effective tem-

perature and to study the generality of this quantity. In order to apply this idea we focused our

study to the case of critical quenches and we studied two-time correlations and responses for

several observables. These observables show different dynamical behavior, in terms of the time

decay and of oscillatory factors. The effective temperatures which derive from their study rule

out Gibbs thermalization in a strict sense in terms of a unique temperature. However it might be

that some quantities that turn out to be particularly well-behaved still have a thermodynamic

meaning. Depending on the observable the results are analytical or numerical, according to

standard methods for spin chains. Part of these results are discussed in [P4] while some recent

developments will be presented in [P7].
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Quantum optimization problems
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1

Quantum annealing and

optimization problems

The aim of this Chapter is to fix the general framework for the discussion of quantum optimization

problems and to introduce the original motivation which led to such study, i.e. the possibility to solve

the problems by the quantum adiabatic algorithm. We conclude detailing some works present in the

literature that are particularly relevant for the quantum annealing and that will be recalled in the

next Chapters. In Section 1.1 we recall properties and definitions of classical optimization problems.

We distinguish between the focus of computational complexity theory, where they have been first

introduced, from a physical point of view. In Section 1.2 we rapidly introduce quantum computation

and we focus in more detail on the quantum annealing as a general quantum algorithm to obtain

the solution of classical optimization problem. With the quantum annealing algorithm we provide

our definition of quantum optimization problems. In Section 1.3 and 1.4 we discuss some aspects,

related to the thermodynamics or spectral properties of quantum optimization problems that could

have a major effect on the performances of the quantum annealing. The works presented in Section

1.3 are inspired by the analogy between optimization problems and classical glassy systems. The work

presented in Section 1.4 is based on a comparison of the spectral properties of quantum optimization

problems with those of quantum systems in a disordered environment.

1.1 Classical optimization problems

1.1.1 Definition

A combinatorial optimization problem is usually defined by a set of N elementary degrees of freedom

{σi}i=1,...,N which take values in a discrete alphabet χ and by a cost EJ : χN → R which associates to

each configuration σ ∈ χN a cost EJ (σ). The subindex J indicates possible “quenched” randomness

present in the sign of the interactions. Very often the cost function is the sum of local constraints

that involve only a small set of variables, i.e. EJ(σ) =
∑M

a=1 ea({σi}i∈∂a, J), where ∂a indicates the

“neighborhood” of the interaction a, and ea = 0 if {σi}i∈∂a satisfies a and ea > 0 otherwise. Note

that a strictly related statement of the problem can be given in terms of logical propositions. This

leads to the identification of the constraints with logical (Boolean when |χ| = 2) clauses and the set of

all clauses (the problem) with a formula. Any optimization problem can be embedded in a statistical

mechanics problem. The idea is to rename the cost function as the energy of the system of N variables

3
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and to define the Boltzmann probability measure over the space of configurations:

pβ(σ) =
exp[−βEJ (σ)]

Z(β)
Z(β) =

∑

σ

exp[−βEJ (σ)] (1.1)

where β is the inverse temperature and Z(β) the partition function of the model. In the limit β →∞
the probability concentrates on the minima of EJ (σ). Given a cost function, the tasks that one may

want to solve are:

• Deciding if there is a configuration that satisfies all the constraints, i.e. ea = 0 ∀a = 1, . . . ,M .

If it exists the system is said to be SAT, otherwise it is UNSAT. This is the case for example of

constraint satisfaction problems (CSPs).

• Counting the number of configurations of minimal energy.

• Finding a configuration with minimal energy.

• Sampling configurations according to the probability pβ(σ), or other probability measures.

Below we list notable examples of CSPs that will be encountered in the following. For all of them

χ = {−1, 1}.
- k-XORSAT: EJ (σ) =

∑M
a=1(1 − Jaσia1 . . . σiak), and Ja are i.i.d. (quenched) random variables

taking the values ±1 with equal probability.

- k-SAT: EJ (σ) =

M∑

a=1

∏

i∈∂a

1− Ja→iσi
2

where |∂a| = k and the coupling Ja→i as before.

- 1-in-3 SAT (Exact Cover): E(σ) =
1

4

M∑

a=1

(σia1 + σia2 + σia3 + 1)2.

Given the Hamiltonian, two different approaches consist in studying a single instance of the problem,

i.e. a realization of the J ’s and of the underlying graph (the set of variables involved in each clause),

or averaging over the randomness and study its ensemble properties.

1.1.2 Running time and computational complexity

The time needed to solve the problem is a fundamental property of a CSP and crucially characterizes

its difficulty according to the computational complexity theory. Classical complexity theory was

developed in order to classify how hard a problem it is in the worst possible case. We distinguish

here between “easy” and “hard” problems, that are respectively in the P and in the NP class (see

[37] for a rigorous treatment). The former are characterized by the existence of an algorithm that

can solve them in at most polynomial time steps, i.e. t ∼ wNk, with N the size of the system and w

and k independent on the specific instance. The latter are those that can be verified in polynomial

time. It is widely believed that P 6= NP which means that some problems are intrinsically difficult

and they require exponential time to be solved. An important subset of NP is that of NP -complete

problems. It is defined by the fact that all NP problems can be mapped in a NP -complete one in

polynomial time. Thus, the solution of a single NP -complete problem (in polynomial time) would

imply the solution of all problems in NP . According to this classification, in order to understand

the efficiency of a classical or quantum algorithm we will be interested in discriminating a polynomial

with respect to an exponential running time. k-SAT (for k ≥ 3) and Exact Cover are NP-complete

problems, while k-XORSAT is in P because it is solved in polynomial time by Gaussian elimination.

However k-XORSAT remains intractable for most random search algorithms.
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1.1.3 Optimization in the typical case

Differently from classical complexity theory, from the perspective of statistical mechanics of disordered

systems it is natural to study the “average case”, considering the properties of an ensemble of instances.

Moreover, as always in physics one is interested in the thermodynamic limit of large instances where

N and M (the number of constraints) both diverge with a fixed ratio α = M/N . Natural ensembles

for the underlying graph characterizing random CSPs are:

• Random regular graphs : each constraint involves k distinct variables (as in k-SAT or k-XORSAT),

and each variable appears in exactly c different clauses. It holds the relation c = kM/N = α

and the graphs have the same uniform probability.

• Erdös-Rényi random graphs : for each of the M constraints a k-uplet of distinct variable indices

(i1a, i
2
a, . . . , i

k
a) is chosen uniformly at random among the

(
N
k

)
possible ones. To compare with

regular graphs one considers the average connectivity c = kα.

In this thesis the definition of Bethe lattice will be equivalent to that of random regular graph. This

convention is not universally established and in the literature the Bethe lattice may refer to different

mathematical objects. In the limit of zero temperature the statistical analysis is restricted to the

“ground states” of the energy and the density of constraints α works as a control parameter over the

probability of finding zero energy configurations. It is believed in fact that, in the thermodynamical

limit, random CSPs display a sharp threshold value αs (SAT/UNSAT transition) above which the

probability of finding a satisfying assignment goes from one to zero abruptly. This sharp phenomenon

is reminiscent of a phase transition to the eye of a physicist. Thoughtful studies of the properties

of the solutions of random CSPs close to the satisfiability threshold revealed in fact complex phase

diagrams in the space of configurations as a function of α which resemble that of mean field glassy

system [4, 5, 6, 38, 39]. In Chapter 2 we will explain in more detail the phase diagram, also at

finite temperature. For the moment let us argue that, in the limit of large system size, in the SAT

phase for increasing α, the structure of the set of solutions of the problem gets fragmented in a large

number N of “disconnected” components (pure states or clusters) that corresponds to the minima

of the energy landscape over the space of configurations. In addition to the lowest global minima

there exist also other local minima, with positive energy, that are as well separated from the rest of

the configurational space. At β → ∞, we say that two clusters (two minima) are separated if their

ground states are at extensive (in N) Hamming distance. In turn, this is associated to extensive energy

barriers among the pure states. Clearly, the understanding of this complex phenomenon strongly relies

on the investigation of the configurational entropy Σ = logN/N which represents the fundamental

object of study for random CSPs and in general for mean-field glassy systems.

Let us conclude with some remarks about random CSPs [40]. We hope that this may give an intuition

about different perspectives under which CSPs have been addressed.

• Rigorous results. Despite the intense research, the existence of a satisfiability threshold for the

random k-SAT problem remains a widely accepted conjecture. The major achievement in this

direction was brought by the work of Friedgut [41] that rigorously proves the existence of a

non-uniform sharp threshold. In the limit k → ∞ it was shown [42] that the upper and lower

bound for αs (that always exist) become tight. The clustering phenomenon is as well a crucial

property that lacks of a general rigorous understanding. However in the case of random XORSAT

instances [43, 44, 45, 46], as well as for k-SAT, for k sufficiently large [39, 47], its existence has

been demonstrated rigorously.
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Figure 1.1: Schematic picture of the thermal and quantum annealing processes.

• “Physics-based” algorithms. Since in the next Section we will explain the algorithm based on

thermal annealing (because of its relevance for quantum annealing) here we aim to mention other

algorithms that are used for solving SAT formulas. The walk-SAT algorithm [48] is a stochastic

process in the space of configurations characterized by small steps moving when one or a few

variables are modied. Contrarily to simulated annealing it does not respect the detailed balance

condition, namely it does not fulfill an “equilibration” protocol with respect to the assigned

Gibbs distribution. Another class is that of decimation based algorithms, as the one proposed

by Davis, Putnam, Loveland and Logemann (DPLL) [49, 50]. Given an initial formula, whose

satisability has to be decided, DPLL proceeds by assigning sequentially the value of some of the

variables. The formula can be then simplied under such a partial assignment. In this way, within

an “optimized” exponential time, the algorithm responds to the question. The last class is that

of message passing algorithms. The basic objects are messages on the directed edges of the graph

representation of the problem. These messages are iteratively updated and they finally provide

the marginal probabilities of the variables in the uniform measure over optimal congurations

(or in the Gibbs distribution over all the configurations). These marginals can be finally used

to efficiently construct a tentative solution. Belief Propagation (BP) is one of the simplest and

paradigmatic algorithm of this category. The key to the success of the physics approach in this

direction is in the development of smart algorithms for finding solutions in the “hard” clustered

region and it relies in the understanding of the rugged energy landscapes. This intuition in fact

brought, most notably, to Survey Propagation (SP) [51, 4] which is an extension of BP able

to tackle the clustering phenomenon (BP and SP will be recalled in Chapter 2, see [52] for a

detailed presentation).

• Practical importance. The study of the typical case is also interesting for practical purposes,

as for instance in error correcting codes. Low Density Parity Check codes (LDPCs) represent

the best error correcting codes and they are produced applying message-passing algorithms over

random generated formulas [53].

1.1.4 Thermal annealing

It turns out that close to the satisfiability threshold finding the solutions to the problem becomes

particularly hard and the algorithms suffer of a dramatical slowing down. Quite generally this phe-

nomenon is attributed to the presence of many minima in the energy landscape and to the organization

of the solutions in phase space. Simulated (thermal) annealing [3] is one of most famous algorithms
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designed to tackle complex energy landscapes. Despite the fact that it only partially accomplished

this task as it actually fails when too many clusters dominate the partition function (see Chapter 2 for

a more rigorous statement), it represented a true breakthrough in the domain and it is still exploited

in many applications. The prescription of simulated annealing is that of initialize the algorithm with

a random, high temperature, configuration. Then, lower the temperature, eventually down to zero,

in discrete steps according to an assigned protocol, and at each step, perform a given number of

local movements in phase space - Monte Carlo steps - in order to equilibrate at that temperature

and use the last generated configuration to initialize the search at the new temperature. Technically

this is the implementation of a time dependent Markov chain. The idea behind this algorithm is that

thermally activated processes allow to overcome the energy barriers and at the latest stages the zero

temperature limit converges towards the solution. However this is a simplified picture and the algo-

rithm often fails to find a solution. This happens when the dynamics falls out-of-equilibrium. This is

because the probability to overcome the barriers is exponentially small in the size of the system and

the pure states of the Gibbs measure trap the dynamics infinitely long. Clearly, in an arbitrarily large

time a well defined Markov chain is assured to converge to the equilibrium configuration. However

we implicitly assumed that the number of Monte Carlo steps can not grow indefinitely with the size

of the system, as an efficient algorithm should perform in a polynomial running time and this is not

enough to overcome extensively large barriers.

1.2 Quantum adiabatic computing

1.2.1 Quantum computation

As for classical computation, the aim of quantum computation is that of designing efficient methods

to solve problems. The problem may be the same, so that the input and the output could be expressed

in terms of classical degrees of freedom, i.e. {σi}i=1,...,N . However the algorithm used to solve the

problem is very different and exploits quantum mechanics. For this reason the basic degrees of freedom

lie in a Hilbert space H, which is generally spanned by the vector basis {|σ〉 : σ ∈ χN}. It is natural

to believe that the possibility to act simultaneously on the “entire” Hilbert space H, namely on linear

superposition of the vector basis, rather than on the discrete bit-strings could lead to much more

powerful algorithms. Indeed this was emphasized most notably by the factoring algorithm designed

by Peter Shor [54] and by the Grover’s algorithm [55] for searching an unsorted database. Since much

before1 in fact, the captivating idea to exploit quantum mechanics to overtake classical computations

has encouraged several theoretical and experimental groups in the search for quantum computers and

efficient quantum algorithms.

The suggestion of the Quantum Adiabatic Algorithm (QAA) [8, 7] represented a promising idea to

implement quantum computation and solve hard optimization problems, alternative to the standard

circuit based model of quantum computation. The essence of the adiabatic quantum computation

relies in the encoding of the problem in a suitable physical system. In this way, at the end of a

well-defined procedure, the ground state of the system is supposed to provide the desired solution

with arbitrarily high probability.

1The idea of a universal quantum simulator was already proposed by R. Feynmann in 1982. See [56] for more details.
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1.2.2 Quantum optimization problems

Let us introduce the quantum counterpart of optimization problems that will be necessary for dis-

cussing QAA. The quantum version can be easily defined as follow. Consider the Hilbert space

spanned by vectors {|σ〉 : σ ∈ χN} and the operator ĤP that is diagonal on this basis such that

ĤP =
∑

σ E(σ)|σ〉〈σ|. Occasionally we will refer to E(σ) as the “classical energy”. The ground states

of ĤP then encodes the “satisfying assignments”, i.e. the solutions of the problem. In order to exploit

quantum fluctuations one has to introduce a second operator ĤQ acting on the same Hilbert space

and non-commuting with ĤP . For the purposes of quantum adiabatic computing ĤQ has to be simple

enough that its ground state is easy to find. Usually ĤQ is taken to be the sum of operators acting

on the i-th variable only.

We will consider {σi} to be Ising spins, i.e. χ = {−1, 1} , and their quantum counterpart, often called

qubits, are the eigenstates |σi〉 of the z-component of Pauli matrices σ̂zi . For concreteness and unless

otherwise specified we will take ĤQ =
∑

i σ̂
x
i , even if different possibilities can be studied. Then the

total Hamiltonian is given by

Ĥ(Γ) = ĤP + ΓĤQ , (1.2)

where Γ is a parameter which tunes the strength of quantum fluctuations. We note that the Hamil-

tonian Ĥ(s) = sĤP + (1− s)ĤQ is just a rescaling of (1.2) with Γ = (1− s)/s. This is the convention

used more often in the literature of QAA and we will also use it contextually.

1.2.3 Quantum adiabatic algorithm

The quantum adiabatic algorithm is specified by the state of the system which is prepared in the

ground state of ĤQ and it is then let evolve through the Shrödinger equation according to a time

dependent Hamiltonian of the form of (1.2):

Ĥ(t) = s(t)ĤP + (1− s(t))ĤQ . (1.3)

In (1.3) s(t) is an interpolating function such that s(0) = 0 and s(T ) = 1, T being the total time of

the annealing, and it is usually taken linear i.e. s(t) = t/T . We will denote |ψ(t)〉 the state of the

system at time t and |GS(t)〉 the ground state of the Hamiltonian at time t.

The algorithm relies on the adiabatic theorem [57] which ensures that for a sufficiently slow annealing,

i.e. when T → ∞, the system remains in the instantaneous ground state of Ĥ(t), i.e. |ψ(t)〉 =

|GS(t)〉 ∀t. At the end of the annealing then, the state of the system will encode the solution of the

problem |GS(T )〉. Of course one is not interested in an infinitely slow algorithm and instead aims to

control how the total time of the annealing T has to scale with the size of the system in order to have

a reliable outcome. A criterium for this requirement can be found by a closer look at the adiabatic

theorem. Let us define ∆min = mins=t/T∈[0,1](E1(s) − E0(s)) the minimum gap of the interpolating

Hamiltonian that governs the annealing. Then the condition

T ≫ O(∆−2
min) , (1.4)

ensures that the probability of finding the system in the ground state of Ĥ(T ) = ĤP , i.e. |〈GS(T ) |ψ(T )〉 |2,
can be made arbitrarily close to 1. Thus, the time of the protocol is governed by the minimum gap

and by its scaling with N .

A useful simplification is that of considering a two level system, made by the ground state and the first

excited state in correspondence of an avoided level crossing. In absence of special symmetries in Ĥ(t)

and when the size of the system is finite (even if very large), true level crossings are not expected since
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e1(t)
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Figure 1.2: Schematic representation of the eigenvalues of (1.5) as a function of time t. Note the

avoided level crossing in correspondence of the minimum spectral gap.

even tiny off-diagonal elements prevent them from intersecting. The following “reduced” Hamiltonian

describes two levels that at a certain moment t∗ during the evolution get extremely close:

Ĥred(t) =

(
ǫ(t− t∗) γ

γ −ǫ(t− t∗)

)
. (1.5)

Then the instantaneous gap is ∆(t) = 2
√
γ2 + ǫ2(t− t∗)2, and also when the two diagonal (“un-

perturbed”) elements are equal, in t = t∗, no matter how small γ the states will never cross and

∆min = 2γ. From this simple problem one can also heuristically understand (1.4). In fact from the

Landau-Zener formula [58] one can exactly compute the probability of a diabatic transition to an ex-

cited state in a two-level system described by a Hamiltonian of the form (1.5). This is P = e−2πγ2/(~ǫ),

and since ǫ ∝ 1
T is the rate with which the two levels approach, it means that for an adiabatic process

T ≫ γ−2 ≃ ∆−2
min.

It is clear then that the bottleneck of QAA will be represented by phase transitions or avoided level

crossings, where the gap is expected to close approaching the thermodynamical limit. On the basis of

complexity theory we are then particularly interested in discriminating between Hamiltonians whose

minimum gap vanishes polynomially and those for which ∆min is expected to be exponentially small

in N .

Initially the proposal of QAA appeared quite promising since the analytical study of simple Hamil-

tonians [8] and numerical results for more difficult Hamiltonians for small system sizes suggested a

minimum gap that closes polynomially in N . However later works revealed that exponentially small

gaps are expected in the annealing of quantum optimization problems, either due to first order phase

transitions [59, 35, 60, 61] or to avoided level crossing in the “glassy phase” [62, 63]. Interestingly

enough this was associated to a kind of Anderson localization phenomenon in phase space [62]. All

these studies raised severe questions about the performances of the QAA and in the rest of the Chapter

we will review some of these results. In response to these criticisms some works [64, 65, 66] focused

on the possibility of finding safe paths in the adiabatic annealing, that avoid the intersection with

exponentially small gaps. However it might be quite difficult to sample efficiently those paths. It is in

fact very likely that such paths that are constructed randomly, will correspond to rare large deviations

from the average behavior.

An important observation is that most of the works up to now focused on the efficiency of the algorithm

in solving the problems. The performances of QAA in finding approximated solutions remain instead

widely unexplored [67, 68]. Already in [69], it was shown some evidence that QAA could outperform

classical simulated annealing within the same exponential scaling of the running time. Moreover its

inherent robustness against external noise makes it very interesting from the point of view of the
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experimental realizations of quantum computation.

Before entering in the discussion of the problematics related to the efficiency of QAA let us note that

we assumed that Ĥ interpolates linearly in time between ĤQ and ĤP . One can instead consider

smarter algorithms that interpolate at variable rate, going slower in proximity of an avoided level

crossing and speeding up away from that [70, 71]. It was shown that this can improve the efficiency

of the algorithm but it can not change an exponential scaling into a polynomial one.

1.3 First-order phase transitions

From the discussion of the previous Section it is clear that quantum phase transitions represent

a serious obstacle for the efficiency of QAA. In this respect second-order phase transitions seem

less dangerous since they are often accompanied with a gap that closes polynomially with N [72].

However this is not a general rule and most notably the presence of disorder can modify this scaling

[73]. Instead, in the case of first-order phase transitions several analytical and numerical results

support the evidence of exponentially small gaps at the critical point [11, 59, 35, 60, 61]. We note

that the presence of first-order phase transitions was found also in fully connected quantum glassy

systems through techniques that combine replica and Suzuki-Trotter methods [12, 13, 74]. The classical

thermodynamics of fully connected glassy systems, as well as of diluted optimization problems, is well

described by the so-called “Random First Order Transition” (RFOT) theory (see Chapter 2 for a

discussion on diluted optimization models and Chapter 5 for more details on RFOT in the context of

glassy systems). Then, one can expect that first-order phase transitions are quite universal phenomena

for systems belonging to this classical universality class, when transverse field-like terms are added to

the quantum Hamiltonian.

Contrarily to simulated annealing where the search is more influenced by the height of the energy

barriers, heuristically one expects QAA to perform the best in presence of barriers that regardless of

their height are not too wide (see Fig. 1.1). However this is not the case of discontinuous transitions,

where the two competing low energy states are far away in phase space.

The authors of [11, 59] considered the quantum version of the Random Energy Model (REM), described

by the Hamiltonian

Ĥ(Γ) =
∑

σ

E({σ})|σ〉〈σ| − Γ
∑

i

σ̂xi (1.6)

where E({σ}) are independent random variables extracted from a Gaussian probability density with

zero average and variance N/2. Despite its simplicity the REM is known to capture several aspects

of the physics of mean-field glassy systems [75]. In fact it is the limit of a class of fully-connected

systems with quenched disorder and p-spin interactions, ĤP =
∑

i1<···<ip
Ji1...ip σ̂i1 . . . σ̂ip , when p

goes to infinity, representing the paradigm of the glass transition in RFOT. We summarize here some

of the results on this model [59] that will be useful to understand more complicated situations and

will be recalled in Chapter 3.

• Extreme cases

Let us first discuss the two limiting cases of the annealing, (i) Γ = 0 and (ii) Γ = ∞ . (i)

When Γ = 0 the model has a phase transition as a function of the temperature [75]. Call N (E)

the average number of energy levels in the interval [E,E + dE]. Then N (E) = 2NP (E) =

2Ne−E
2/N = eN(log 2−(E/N)2) = eNsa(E/N) with sa(e) = log 2 − e2 the “annealed” entropy den-

sity. Therefore there is a critical value e∗ = ±√log 2 such that for |e| < |e∗| the density of levels
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is exponentially large and its fluctuations are very small, so the “quenched” entropy coincides

with the annealed value s(e) = sa(e). Instead if |e| > |e∗|, sa(e) < 0 and the typical density

of states is exponentially small. There are no configurations at energy Ne and the quenched

entropy is s(e) = 0. The thermodynamic transition between the two regimes happens at the

critical temperature T−1
c = ds(e)

de |e=e∗ = 2 log 2 and it is interpreted as a glass transition. In the

high temperature phase T > Tc the free energy density is f(T ) = − 1
4T − T log 2 and an expo-

nential number of states contribute to the partition function. For T < Tc the thermodynamical

potentials are constant f(T ) = −√log 2 and e(T ) = −e∗, and only a finite (not exponential)

number of states dominate the partition function, s(T ) = 0. This phenomenon is often referred

as the condensation of the Gibbs measure on rare configurations.

(ii) When Γ = ∞ the system is made of N independent spins in a transverse field. So the

free energy is f(T ) = −T log 2 − T log(cosh(Γ/T )) and the entropy density s(e) is the log of a

binomial distribution in [−Γ,Γ].

• Perturbation theory

In order to connect the two extreme cases one can apply perturbation theory. Starting from ĤP

and considering perturbation in Γ through ĤQ on extensive low-energy states, one finds for the

energy density ePi (Γ) of the i-th level:

ePi (Γ) = ePi +
Γ2

NePi
+O

( 1

N2

)
, (1.7)

where ePi is the intensive energy of the unperturbed REM. In the opposite limit, calling eQi the

unperturbed (intensive) energy of the i-th low-energy state of ĤQ, the perturbative expansion

which starts from large values of Γ reads:

eQi (Γ) = eQi −
1

2NΓ
+O

( 1

N2

)
. (1.8)

The result is that nothing happens at the leading order in N to the spectrum of the two phases,

and energy, entropy and free energy density are not modified. The partition function then

can be written Z(Γ, β) = min[Tre−βĤP ,Tre−βĤQ ]. This leads to a first-order phase transition

separating the regimes where fP (T,Γ) ≶ fQ(T,Γ). The derivation of this transition can be also

obtained using the replica method [11]. The spectrum and the phase diagram of the model in

the plane (Γ, T ) are shown in Fig. 1.3.

• Gap

A good approximation of the minimum gap is given considering a two level problem similarly

to (1.5) where the space is that spanned by the ground states of ĤP and ĤQ, respectively∣∣EP0
〉

and
∣∣∣EQ0

〉
. The diagonal matrix elements are the (un)-perturbed energies (1.7-1.8). The

off-diagonal elements are proportional to the overlap Γ〈EP0
∣∣∣EQ0

〉
= Γ2−N/2. This implies that

∆min ∝ 2−N/2 and the accuracy of this scaling is shown in the inset of Fig. 1.3. In [59] they

also presented a more sophisticated “instantonic” calculation [9], applicable to fully-connected

models, that allows to get accurate predictions for ∆min.

The phase diagram of the quantum REM shares strong analogies with the results obtained in other

quantum glassy models [12, 13, 74, 35], consistently with the fact that the REM is a good approx-

imation for more complex systems. In all these problems the classical glass transition occurs as a
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Figure 1.3: Left panel : Spectrum of the REM in a transverse field Γ as a function of Γ. Red dots

represent the results from exact diagonalization of a system withN = 20, dotted lines are the analytical

values. The inset shows the scaling of the minimal gap as a function of the size N . Right panel : Phase

diagram as a function of temperature and transverse field. Figures taken from [59].

function of the temperature. At T = 0 the system is in the glass phase and the classical ground state

is not (extensively) degenerate. Whereas in many other optimization problems, like k-SAT, the glass

transition arises at T = 0 as a function of another parameter that generally controls the density of

constraints. In these cases there is a zero temperature non-vanishing entropy and the transition is an

entropic phenomenon. In Chapter 3 we will generalize the results obtained for the REM in order to

take into account entropic contributions and in Chapter 4 we will compare the result of REM with

that of k-XORSAT on a random regular graph, i.e. a “realistic” optimization problem.

Finally we mention that a related phenomenology has been found in the study of Exact Cover with

a transverse field. The problem has been addressed by different groups [8, 61, 62] already from the

earliest works. Initially, in the original work by Farhi et al. [8], based on numerical studies of small

system sizes, it was suggested that QAA could find satisfying assignments with finite probability in

polynomial time. However later, it was shown by Young et al. [61], performing Quantum Monte Carlo

in the case where ĤP has unique satisfying assignment (USA), that an increasing (with N) number

of instances of ĤP displays discontinuous transitions and an exponentially small gap.

1.4 Small gaps and Anderson localization

In their work, Altshuler et al. [62] raised other objections to the efficiency of QAA, pointing out

that the breakdown of the algorithm may be induced by the appearance of avoided level crossings in

the spectrum during the adiabatic evolution. The statement was strongly appealing for the physi-

cists community since they claimed that the phenomenon is related to a manifestation of Anderson

localization on the N -dimensional “hypercube”. We note that the avoided level crossings that are

discussed here do not necessarily induce singularities in the thermodynamical quantities, especially at

finite temperature, such as first order phase transitions. In the literature they have been also referred

to as “perturbative crossings” [66, 76].

In [62] the Exact Cover problem in a transverse field was considered. Their analysis started by taking
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two configurations σ1 and σ2 that are solutions of M − 1 clauses. These configurations represent

degenerate eigenvectors for Γ = 0. However, as soon as Γ > 0 the two ground state energies must

split. Let us call |E1(Γ)〉 and |E2(Γ)〉 the two eigenvectors and E1(Γ) and E2(Γ) the corresponding

energies. Suppose that there exist a Γ∗ such that E2(Γ
∗)−E1(Γ

∗) > 4. If one adds an M -th clause, it

still holds that E2(Γ
∗) > E1(Γ

∗), because a clause introduces at most a penalty ∆Emax = 4. However

there is a finite probability that the clause will be satisfied by σ2 but not by σ1, so that E1(0) > E2(0).

Since in the Hamiltonian there are no particular symmetries, E1(Γ) and E2(Γ) do not cross and the

introduction of the additional clause induces an avoided level crossing. The absence of level crossings

in presence of non-vanishing off-diagonal matrix elements descends from the Wigner-von Neumann

non-crossing rule and in the literature of Anderson localization it is sometimes referred to as level

repulsion. The non-crossing rule emerges also from the analysis of the eigenvalues of (1.5). The

Hamiltonian (1.5) is the prototype of two levels that, as a function of t, come close at t = t∗ but that

can never touch as soon as γ 6= 0. The analogy with Anderson localization is more transparent if one

thinks to ĤQ =
∑

i σ̂
x
i as to the hopping of a particle on a N -dimensional hypercube so that the total

Hamiltonian reads:

Ĥ =
∑

σ

E(σ)|σ〉〈σ| − Γ
∑

σ,σ′:d(σ,σ′)=1

|σ′〉 〈σ| , (1.9)

where d(σ, σ′) represents the Hamming distance of two classical configurations, so that σ and σ′ differ

for one spin only in ĤQ. Then ĤP provides the disordered environment that induces localization

on one of the vertices. In his seminal paper [30] Anderson considered a particle moving on a Ld

lattice, where d is the space dimension and L the length of the lattice, subject to a random disordered

potential. This is a good starting point for the comprehension of transport properties in metals and

the metal-insulator transition. In this setting then, the Anderson model describes an electron hopping

in a disordered environment and the Hamiltonian reads

ĤAM = −t
∑

〈i,j〉

ĉ†i ĉj + ĉ†j ĉi +

N∑

i=1

ǫiĉ
†
i ĉi , (1.10)

where the first sum runs over the edges of the lattice, the second sum runs over all N sites, ĉi is the

fermionic creation operator and ǫi are i.i.d. variables, taken from a given distribution. Neglecting

the statistics of the particle, which is however not crucial for the discussion, and comparing the

Hamiltonians (1.9) and (1.10) one can interpret (1.9) as an Anderson model for a particle that hops

in a 2N space, instead of the conventional Ld. Moreover since close to the satisfiability threshold,

the diagonal energy is supposed to be very rugged on the hypercube this may induce localization-like

phenomena. However, contrary to (1.10) where the onsite potential is the realization of i.i.d. random

variables, in (1.9) it is generated by the interaction of the spins and thus it is correlated from site to site.

The estimation of the gap follows from the computation of the effective off-diagonal element of (1.5).

In [62] it was argued that since close to the satisfiability threshold classical solutions are separated by

an extensive (in N) Hamming distance in phase space, a perturbative calculation via (1.9) will connect

them just at order ∼ ΓN in perturbation theory, creating an exponentially small gap. The perturbative

calculation starts with the classical Hamiltonian ĤP , in which all the eigenstates are localized at the

vertices of the hypercube and then with Γ creates exponentially small tunneling probability. This

was put in relation with the exponential suppression in real space of the localized wave function of

a particle hopping in disordered environment [30]. In [62] it was argued that the occurrence of the

avoided level crossing Γc should tend to the end of the annealing as Γc = O(N−1/8). Such scaling was

never found in the numerical experiments, but it was attributed to the small exponent, visible only

for large N .
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The work of Altshuler at el. [62] takes in consideration only two solutions of the problem, while even

close to the satisfiability threshold the number of solutions is exponentially large, and so we expect

that the detailed spectrum should be much more complex. However the phenomenon presented in [62]

appears to us a very reasonable prediction of what could happen representing a serious bottleneck for

QAA.

In Chapter 2 we will study the appearance of avoided level crossings due to entropic reasons through

a simple model which takes into account the degeneracy of solutions.



2

Glassy systems and the cavity

method

In this Chapter we present a detailed picture of the phase diagram of classical random CSPs in terms

of the solutions of the cavity method equations. This discussion allows us to explain some concepts

introduced in the previous Chapter that are fundamental for the understanding of the properties

of random CSPs and more general mean-field glassy systems. Moreover at the same time we will

introduce some relevant ideas behind the cavity method at the classical level, and then, we will

extend them to the study of quantum models. This turns out to be important for the discussions

in Chapter 4 and 6 that strongly rely on the results of the cavity method. Section 2.1 is devoted to

the study of the self-consistent equations of the classical cavity method as well as to their numerical

resolution. Section 2.2 presents the method for quantum Ising spins and outlines the strategy for the

numerical solution.

2.1 Phase diagram of CSPs and the (classical) cavity method

In the following we review the main ideas of the cavity method in an informal way, giving reference

to the original papers for a more comprehensive discussion. Our aim is to use the cavity method to

describe the different phases that contradistinguish the phase diagram of glassy systems. The cavity

method is a powerful technique to access properties of frustrated systems on tree-like graphs in the

thermodynamic limit. It is very general since it applies to problems described by local Hamiltonians,

whose Gibbs measure reads

pβ(σ) =
exp[−βEJ(σ)]

Z(β)
Z(β) =

∑

σ

exp[−βEJ (σ)] =
∑

σ

M∏

a=1

e−βea(σ∂a)
N∏

i=1

e−βhiσi . (2.1)

It allows to compute marginal probabilities or the free energy density:

ηi(σi) =
∑

σ\σi

pβ(σ) f(β) = − 1

Nβ
logZ(β), (2.2)

as well as other thermodynamic quantities, providing the exact solution when the underlying graph

is tree-like and otherwise it corresponds to a sophisticated mean field approximation of the problem

(2.1). In Eq. (2.1) we indicated with i the “spin variables” of the graph, the degrees of freedom

15
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Figure 2.1: Schematic phase diagram for a generic CSP in the plane (α, T ). αd(T ) and αc(T ) rep-

resent respectively the dynamical and the condensation transition. αs(T = 0) corresponds to the

SAT/UNSAT transition.

σ, and with a the “interactions variables” defined by the Hamiltonian (this notation is necessary in

case of (p > 2)-body interactions). We also indicated with ∂a the “neighborhood” of a, i.e. the spin

variables involved in the constraint a. In Eq. (2.2) and in the following we also use the symbol σ\σi
to consider the sum over all the variables in the l.h.s. of \ but those in the r.h.s.. The method in its

Replica Symmetric (RS) formulation is equivalent to the Bethe-Peierls approximation and this will be

our starting point. The Replica Symmetry Breaking (RSB) approach is necessary to study the glass

phase. Within this scheme one has access to the configurational entropy (or complexity) Σ, that, as

argued in Section 1.1.3, is a fundamental quantity characterizing the structure of the phase space of

the problem. The dynamical and the condensation transitions, as reported in Fig. 2.1 with αd and

αc, are defined in terms of the complexity and they are universal features shared by most of random

CSPs (those described by a 1-step RSB solution of the cavity equation). We will explain the nature

of these transitions in terms of the properties of the solution of the RSB equations. For a thorough

treatment of the properties of CSPs and of the cavity method we refer to [52].

2.1.1 Replica symmetric ansatz

Take for simplicity a model of Ising spins with pairwise interactions EJ(σ) = −∑〈ij〉 Jijσiσj on a

generic given graph. Imagine to remove from the graph the i-th spin and all the c links connected

to it. This process will create c “cavity” variables {σj}j∈∂i and let η(i)({σj}j∈∂i) denote their joint

marginal probability when i is absent. The Bethe Peierls approximation consists in the factorization

of this probability:

η(i)({σj}j∈∂i) =
∏

j∈∂i

ηj→i(σj) ≡
∏

j∈∂i

eβhj→iσj

2 cosh(βhj→i)
. (2.3)

In Eq. (2.3) we introduced hj→i to parametrize the cavity probabilities (or messages) as Boltzmann

weight of independent spins subject to a cavity field hj→i. Clearly within this approximation the

marginal probability ηi(σi) of the spin i-th in the whole graph is

ηi(σi) =
1

zi

∑

{σj}j∈∂i

∏

j∈∂i

eβ[hj→iσj+Jijσiσj ] ≡ eβh
i
effσi

2 cosh(βhieff)
, (2.4)
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Figure 2.2: A schematic representation of a cavity iteration.

where zi is a normalization constant and

hieff =
∑

j∈∂i

artanh
[

tanh[βJij ] tanh[βhj→i]
]
/β . (2.5)

Then, while ηi(σi), or hieff , encode physical quantities the fundamental objects of to be computed are

the cavity fields ηj→i(σj) or hj→i. Note that the validity of Eq. (2.3) takes to a great simplification

because it allows to encode a probability over 2c configurations in only c numbers. Most importantly

it ensures a way to efficiently compute them by iteration. In fact the merging of c − 1 cavities with

the addition of the missing links will create a new cavity variable σi whose cavity field satisfies:

ηi→k(σi) =
1

zi→k

∑

{σj}j∈∂i\k

∏

j∈∂i\k

eβ[hj→iσj+Jijσiσj ] ≡ eβhi→kσi

2 cosh(βhi→k)
≡ η̄({ηj→i}j∈∂i\k) , (2.6)

where ∂i\k denotes the neighborhood of i but k and 〈ik〉 is the c-th missing edge. Introducing a set of

messages {ηj→i} for each oriented edge {j → i} and the corresponding set of self-consistent equations

like (2.6), the equations are iterated to converge (hopefully) to their fixed point. These are the basic

ingredients of the Belief Propagation (BP) algorithm [77].

Knowing {ηj→i} one can recover the free-energy density of the problem f(β) from the so-called Bethe

free energy:

f(β) = fRS({ηj→i}) (2.7)

which is a well known function of the messages. Similarly one can also compute the free energy

shift which is induced by the addition of a cavity site, i.e. using the notation of Eq. (2.6) fi→k =

− log[zi→k]/β = f̄({ηj→i}j∈∂i\k).
However for arbitrary graphs a fixed point of Eq. (2.6) not necessarily exists or correctly represents

the true marginals and this is related to the validity of the Bethe Peierls approximation, Eq. (2.3).

On tree graphs Eq. (2.3) is clearly satisfied because removing an edge breaks the system into two

disconnected components. Random regular graphs are also tree-like objects because they have long

loops of typical length O(logN) which ensures that if correlations decay fast enough locally one is

not able to distinguish the graph from a tree and Eq. (2.3) is correct. Moreover on the one hand

random graphs circumvent the problematic treatment of the boundary in trees which is extensive in

the number of variables. On the other hand their loops frustrate the system and forbid the formation

of periodic patterns (think to antiferromagnetic solutions).
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The cavity method [78] in its Replica Symmetric (RS) formulation consists in focusing on the fixed

point of Eq. (2.6) in the thermodynamic limit of a random tree-like graph (actually over an ensemble

of graphs). The thermodynamic limit allows to loose the precise reference to an edge and if the local

environment of each spin is the same (same connectivity and same couplings J = Jij) one gets a

unique self-consistent equation with the substitution in the l.h.s. and r.h.s of Eq. (2.6) of all the

messages with the same η = ηRS which is equivalent to:

h =
c− 1

β
artanh

[
tanh[βJ ] tanh[βh]

]
. (2.8)

Once that h has been determined heff can be computed from Eq. (2.5) with the same simplification.

From the linearization of Eq. (2.8) it follows that the critical temperature for the ferromagnetic

transition is determined by (c − 1) tanh(βcJ) = 1. Note that for c = 2 (Ising chain) it correctly

predicts βc =∞. This should convince that despite that Eq. (2.3) is a mean-field assumption, already

at the RS level the method is more refined than a naive mean-field approach that assumes the variables

around σi uncorrelated also in presence of σi.

There are cases however in which one has to allow η to fluctuate from site to site and wants to compute

its probability distribution. In this case one has to distinguish between two kinds of fluctuations. On

the one hand fluctuations may be induced by an external disordered environment that do not create

competition among the variables, as the fluctuating connectivity of an Erdös-Rényi graph or an on-site

random potential as hi in Eq. (2.1). On the other hand the presence of competing interactions (which

may also be attributed to quenched disorder in the Hamiltonian) may lead to the growth of a local

amorphous order induced by frustration. While in the former case Eq. (2.3) holds and one can resort

to a more complicated formulation of the RS equation (2.8), the latter needs a new “paradigm”. This

is indeed the object of the 1-RSB cavity method.

2.1.2 Replica symmetry breaking

As we mentioned loops can frustrate the system and it may be that the Bethe Peierls approximation

does not hold also on tree-like graphs. One can recognize the breakdown of the assumption in Eq. (2.3)

by finding unphysical RS solutions (for instance leading to negative entropies) or by inspecting their

stability. This is caused by long-range correlations that signal a transition to a highly correlated

(glassy) region. It is indeed what happens in CSPs with many constraints. The glass phase is

signaled by the appearance of multiple solutions of the Belief Propagation equations, Eq. (2.6), and

for large systems size they are interpreted as pure states of the Gibbs measure. Inside the pure states

correlations decay and thus their probability measure satisfies Eq. (2.3). This means that each pure

state α is associated to a (non-homogeneous) solution {ηαj→i} of the RS equations (2.6) and that its

free-energy is given by the Bethe free energy (2.7) fα = fRS({ηαj→i}) . The cavity method at the one-

step Replica Symmetry Breaking (1RSB) level corresponds then, to a statistical treatment of these

pure states.

The 1RSB approach assumes that the number of these states with free energy density f is exponential

in N , N (f) ∼ eNΣ(f), where Σ(f) is the complexity (see discussion in Section 1.1.3). On the tree

a pure state can be identified by a particular choice of the boundary conditions, exactly as in the

standard (ferromagnetic) phase transitions determined by a spontaneous symmetry-breaking. If we

associate to each pure state α a probability measure pαβ(σ), this implies the decomposition of the

Gibbs measure:

pβ(σ) =
1

Z(β)

∑

α

e−βNfα pαβ (σ) , (2.9)
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which can be interpreted as a Gibbs distribution over the states. Under these assumptions we consider

the partition function of the form:

Z(m;β) =
∑

α

e−βNmfα ≃
∫ fmax

fmin

dfeN(Σ(f)−βmf) ≃ e−Nβminf∈[fmin,fmax](mf−
1
β

Σ(f)) = e−Nβmφ(m;β) ,

(2.10)

where the sum is over all the pure states, and the interval [fmin, fmax] corresponds to the domain

where Σ(f) ≥ 0. We call f∗ the value where the saddle point is taken. In Eq. (2.10) we introduced

the parameter m, which is known in the literature as the Parisi parameter and plays the role of a

Lagrange parameter conjugated to f (as an effective temperature). The “replicated free energy” φ(m)

and Σ are Legendre transforms one of the other [79],

mφ(m) = min
f∈[fmin,fmax]

{mf − TΣ(f)} , (2.11)

and from the properties of the Legendre transform one has

∂fΣ(f) = mβ , Σ = β m2∂mφ(m) , f = ∂m[mφ(m)] . (2.12)

The usual partition function, which appears in Eq. (2.9), is recovered from Eq. (2.10) by setting

m = 1. However it can happen that for m = 1, Σ(f∗) < 0, which makes no sense. Then, one has

to look at Σ(m), as a function of m, and find the value m∗ such that Σ(m∗) = 0. In these cases

the dominant contribution to the partition function corresponds to the pure states with free-energy

f = fmin. The study in terms of m, then, amounts to put a physical bound to the possible values

of f∗ in the saddle point in order to ensure Σ(f∗) ≥ 0. Negative values of Σ are interpreted as the

occurrence of exponentially rare states (a mechanism similar to the REM in Section 1.3), and the

parameter m allows a correct sampling.

The computation of φ(m) is performed through a statistical study of the solutions of (2.6) among the

various pure states. The scope is to determine the probability distribution Pj→i(ηj→i) of the local

cavity marginals ηj→i given the probability of the states (2.9). This is done in the 1-RSB approach by

writing self-consistent equations for Pj→i similarly to what has done before for ηj→i. The cavity fields

{ηαj→i} take the place of the c− 1 cavity variables and the states α correspond to the configurations.

One can think to Pj→i as probabilities (messages) that live on the oriented edges of a finite graph.

These probabilities are the basic objects of the celebrated Survey Propagation (SP) [51, 4] which

generalizes BP to tackle with the phenomenon of proliferation of clusters of solutions.

With the 1RSB cavity method one access the properties of an infinite tree-like graph. Thus the explicit

spatial references are dropped and one gets a self-consistent equation for the probability distribution

P(η) which describes the bulk of the “tree”. Assuming that P does not fluctuate (this is the analogue

of taking a single h in Eq. (2.8)) the equation takes the form

P(η) =
1

Z

∫ c−1∏

i=1

dηiP(ηi) δ
(
η − η̄({ηi}i=1,...,c−1)

)
zmiter({ηi}i=1,...,c−1) , (2.13)

with ziter = e−βf̄(η1,...,ηc−1) and f̄(η1, . . . , ηc−1) defined shortly after Eq. (2.7). In terms of the solution

of this equation, the free energy φ(m) can be computed according to the formula:

φ = ∆φsite −
c

2
∆φlink (2.14)
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with

∆φsite = − 1

βm
ln

∫ c∏

i=1

dηiP(ηi) z
m
site(η1, ..., ηc) (2.15)

∆φlink = − 1

βm
ln

∫
dη1dη2 P(η1)P(η2) z

m
link(η1, η2) , (2.16)

where zsite and zlink are well-defined function of the cavity fields.

Let us sketch the possible solutions of Eq. (2.13) defining the phase diagram in Fig. 2.1.

• The RS solution: P(η) = δ(η − ηRS). Plugging these quantities in Eq. (2.13) clearly returns

the simpler RS equation for ηRS . This solution holds for T (α) > Td(α) and implies that in

Eq. (2.9) the sum is made by a single pure state with free energy f(β) = fRS(ηRS). All sites are

statistically equivalent because the Gibbs distribution coincides with a unique measure defined

over a homogeneous connected component in configuration space.

• The d-1RSB solution: P(η) is not trivial and Σ(f∗) > 0 with m = 1. Then, exponentially many

states dominate the partition function. This corresponds to the intermediate phase, Td(α) >

T (α) > Tc(α) and Td(α) signals the point where the solution suddenly appears for the first

time with a jump of Σ(f∗) from zero to a finite value. In this region Σ(f∗) manifests its

thermodynamical significance as it accounts for the entropic contribution from the exponentially

degenerate pure states. It turns out that the average value 〈η〉 over the probability P(η) satisfies

the RS equation. In fact, despite the jump of Σ(f∗) at Td(α), the (free) energy as well as other

thermodynamical quantities are analytical at this point. Td(α) is instead referred as a dynamical

transition because it corresponds to the point where a local algorithm which performs a stochastic

dynamical search (as thermal annealing) fails to the reach the equilibrium value [80]. In fact the

existence of many pure states separated by extensive barriers makes the probability of departure

from metastable local minima exponentially small in N .

• The c-1RSB solution: P(η) is not trivial and Σ(f∗) = 0 with m < 1. It coincides with the

region T (α) < Tc(α) and Tc(α) is the point where Σ(f∗) vanishes for the first time with a non

trivial solution at m = 1. The complexity vanishes continuously at the transition and it remains

zero afterwards with an appropriate tuning of m, i.e. Σ(m∗) = 0. The measure condensates

in a sub-exponential number of states and along Ts(α) the free energy has a discontinuity of

the second order. Tc(α) marks a thermodynamic transition. As we will discuss in Chapter 5 it

is the analogue of a glass transition for mean-field glassy systems. Note that (m∗β)−1 can be

interpreted as an effective temperature (see Chapter 8) for the glass phase.

• The T = 0 solution: The limit of zero temperature can be taken explicitly in the equations and

it is particularly important for the CSPs [81, 6]. It allows in fact the investigation of the SAT

phase at zero temperature in terms of the entropy s of the pure states. αd and αc have the same

interpretation as for finite T . αs represents the SAT/UNSAT transition, which occurs at T = 0

only and it is recovered in the limit m = 0. αs corresponds to the point where the probability

of finding a solution drops from one to zero.

In Section 3.2 we will see the emergence of this phase diagram in the simple case of a toy model.

Remarkably the simplicity of its Hamiltonian allows to get an intuition of these transitions without

resorting to the cavity method.
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2.1.3 Population dynamics

We present here the idea for the numerical resolution of Eq. (2.13). This will turn out to be particularly

useful for discussing the quantum case. Let us note that h, the field that parametrizes η, is a real

number and a self-consitent equation for the distribution P(η), as (2.13), is not easy to solve. However

a numerical method that goes under the name Population Dynamics proved to be very successful in

this task. It is based on the representation of the probability distribution P(η) as a weighted sample.

Starting with an initial representation (population) of P(η) in the form:

P(η) =

Nη∑

i=1

wi δ(η − ηi) such that

Nη∑

i=1

wi = 1 , (2.17)

it amounts to the generation of a sampled representation of the l.h.s. of Eq. (2.13), assuming the

knowledge of the r.h.s. In this scheme Eq. (2.13) amounts to repeat Nη times the following steps:

1. sample c− 1 elements {ηi1 , . . . , ηic−1} from P(η), independently with the probabilities wi;

2. compute a new field η = η̄(ηi1 , . . . , ηic−1 );

3. add to the new population the element η with weight ∝ e−βmf̄(ηi1 ,...,ηic−1 ).

after which a new representation is available and it is substituted to the older one. The fixed point

of Eq. (2.13) is found by iterating this procedure many times. Once convergence is reached all

thermodynamic observables can be computed by sampling from the distribution.

The numerical accuracy of the population dynamics obviously depends on the number Nη of repre-

sentatives of the distribution P(η). However, a large value of Nη is not sufficient to ensure a good

precision of this discretized representation: if only a few weights wi dominate the sum in (2.17) the

effective size of the population is the number of such dominant elements. To be more quantitative

one can define the inverse participation ratio:

IPR =
1

Nη




Nη∑

i=1

w2
i




−1

, (2.18)

where wi are the normalized weights of the sampled population defined in (2.17). Its value is easily

evaluated in the two limits of a perfectly balanced population and of a single dominant weight:

IPR =

{
O(1) if wi ∼ O(1/Nη)
O(1/Nη) if wi ∼ δi,i∗

, (2.19)

and one can define an effective population size as Neff = Nη × IPR. The inverse population ratio

should thus be maintained as close as possible to one to achieve a good numerical precision.

2.2 Quantum cavity method

In the following we present the quantum cavity treatment of the ferromagnetic model:

Ĥ(Γ) = −
∑

〈ij〉

σ̂zi σ̂
z
j − Γ

∑

i

σ̂xi , (2.20)

where 〈ij〉 are the edges of a tree-like graph. The object of the study, as before, is the computation

of the partition function Z(β,Γ) = Tre−βĤ(Γ). We will present the method in the RS version which
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0
t(1) t(2) t(p) β

h(1)

t
λ(0) λ(1) λ(p)

h(t)

h(0) h(p)

Figure 2.3: A cavity field h(t) =
∑k
i=1 σi(t). The {t(j)} indicate the discontinuities at which jumps

have occurred, while {λ(j)} are the intervals when h(t) remains constants. A trajectory σ(t) is analo-

gous, but it can take values only in {−1, 1}. Figure from [82].

encodes the essential novelty. We will comment on that and on the 1-RSB version at the end of the

section. For a detailed treatment of the quantum cavity method for spin systems and bosonic particles

we refer to [82, 83, 84].

2.2.1 Path integral and cavity equations

The method is based on a path integral formulation of Z:

Z =

∫

σ(0)=σ(β)

N∏

i=1

Dσi vi(σi) e
P

〈ij〉

R

β
0

dt σi(t)σj(t) , (2.21)

whose mathematical derivation is rigorously stated. In (2.21) bold symbols represent spin trajectories

in “imaginary” time and in particular σi is a piecewise constant function σi(t) : [0, β]→ χ = {−1, 1}
(see Fig. 2.3). The integration measure Dσi stems for:

∫
Dσi ≡

∞∑

n=0

∑

σ0
i ,...,σ

n
i

∫ β

0

dt1

∫ β

t1

dt2 . . .

∫ β

tn−1

dtn and v(σi) = (Γ)n
n∏

j=1

δσj−1
i ,−σj

i
, (2.22)

where σji = σi(t
+
j ) and the {tj} are the times at which the spin-flips occur. Each time tj is unambigu-

ously associated to a spin σi. In order to emphasize the similarity with the classical partition function

(2.1) we use the notation
∑

σi
for
∫
Dσi and we write Z for generic interactions εa:

Z =
∑

σ

M∏

a=1

wa(σ∂a)

N∏

i=1

vi(σi) , wa(σ∂a) = e−
R

β
0

dt εa(σ∂a(t)) . (2.23)

The quantum computation is reduced to a classical one, the cost to be paid being the replacement of

the discrete Ising variable σi with a function (trajectory) σi as basic degrees of freedom. However the

“spatial” structure of the interactions encoded in the factor graph is the same in the classical and in

the quantum case. In particular as soon as the classical energy part of the quantum Hamiltonian falls

into the category of models that can be studied by the cavity method (i.e. sparse random graphs),

then this is true also for the quantum problem. The Bethe-Peierls approximation in this case will

concern the marginal cavity probabilities of the trajectories. For random regular graphs, under the



2.2. QUANTUM CAVITY METHOD 23

Bethe-Peierls assumption, the equation for the cavity marginal η(σ) is exactly the same as that of the

classical model with the partition function Z but with σ changed in σ:

η(σ) =
1

Z v(σ)
[∑

σ′

η(σ′) eσ′·σ
]k
, (2.24)

where k = c − 1 and σ′ · σ =
∫ β
0 dt σ′(t)σ(t). Despite we introduced trajectories as continuous time

functions, a discrete set of numbers (over a continuous domain [0, β]) encodes all the information.

Algorithmically this is a crucial observation. The trajectory σ is indeed parametrized by the initial

condition σ0 ∈ {−1, 1} and the set of times t1, . . . , tn specifying its n discontinuities. Note that as far

as β is finite n is finite as well. We define the effective fields h as the sum of k of trajectories:

h = h(σ1, . . . ,σk) =

k∑

i=1

σi . (2.25)

The definition of h is transparent in terms of the relation h(t) =
∑k
i=1 σi(t) ∀t. Clearly, as for

σ, a clever representation of h relies only on a discrete set. Algorithmically Eq. (2.25) amounts to

return the initial condition h0 =
∑k
i=1 σ

0
i of h and the set (t1, h

1), . . . , (tNk
, hNk) characterizing its

jumps. The set {(ti, hi)} is the (time ordered) list of the Nk =
∑k

j=1 nj discontinuities ti in {σj} and

hi = h(t+i ). This is just to emphasize that h is a generalization of σ for |χ| > 2, actually |χ| = k + 1.

The fixed point of Eq. (2.24) is found thanks to the fundamental observation that Eq. (2.24) can be

recast in the form:

η(σ) =
1

Z
∑

σ1,...,σk

η(σ1) . . . η(σk) p(σ|h) z(h) , (2.26)

with h =
∑k

i=1 σi. In Eq. (2.26) we introduced the probability law p(σ|h) on the trajectories σ by

p(σ|h) =
1

z(h)
v(σ) eh·σ , z(h) =

∑

σ

v(σ) eh·σ , (2.27)

z(h) ensuring the normalization of p(σ|h). Assuming that one is able to sample from p(σ|h) and

to compute the associated normalization z(h), the knowledge of η(σ) and of the thermodynamical

quantities follows.

2.2.2 Path generation

The resolution of Eq. (2.26) is brought back to a population dynamics algorithm. It amounts in fact

to the generation of a sampled representation of its l.h.s., assuming the knowledge of the r.h.s., in

particular the ability to draw the trajectories from the probability laws η(σ). Suppose that one has

an estimation of the r.h.s. η(σ) given by a representative weighted sample of elements {σi}:

η(σ) =

Ntraj∑

i=1

wi δ(σ − σi) , (2.28)

such that the weights wi add up to one. To construct the representation of the l.h.s., i.e. a set

of sampled trajectories {σ′
i} and their corresponding weights {w′

i}, one has to repeat Ntraj times

independently, for j ∈ [1,Ntraj], the following steps:

• draw the σ1, . . . ,σk from the distribution η(σ), according to the weights wi.

• compute the field h =
∑k

i=1 σi according to Eq. (2.25).
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• extract a trajectory σ′
j from the law p(σ|h) and set its (not normalized) weight equal to w′

j =

z(h).

Once these steps have been performed Ntraj times, renormalize the weights,

w
′

j ←
w

′

j

w
′

1 + · · ·+ w
′

Ntraj

. (2.29)

After that this procedure has been iterated a new representation of the population is available and

it can be plugged in the r.h.s. of Eq. (2.26) in order to converge to the fixed point. A moment of

thought reveals that this is indeed the correct algorithmic translation of Eq. (2.26). We are thus

left with the problem of generating a path according to the law p(σ|h) defined in Eq. (2.27) and of

computing the normalizing factor z(h). As all trajectories σi are piecewise-constant, the same holds

for the field h (see Fig. 2.3). Let us call p the number of discontinuities on [0, β] of h, that occur

at times 0 ≤ t1 ≤ · · · ≤ tp ≤ β, and denote h0, h1, . . . , hp the values of hi = h(t+i ). We also denote

λ0 = t1, λ
1 = t2 − t1, . . . , λp = β − tp the duration of these intervals. Consider now the following

single-spin Hamiltonian: 〈
σ|H̃(Γ, h)|σ′

〉
= −hσ δσ,σ′ − Γ δσ,−σ′ , (2.30)

defined on the 2-dimensional Hilbert space spanned by {|σ〉 |σ ∈ {−1, 1}}. We shall write W̃ (Γ, h, λ) =

e−λ
eH(Γ,h) its associated propagator on an interval of imaginary time of length λ, and W (Γ, h, λ)σ,σ′ =〈

σ|W̃ (Γ, h, λ)|σ′
〉

the matrix elements of the propagator. It is then possible to prove that the sought-

for normalizing factor z(h) reads

z(h) = Tr

[
p∏

i=0

W̃ (Γ, hi, λi)

]
. (2.31)

This is a computationally affordable expression: it requires diagonalizing p matrices of dimension

2 × 2, exponentiating them and multiplying them together. Finally the process of generation of σ

with the law p(σ|h) can be implemented as follows:

• draw the values σ0, . . . , σp that σ assumes at times 0, t1, . . . , tp.

• on each of the p+1 intervals [ti, ti+1], draw a trajectory representative of the evolution W̃ (Γ, hi, λi)

in a constant field hi, with boundary conditions σ(ti) = σi, σ(ti+1) = σi+1 (we set t0 = 0 and

σp+1 = σ0).

More precisely, the first step consists in extracting these p+ 1 values from the joint law

p(σ0, . . . , σp) =
1

z(h)
W (Γ, h0, λ0)σ0,σ1W (Γ, h1, λ1)σ1,σ2 . . .W (Γ, hp, λp)σp,σ0 . (2.32)

This can be easily done by first drawing σ0 from its marginal probability, then σ1 conditioned on the

value of σ0, and so on until σp has been extracted. The procedure to follow for the second step is

more apparent once an integral equation on W̃ is written:

W (Γ, h, λ)σ,σ′ = eλhσδσ,σ′ + Γ

∫ λ

0

dt ethσ W (Γ, h, λ− t)−σ,σ′ . (2.33)

In terms of the path-integral representation of W̃ , the two terms in this equation represent respectively

the contribution of a constant path (possible only if the boundary conditions are the same at time

t = 0 and t = λ) and of a path whose first discontinuity occurs at time t, where σ(t) jumps from σ to

−σ. In consequence, the procedure to draw a path from σ(t = 0) = σ to σ(t = λ) = σ′ in presence of

a constant field ~h reads
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• if σ = σ′, with probability eλhσ/W (Γ, h, λ)σ,σ, exit with the constant path σ(t) = σ ∀t ∈ [0, λ].

• otherwise

– draw a random time u ∈ [0, λ] with the cumulative distribution G(u) = P[t ≤ u]

G(u) =

∫ u
0

dt ethσ W (Γ, h, λ− t)−σ,σ′

∫ λ
0 dt ethσ W (Γ, h, λ− t)−σ,σ′

(2.34)

– set σ(t) = σ for t ∈ [0, u], and call recursively the same procedure to generate the path on

[u, λ], with boundary conditions σ(u) = −σ, σ(λ) = σ′.

2.2.3 Discussion

The analysis of the ferromagnetic model presented above can be generalized to treat the addition of

a transverse field term to all “classical” Hamiltonians that are accessible through the standard cavity

method (many body interactions, σ ∈ {1, . . . , q}, quenched disorder, . . . ). In Chapter 4 we will resort

to a similar generalization to study the k-XORSAT problem on a random regular graph. Remarkably,

one can extend the study to the partition function of a bosonic system, whose natural degrees of

freedom are occupation numbers ν ∈ {0, 1, . . . , nmax} and the non-diagonal part of the Hamiltonian

represents the hopping of particles between neighboring sites. In Chapter 6 we will study with this

technique a model of interacting particles on the Bethe lattice. The results obtained by cavity method

are exact for models defined on tree-like structures, as random optimization problems, but they can

also be interpreted as a sophisticated mean-field (Bethe-Peierls) approximation for Euclidean lattices.

The novelty of the quantum cavity method with respect to the classical one shows up already at the

RS level: the basic degrees of freedom become imaginary-time trajectories. Then, the quantum 1-RSB

treatment generalizes the quantum RS ansatz in same way as for the classical case, i.e. the 1-RSB

equations are formally identical.

Note that other approximate formulations of the quantum cavity method have been proposed in [85,

86, 87]. They rely on the description of the system in terms of single-site actions or Hamiltonians whose

coupling parameters are determined by self-consistent equations imposed on the expectation values of

the observables in the cavity graph. The cavity equations in this case involve the effective fields that

define the local Hamiltonian. These techniques have the advantage to overcome high computational

costs and for disordered, non-frustrated, systems they proved to display accurate results [85, 86, 87].

A rigorous understanding of this method and of its generality is definitely important because the

cavity method in this formulation represents a very efficient tool to study complex quantum systems.

The 1RSB approach relies on some assumptions, most importantly the decomposition of the Gibbs

measure into exponentially many pure states. These postulates are used to derive quantitative pre-

dictions (as the SAT/UNSAT transition for instance). Although there is not a completely rigorous

understanding of these assumptions in some cases the predictions have been confirmed by rigorous

results and in any case they have never been contradicted. In order to ponder the amount of results

and of complementary checks it should be clear that the method deals with a “phase” that is unacces-

sible to many other techniques. In the quantum case the assumptions are the same. Of course, since

the method is much more recent the validity of such assumptions also on a heuristic level is much

less understood. In Chapter 4 we will see that the results obtained with quantum Monte Carlo are in

agreement with the 1RSB quantum cavity method for the k-XORSAT problem. Encouraged by the

success in the classical case, the quest for a deeper understanding of the quantum 1RSB phase is defi-

nitely an important and open problem. From a theoretical point of view it concerns the fundamental
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understanding of quantum Gibbs states. This has to do with quite general concepts related to the

dynamics and the thermodynamics of quantum systems. Moreover it is important for the design of

efficient algorithms to investigate the properties of “hard” quantum mean-field models.



3

Random Subcubes Model

In this Chapter we analyze a toy model of CSPs, that despite its simplicity catches most of the

qualitative behavior of more complicated problems. The classical model is in the spirit of the REM,

discussed in Section 1.3, but with the intention of reproducing the phenomenon of the clusterization

and the entropy of solutions. The study is useful to get analytical results to answer some questions

that have been addressed in the literature previously but are difficult to treat in concrete systems,

due to the complexity of the Hamiltonians. In particular the degeneracy of the ground states and the

entropy of the solutions which is a crucial property of many classical problems is generally omitted in

many works discussing QAA because standard methods can not handle it easily. Within this model

it is instead a fundamental ingredient. This study serves as an illustration, in a very simple setting,

of some phenomena that arise with the account of quantum fluctuations and that will be partially

discussed also in the next Chapter treating a more “realistic” optimization problem.

In Section 3.1 we introduce the definition of the model. The model distinguishes configurations in a

set of low energy clusters and in the remaining set of high energy configurations, V being their energy.

In Section 3.2 we discuss the properties of the classical model and we recover the phase diagram of

more “standard” optimization problems. All our analysis of the quantum problem is restricted to the

limit of large enough α when the clusters are well disjoints. In Section 3.3 we study the spectrum of

the clusters at finite N in the limit V →∞. In this limit the Hamiltonian is block diagonal, each block

corresponding to one cluster. The spectrum is characterized by true level crossings between states

belonging to different clusters. The level crossings are due to the interplay of the classical energy and

the entropy of the clusters. Quantum fluctuations, indeed, favor more entropic clusters. In Section

3.4 we consider the case of finite V (still at finite N). A finite V reintroduces a lot of additional

states that have to be taken into account. They allow to connect the clusters by single spin flips,

therefore the Hamiltonian is no longer block diagonal. We treat this situation by perturbation theory

and variational arguments to show that a finite V induces only minor modifications with respect

to the infinite V case. In Section 3.5 we show the results of the low energy spectrum obtained by

exact diagonalization for finite system sizes, finding avoided level crossings. In Section 3.6 and 3.7

we consider the system in the thermodynamic limit and at finite V . In Section 3.6 we focus on the

ground state, i.e. we study the system at T = 0. We find a first order phase transition that separates

a “quantum paramagnetic” phase, at large Γ, from a “spin glass” phase, at smaller Γ. In the spin

glass phase the ground state continuously changes from one cluster to the other as a function of Γ.

In Section 3.7 we consider, instead, the case T > 0 and in particular we discuss the glass transition.

We find that quantum fluctuations promote the glass transition. Finally, in Section 3.8 we summarize

27
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and we comment the results.

3.1 The model

The quantum version of the Random Subcubes model [34] is defined as follows. We take the Hilbert

space H of N spins 1/2 (qubits), in the basis of the Pauli matrices σzi , |σ〉 = |σ1, · · · , σN 〉. A cluster

A is a subset (subcube) of the Hilbert space

A = {|σ〉 | ∀i σi ∈ πAi } , (3.1)

where πAi are independent random sets defined as follows:

πAi =





−1 with probability
p

2

1 with probability
p

2



 σi is FROZEN in cluster A

{1,−1} with probability 1− p σi is FREE in cluster A

. (3.2)

Thus, with probability p the variable i is “frozen” in A and with probability 1 − p it is“free”. With

this definition the number of states, i.e. classical configurations, in a cluster A is a random variable

equal to 2Ns(A), where Ns(A) is the number of free variables and we call s(A) the internal entropy of

a cluster. We next define a set S as the union of 2N(1−α) random clusters:

S =

2N(1−α)⋃

i=1

Ai (3.3)

and the total entropy of the set reads:

stot =
1

N
log2 |S| . (3.4)

The parameter α here is analogous to the density of constraints in CSPs. The probability p that a

variable is frozen instead plays the role of the clause size k in k-SAT or the number of colors q in the

q-coloring problem.

For each cluster A we assign a Hamiltonian ĤA = Ne0(A)
∑

σ∈A |σ〉〈σ| with e0(A) ≥ 0 and a “penalty”

Hamiltonian ĤV = NV
∑
σ/∈S |σ〉〈σ| which describes the classical energy of states not belonging to S.

The problem Hamiltonian ĤP = ĤV +
∑

A ĤA is then diagonal in the basis |σ〉. With this definition

we wish to interpret the states in S as “local minima” of ĤP and the others as “excited states”. A

sharp distinction between them can be obtained by sending the positive constant V to infinity; for

finite V , we will always assume that V ≫ maxA e0(A). As a non-commuting quantum term we choose

ΓĤQ = −Γ
∑N
i=1 σ̂

x
i , i.e. a transverse field acting on the spins. Note that taking instead an ĤQ

proportional to
∑
σ,σ′ |σ〉〈σ′| would lead to the simpler multi-solution Grover problem investigated

in [70].

3.2 Analysis of the classical Hamiltonian

In this Section we briefly recall the structure of the set S, shown in Fig. 3.1, which has been derived

in [34]. Here we focus on the cluster structure of the classical problem (Γ = 0) neglecting the energy

of the clusters. This analysis leads to a characterization of the structure of S when α is varied in

terms of the entropy of the dominating clusters. We will see that one recovers the transitions αd, αc
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αd αsep αc αs

Figure 3.1: Pictorial representation of the different phase transitions in the set of solutions of the

Random Subcubes model [34].

and αs (for T = 0) outlined in Section 1.1.3. In [34] it has been shown that similar results apply

to the description of the energy landscape where a joint distribution of entropy and energy defines

the thermodynamical properties of S at T > 0. In order to unveil the structure of the space of the

solutions we will extensively make use of two well-known results of probability theory called the union

bound and Chebychev inequality. In fact, in complete generality the properties of S can be traced back

to probability statements concerning 2Nb events Ei each with probability P(Ei) = 2−Na, for some a

and b. Under these conditions the union bound states:

P
( 2Nb⋃

i=1

Ei

)
≤

2Nb∑

i=1

P(Ei) = 2N(b−a) , (3.5)

which implies that when a > b the probability P(∪iEi) is exponentially suppressed in the size of the

system N . Before considering the opposite case a < b first we note that when the events are i.i.d. for

the number of true events N holds 〈N〉 = 2N(b−a) and
〈
N 2
〉

= 2N(b−a)(1−2−Na). Then for arbitrary

small ǫ one can apply Chebychev inequality:

P
( |N − 〈N〉 |

〈N〉 > ǫ
)
≤

〈
N 2
〉

〈N〉2 ǫ2
≤ 1

2N(b−a)ǫ2
(3.6)

which ensures that when a < b, N is self-averaging in the largeN limit, i.e. the average is exponentially

large and concentration around the averageN ∼ 〈N〉 is found. Applying these arguments one identifies

the following structure in the space of solutions when α is varied.

• For α ≤ αd = log2(2 − p), each state |σ〉 belongs to an exponential number of clusters and the

space S coincides with H.

Proof: The probability that a configuration |σ〉 belongs to a cluster A is P(|σ〉 ∈ A) = (1− p
2 )N

and

P(|σ〉 /∈ S) =
[
1−

(
1− p

2

)N]2N(1−α)

. (3.7)

Then from the union bound if α < αd = log2(2− p):

P(S 6= H) = P(∪|σ〉|σ〉 /∈ S) ≤ 2Ne−2N [log2(2−p)−α] → 0 , (3.8)

which implies that all states are in S and stot = 1.

• For α > αd picking at random a configuration with probability 1 when N → ∞ this will not

belong to S. Thus S 6= H. The number of clusters N (s) of entropy s is given by

Σ(s) = N−1 log2N (s) = 1− α−D(s||1 − p) , (3.9)

where D(x||y) = x log2(x/y)+ (1− x) log2[(1− x)/(1− y)] for s ∈ [smin, smax] and it is zero oth-

erwise. The function Σ(s) is the configurational entropy, or complexity, discussed in Chapter 2.
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Proof: Recalling (3.7) one sees that when α > αd P(|σ〉 /∈ S) → 1. Thus S 6= H and stot < 1.

In order to compute Σ(s) then one notes that

P(s(A) = s) =

(
N

Ns

)
pN(1−s)(1− p)Ns (3.10)

and the number of clusters N (s) of entropy s follows a binomial distribution with parameter

P(s) and 2N(1−α) terms. Applying the union bound or Chebychev inequality to the random

variable N (s) then one obtains

lim
N→∞

1

N
log2N (s) =





limN→∞
1
N log2

(
2N(1−α)P(s)

)
= Σ(s) if Σ(s) ≥ 0

−∞ otherwise
. (3.11)

The expression for Σ(s) that one obtains is the one given in (3.9) and it is restricted to the

interval s ∈ [smin, smax] for which Σ(s) ≥ 0. From the physical point of view what characterizes

αd is that for α above this value there is “ergodicity breaking” in the sense that a local random

walk over solutions starting in one cluster takes an exponentially long time to reach another

cluster [34].

• For α > αsep = 1 + log2(1 − p2/2)/2, the clusters are well separated, in the sense that with

probability 1 for N → ∞ the Hamming distance (number of opposed spins) between any two

clusters is of order N .

Proof: We note that P(A ∩ A′ 6= ∅) = (1 − p2

2 )N . Then we can apply the union bound over all

possible intersections in the set S

P(∪ij(Ai ∩Aj 6= ∅)) ≤
1

2
2N(1−α)(2N(1−α) − 1)(1− p2

2
)N → 0 (3.12)

for α > αsep. This means that with probability 1 when N → ∞ the clusters are disjoint, i.e.

their Hamming distance is strictly positive. The probability to find clusters at distance x is

finite only when x = O(N).

• For αd < α < αc = p/(2−p)+log2(2−p) most of the solutions belong to one of the exponentially

many clusters of size s∗, with Σ(s∗) > 0 and s∗ ∈ (smin, smax). On the contrary when α >

αc, s
∗ = smax and most of the solutions belong to the largest clusters whose number is sub-

exponential in N since Σ(smax) = 0.

Proof: One can compute the total number of states in S by observing that

|S| = 2Nstot =
∑

A

2Ns(A) ∼
∫ smax

smin

ds 2N [Σ(s)+s] , (3.13)

therefore stot = maxs∈[smin,smax][Σ(s)+s]. Studying the function Σ(s)+s it turns out that up to

αc its maximum value, dominating the saddle point in the integral, is taken inside the allowed

interval and thus Σ(s∗) > 0. When α > αc instead the maximum is achieved at the boundary

of the interval, implying N (s∗) = O(1).

• Finally, for α > αs = 1 there are no more solutions.

Proof: This follows trivially from the definition of the number of clusters, equal to 2N(1−α).

Then for α > 1 there are no more clusters and the set S is empty. In the language of CSP αs

corresponds to the SAT/UNSAT transition.
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Figure 3.2: Schematic Hamiltonian matrix representing a finite size realization of the system with 3

clusters (red, blue and purple components). The biggest green sector represents states which do not

belong to S. The Hamiltonian has zero matrix elements between states belonging to different clusters

since for α > αsep their Hamming distance is bigger than one. The size nA of each cluster block is

fixed by its entropy nA = 2Ns(A) while the size of green component is much larger nV ∼ 2N . We

indicated with Γ the sectors of the Hamiltonian where there are non-zero off-diagonal matrix elements.

Γ connects classical configurations at Hamming distance 1.

3.3 Spectrum of the cluster Hamiltonian

We will now study the spectrum of the quantum Hamiltonian Ĥ = ĤP +ΓĤQ as a function of Γ, and

from now on we focus on the region α > αsep where clusters are well separated, which is the most

interesting for our purposes. The computation of the spectrum for α < αsep is more complicated,

since in this region the clusters have overlaps and the arguments below do not apply straightforwardly

(although they might be generalized for α > αd where the overlaps are exponentially small [34]). A

schematic example of the Hamiltonian describing a finite system with three clusters in the regime

where the clusters are well-separated is shown in Fig.3.2.

We consider first the (“hard”) V → ∞ limit where ĤP is infinite for the states that do not belong

to S: then we can project out these states from the Hilbert space and look to the restriction of Ĥ =∑
A ĤA + ΓĤQ on S, which contains 2Nstot states. Since the matrix ĤQ only connects configurations

at unit Hamming distance, and different clusters have distance of order N , the Hamiltonian Ĥ has

no matrix elements connecting different clusters. Therefore we can diagonalize Ĥ separately in each

cluster. The restriction of Ĥ to a given cluster A with Ns(A) free spins is equal to ĤA plus the

Hamiltonian of Ns(A) uncoupled spins in a transverse field, its spectrum is hence made of levels

Ek(A) = Ne0(A) + (2k −Ns(A))Γ , k = 0, · · · , Ns(A) , (3.14)

each
(
Ns(A)
k

)
times degenerate. In particular the lowest level has energy per spin eGS(A) = e0(A) −

Γs(A), therefore the energy of clusters with larger entropy decreases faster with Γ. In this regime

then one expects level crossings between states belonging to different clusters. In the situation where

bigger clusters at Γ = 0 have larger classical energy, which is the case for more concrete CSP, the level

crossings concern the ground state and at T = 0 each crossing corresponds to a global rearrangement

of the system. A simple example of a spectrum in the V = ∞ limit regime for a finite system made
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Figure 3.3: Low energy spectrum for a system with N = 15 and 3 clusters at Hamming distance larger

than 1 such that {(s(Ai), e(Ai))i=1,2,3} = {(2/15, 0); (4/15, 0.1); (6/15, 0.3)}. Left panel: Spectrum in

the V =∞ case. To each cluster Ai corresponds the spectrum of Ns(Ai) free spins in a magnetic field.

Right panel: Partial spectrum for finite V = 2 obtained by Exact Diagonalization. Red arrows indicate

the points where level crossings appear. At small Γ the low energy spectrum is in good agreement

with that at V =∞. For larger values of Γ instead the degeneracy of the states is partially lifted and

an avoided crossing between the ground state and the lowest energy state belonging to the V -band

signals the presence of a first order phase transition in the N →∞ limit between states coming from

the classical low energy spectrum (set S) and the remaining states.

by 3 clusters is shown in the left panel of Fig.3.3. Note that also at finite size, as long as one takes the

clusters well-separated, due to the V → ∞ limit, there are no corrections in the size of the system,

the crossings are not avoided and the degeneracy of the states is not removed, due to the complete

independence of the Hamiltonian sectors describing each cluster.

3.4 Quantum paramagnetic state

Next, we consider a “soft” version of the model in which V is finite (still with V ≫ maxA e0(A)).

Therefore now H is defined on the full Hilbert space H. In this case, in addition to the 2Nstot energy

levels discussed above (that we shall refer to as the S-band), there exists another set of 2N−2Nstot ∼ 2N

levels (the V -band), whose energy is expected to be of order V at small Γ.

For the states in the S-band we use perturbation theory in Γ. As soon as the transverse field is

switched on a first order correction in Γ to the states in the S-band is present. This correction comes

from the partial lifting of the degeneracy within the cluster and it is given by the spectrum Ek(A)

in (3.14). A second order correction instead is induced by the presence of the V -band at finite V .

In order to compute it one can apply perturbation theory assuming as unperturbed basis that which

diagonalizes the perturbation ĤQ inside each clusters. In particular we are interested in the correction

to the lowest energy level eGS(A) in the clusters whose state |GS(A)〉 is given by all free spin polarized

in the direction of the field. Then the correction is

∆EΓ2

A =
∑

|ψ〉/∈A

|〈ψ|ĤQ|GS(A)〉|2
Eψ − EGS(A)

=
Γ2(1− s)N
NV −Ne(A)

(3.15)

and at any finite order n the correction to the energy per spin is O((Γ2/(NV ))n), so it vanishes in
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the thermodynamic limit. This mechanism is similar to the REM due to the fact that states at the

boundary of the clusters have ∆E ∼ N .

To study the lowest energy level in the V -band eGS(V ) it is convenient to rewrite the Hamiltonian in

the following way:

Ĥ = NV 1̂− Γ
∑

i

σ̂xi

︸ ︷︷ ︸
ĤQP

−N
∑

A

(V − e(A))|A〉〈A|
︸ ︷︷ ︸

ĤS

= ĤQP − ĤS , (3.16)

where |A〉〈A| =
∑

σ∈A |σ〉〈σ| indicates the projector over the cluster A. ĤQP acts on the entire

Hilbert space while ĤS only on the subspace spanned by the clusters. This form aims to interpret

ĤS as a “perturbation” over ĤQP which describes a system of N free spins in a transverse field

with a shift in the energy NV equal for all. However the “perturbation” is not in the strength of

the energy, which may be large, but in the number of states that are involved. Note, in fact, that

Rank(ĤS)≪Rank(ĤQP ), being Rank(ĤS)= R = 2Nstot and Rank(ĤQP )= 2N . This, together with

the fact that the perturbation matrix is positive defined (it shifts some states all in the same direction)

allows to apply the results of small rank perturbation analysis [88] in order to study eGS(V ). From

these results we can safely say that

Ek−R
QP ≤ EkH ≤ EkQP for k = 1, . . . , 2N , (3.17)

where EkQP and EkH are respectively the k-th eigenvalues of ĤQP and Ĥ , and we assume EkQP = −∞
when k ≤ 0. In particular when Γ is small since eGS(V ) is larger than all the energies in the S-band

this implies that

V − Γ ≤ eGS(V ) . (3.18)

The results from small rank perturbation (3.17) also shows that the spectrum of the V -band is close

to the one of N free spins in transverse field with classical energy NV :

EkV = NV + (2k −N)Γ , k = 0, · · · , N ,

with degeneracy close but not equal to
(
N
k

)
. We expect that the unperturbed ground state of ĤQP ,

that we call Quantum Paramagnetic state (|QP 〉), well describes the lowest energy level of the V -band

eGS(V ) and remains unaffected by the presence of the states in S for all Γ except from the region where

it crosses the spectrum of S. The reason for this comes from the intuition that in absence of ĤS the

spectrum of HQP is highly degenerate, especially in the middle of the band. Then, also comforted

by the results of exact diagonalization, we expect that the states that recombine the most in order

to create the S-band when ĤS is applied, are those belonging to the more degenerate part of the

spectrum. On the contrary, |QP 〉 is made of all spins aligned along Γ without degeneracy and thus it

is weakly perturbed by ĤS . A rigorous study of this energy level is not feasible thus we proceed with

some arguments which we still believe describe its behavior. The state |QP 〉 has exponentially small

overlap with any state in the S-band 〈ψ(A)|QP 〉 ∼ O(2−Ns(A)/2) and thus it gives an expectation

value of Ĥ equal to 〈QP |Ĥ |QP 〉 = N(V − Γ) + O(2−γN ) for some γ. It means that if we interpret

this as a variational upper bound on the true ground state of the V -band we get:

eGS(V ) ≤ V − Γ . (3.19)

Combining (3.18) and (3.19) we obtain

eGS(V ) = V − Γ +O(2−γN) , (3.20)

and the corresponding eigenvector remains up to exponentially small corrections the same |QP 〉, which

is uniformly extended in the basis |σ〉.
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Figure 3.4: Left panel: Low energy spectrum of the model for αsep < α < αs. As an example we

choose (following [34]) p = 0.7, α = 0.85, and Σ(e0) = (1 − α)[2 + e0/em − (e0/em) ln(e0/em)]/3 for

e0 ∈ [0, em] with em = 0.1. Main panel: Energy of the SG (cluster) ground state [Eq. (3.21), full

line] and of the QP state eQP = V − Γ for V = 1 (dashed line). A first order transition between

the two states happens at Γ ∼ 2. Inset: Level crossings in the SG state. For better readability

we plot eSG + Γsmax(0) [Eq. (3.21), full line] and show the energy e0 − Γ[smax(e0) − smax(0)] of two

different clusters with e0 = 0.05, 0.2 (dot-dashed lines). Right panel: Transverse magnetization mx as

a function of the transverse field Γ for the same parameters. For large enough Γ the first order phase

transition between the “spin-glass” phase to the “quantum paramagnetic” phase is manifested by a

jump in the transverse magnetization, shown with a vertical dotted line. The value of mx associated

to the SG ground state is shown with a solid black line, while that of the QP ground state is shown

with a dashed blue line. Note that the latter is bigger because it corresponds to a more entropic phase.

3.5 Exact diagonalization results

We checked these predictions for the spectrum by means of exact diagonalizations for a system

made of N = 15 spins. The results are shown in Fig.3.3, in the right panel. There we have plot-

ted the spectrum of a system made by three clusters characterized by classical energy and entropy

{(s(Ai), e(Ai))i=1,2,3} = {(2/15, 0); (4/15, 0.1); (6/15, 0.3)} and V = 2. The plot shows that for small

Γ the states in the V -band do not affect those in the set S, whose spectrum is in good agreement

with that at V = ∞, in the left panel. At larger Γ avoided level crossings first appear between the

ground states of different clusters and finally an avoided crossing with the ground state of the V -band

whose slope in Γ is steep due to the big entropy which characterizes the sector. We have also plotted

in green the analytical result that we obtain up to second order in perturbation theory for the lowest

energy level of each cluster and in blue the energy of the quantum paramagnetic state. We see that

the true ground state, crossing after crossing, well interpolates between all these curves. Since the

clusters have Hamming distance proportional to N , we expect all these crossings to be avoided at

finite N producing exponentially small gaps [60, 62, 64].

3.6 Level crossings in the thermodynamic limit

We discuss now the zero temperature phase diagram of the model for α > αsep and N → ∞. To

get a meaningful thermodynamic limit, the number of clusters of energy e0 is set to 2NΣ(e0), where
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Figure 3.5: Phase diagram of the model for p = 0.7, Σ(e0) as in Fig. 3.4, and β = 1 (full lines).

The vertical line corresponds to αsep = 0.797 for this value of p. The higher Γ line is the first order

transition between SG and QP. Above the lower Γ line αc(Γ, β = 1) the system is in the condensed

phase. The condensation transition lines αc(Γ, β) are also reported (dashed lines) for different values

of β, showing that the non-condensed phase disappears for β →∞. The complexity of the zero-energy

clusters is Σ(e0 = 0) = 2(1− α)/3, hence one has αc(Γ = 0, β =∞) = 2p−1
2−p + 3

2 log2(2− p) = 0.875.

Σ(e0) is an arbitrary increasing function of e0 ∈ [0, em] (as in most random optimization problems).

We assume that Σ(em) = 1− α so the total number of clusters in S is still 2N(1−α). Since the frozen

variables are chosen independently for each cluster, the complexity of clusters of energy e0 and entropy

s is Σ(e0, s) = Σ(e0) −D(s||1 − p). It vanishes for a given value smax(e0) which is also an increasing

function of e0. The S-band, or spin glass (SG), ground state energy is

eSG = min
e0∈[0,em]

[
min

s∈[smin(e0),smax(e0)]
(e0 − Γs)

]

= min
e0∈[0,em]

[
e0 − Γsmax(e0)

]
.

(3.21)

The minimum is in e0 = 0 as long as Γ < Γlc = 1/(s′max(0)). Above this value, the minimum is in a

different e0 for each value of Γ: in this region the ground state changes abruptly from one cluster to

another upon changing Γ by an infinitesimal amount [89, 90].

Note that in some relevant cases the slope of Σ(e0) in e0 = 0 is infinite, therefore Γlc = 0 and level

crossings happen at all Γ. The energy eQP crosses the spin-glass ground state given by Eq. (3.21),

giving rise to a first-order phase transition between the spin-glass and the quantum paramagnet [59,

11, 12, 74, 13, 35] at a critical Γ ∝ V . As a consequence, the transverse magnetization mx = de/dΓ

has a jump at the transition [35] (see the right panel of Fig. 3.4). Note that mx = s, thus the

transverse magnetization is determined by the entropy of the ground state, and the entropy of the

V -component is much larger than those of the clusters. Moreover mx can also be associated to the

inverse participation ratio I, since I =
∑
σ |ψ(σ)|4 = 2−Ns and I = − 1

N log2 I = s = mx. A similar

result for the inverse participation ratio was found for a typical excited state in a mean-field model

with a random field [91].
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3.7 Finite temperature: the condensation transition

The previous analysis shows that in the region αsep < α < αc the perturbation ΓĤQ has a dramatic

effect. At Γ = 0, most of the states in S belong to one of exponentially many small clusters, while

at any Γ > 0 the few largest clusters of entropy smax have the smallest energy. This is related

to the fact that the presence of a transverse field introduces a correction to the energy that favors

the more entropic clusters. A more complete picture is obtained by studying the model at finite

temperature. It is convenient to separate the contribution of the two phases of the partition function,

Z = Tr e−βĤ = ZSG + ZQP, with c = 2 cosh(βΓ):

ZQP ∼
∑

k

e−βE
V
k = e−βNV cN ,

ZSG ∼
∑

A,k

e−βEk(A) =

∫
de0ds 2NΣ(e0,s)e−βNe0cNs .

The free energy is f = −(T/N) lnZ = min{fSG, fQP}, analogously to what was found in [59] for the

REM (discussed in Chapter 1), with fQP = V − T ln c and

fSG = −T max
e∈[0,em]

s∈[smin(e),smax(e)]

[Σ(e0, s) ln 2− βe0 + s ln c] . (3.22)

The first-order transition happens when the free energies fSG and fQP cross, while the condensation

transition happens when the maximum in Eq. (3.22) is attained in smax for the first time. In Fig. 3.5

we plot the lines αc(Γ) for several temperatures. We observe that in the limit β →∞, the lines αc(Γ)

shrink to the horizontal axis and the system is in the condensed phase for any Γ > 0. The first-order

transition to the QP phase happens for larger values of Γ at fixed temperature, and it is reported in

the plot for β = 1.

3.8 Discussion

In this Chapter we introduced a simple toy model of a quantum optimization problem, based on the

random subcubes model of [34]. In the classical case Γ = 0, the model captures the essential structure

of the space of solution of random optimization problems, and displays several phase transitions

that are present also in more realistic problems such as k-SAT, at least at large k. We explored

the consequences of this complex structure on the spectrum of the quantum Hamiltonian at Γ > 0,

and we showed that: (i) Quantum fluctuations lower the energy of a cluster proportionally to its

size. (ii) As clusters have an energy distribution, level crossing between different clusters are induced

as a function of Γ in the spin glass phase, due to a competition between energetic and entropic

effects. These crossings happen in a continuous range of Γ, giving rise to a complex spin glass phase

characterized by a continuously changing ground state and an exponentially small gap. (iii) At large

Γ ∼ V the spin glass phase undergoes a first order transition towards a quantum paramagnetic

phase [11, 12, 74, 13, 59, 35], corresponding to the complete delocalization of the ground state in the

computational basis |σ〉. (iv) At finite temperature, there is a line of condensation transitions αc(Γ)

that shrinks to Γ = 0 at low temperatures: indeed, at zero temperature the condensation transition

becomes abrupt. While at Γ = 0 the space of solutions is dominated by an exponential number of

clusters of intermediate size, for any Γ > 0 the biggest clusters contain the ground states.

Overall, this toy model shows that the low energy spectrum of quantum optimization problems can

be very complex, and characterized by different level crossings: internal level crossings in the spin
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glass phase, or the crossing between the spin glass and the quantum paramagnet giving rise to a

first order phase transition. Moreover, both entropic and energetic effects are important. We expect

that this complex structure of the low-energy spectrum of the quantum Hamiltonian will have deep

consequences on the behavior of quantum algorithms: for instance, the quantum adiabatic algorithm

proposed in [8] should run into difficulties because of the exponentially small gaps that are expected

at the crossings.
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4

Locked models: XORSAT on a

regular graph

In this Chapter, we examine the k-XORSAT problem on a c-random regular graph. In the classical

case the model is representative of a class of problems known as “locked models” [92]. The main

property of these models is that clusters of solutions don’t have internal entropy: they are isolated

points in configuration space [92]. Therefore we do not expect the entropic effects that were discussed

for the RSM in Chapter 3, at least at the level of the ground states of different clusters. This simplifies

the numerical analysis of the models. We will show that a first order phase transition is found in these

models, as well as in the REM or RSM. We will present the phase diagram derived with the quantum

cavity method and quantum Monte Carlo. XORSAT is in fact the simplest yet not-trivial model to

study with the cavity method, allowing us to illustrate the usefulness of the method. We will finally

study the scaling of the gap with N at the transition in different situations. According to the value

of α the typical classical ground state may or may not be degenerate and this has to be accounted

in the analysis of the gap. In Section 4.1 we introduce the model. In Sections 4.2, 4.3 and 4.4 we

present the phase diagrams for a particular study of the c < k, c = k and c > k case, respectively.

These cases are in fact distinct in the classical limit for their properties at T = 0. In Section 4.5

we summarize the results. We also compare different energy landscapes of CSPs and the impact of

quantum perturbations on them.

4.1 Definition of the model

We focus on the k-XORSAT problem, defined on a random c-regular graph, which has been studied

in details in the classical case in [93, 94]. As we did before, we add a quantum transverse field to the

classical Hamiltonian. In quantum spin language, the model is defined by the following Hamiltonian:

Ĥ = ĤP + ĤQ =

M∑

a=1

(1− Jaσ̂zia1 . . . σ̂
z
ia
k
)− Γ

N∑

i=1

σ̂xi . (4.1)

Here, Ja = ±1 with equal probability. The k spins ia1, i
a
2 , · · · , iak involved in clauses a = 1, · · · ,M =

Nc/k are chosen uniformly at random among all possible choices such that each spin enters exactly

in c clauses. This defines a regular random graph structure where variables have connectivity c and

interactions have connectivity k.

39
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We recall that as usual, in the classical limit Γ = 0, a given instance of the problem (defined by the

choice of the random graph and of the couplings Ja) is called satisfiable (SAT) if there is a ground

state of zero energy, UNSAT otherwise. It has been shown in [93, 94] that when Γ = 0, the entropy

of the solutions equals s = log 2 (1− c/k); when this entropy is positive (c ≤ k) the model is in the

SAT phase, when it is negative it is in the UNSAT phase. In particular, for c < k the model is SAT

with a probability going to 1 as N →∞ and the typical number of solutions is exponential in N ; it is

typically UNSAT for c > k; while in the marginal case c = k the model is SAT with finite probability,

and when it is SAT the number of solutions is typically finite.

We will be particularly interested in instances of ĤP having a Unique Satisfying Assignment (USA),

i.e., a single classical ground state, which were the focus of most of the previous studies of quantum

optimization problems [8] since in this case the spectral gap can be easily defined, as we will discuss

in the following. Based on the above discussion, it is clear that these instances are exponentially rare

if c 6= k, while they have a finite probability for c = k. For c = k = 3 it was found in [35] numerically

that for N → ∞, the fraction of SAT and USA instances are fSAT = 0.609 ± 0.003 and fUSA =

0.2850± 0.0022, as determined by using a Davis-Putnam-Logemann-Loveland–like algorithm [95] to

count the number of solutions of 40000 instances of different sizes and extrapolating the result to

N →∞.

Many of the results that we present in this Chapter on the quantum model (4.1) were reported in [35],

where the existence of a first order transition was shown. We present the results in much more detail

in the rest of this section, together with some previously unpublished results. It is worth to mention

that in the limit k = c→∞ (taken after N →∞), it is possible to show that the model approaches a

particular quantum REM where the distribution of the classical energies is a binomial. This model was

recently analyzed in [96], and the existence of a first order transition was shown rigorously, supporting

the results obtained with the cavity method at finite k and c. In the rest of this Chapter we discuss the

results of the quantum cavity method, for the RS and the 1-RSB ansatz. We compare the quantum

cavity method with the results of the quantum Monte Carlo (QMC) algorithm described in [35] across

the transition. Moreover, we investigate the behavior of the spectral gap, determined by means of

Exact Diagonalization (ED) and new results about the degenerate case will be presented.

4.2 Exponentially degenerate ground state: c < k

As a representative of the case c < k, we consider here k = 4 > c = 3. The classical ground state is

exponentially degenerate with entropy log(2) (1− c/k) = log(2)/4. As we mentioned, it can be shown

via the cavity and replica methods [93, 94, 92] or using rigourous methods [44, 43] that the ground

states are arranged in isolated clusters. Therefore, the internal entropy of each cluster is zero, the

complexity of clusters is Σ = log(2)/4, and typically the clusters (solutions) have Hamming distance of

order N , therefore they are very far away in configuration space. The classical equilibrium complexity

as a function of temperature is plotted in the inset of Fig. 4.2. The model is SAT with probability

one and the typical number of ground states is exp(NΣ) = 2N/4.

We start by examining the phase diagram of the quantum model at finite Γ, as obtained from the

cavity method, which is reported in Fig. 4.1. The RS computation predicts, at low enough temperature

T . 0.3, a first-order transition between two different paramagnetic (mz = 〈σ̂zi 〉 = 0) phases: the

Classical Paramagnet (CP) characterized by a small value of transverse magnetization mx = 〈σ̂xi 〉, and

the Quantum Paramagnet (QP) that has a larger value of mx. The first order transition is signaled

by a jump of mx and a crossing of the free energies of the two phases, that can be clearly seen in



4.2. EXPONENTIALLY DEGENERATE GROUND STATE: C < K 41

0

0.2

0.4

T

0

0.2

0.4

0.6

0.8

1

m
x

Cavity, CP
Cavity, QP

0 0.25 0.5 0.75 1 1.25 1.5

Γ
-1

-0.75

-0.5

-0.25

0

e

0.6 0.7 0.8 0.9

-0.2

-0.1

CP

dCP
QP

4-XORSAT   c=3

0

0.2

0.4

T

0

0.2

0.4

0.6

0.8

1

m
x

Cavity, CP
Cavity, QP
MC, from Γ=2
MC, from Γ=0

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Γ
-1

-0.75

-0.5

-0.25

0

e

0.8 0.9 1 1.1 1.2

-0.25

-0.2

-0.15

CP

dCP
QP

3-XORSAT   c=3

0

0.2

0.4

0.6

0.8

T

0

0.2

0.4

0.6

0.8

1

m
x

Cavity, SG
Cavity, QP
MC, from Γ=2
MC, from Γ=0

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Γ
-0.8

-0.6

-0.4

-0.2

0

0.2

e

1.2 1.3 1.4
-0.25

-0.2

-0.15

-0.1

SG

CPdCP

QP

3-XORSAT   c=4

Figure 4.1: Phase diagram of the k-XORSAT model Eq. (4.1) on a c-regular random graph. The

top panel represents the (T,Γ) phase diagram, displaying four possible phases: Classical Paramagnet

(CP), dynamical Classical Paramagnet (dCP), Quantum Paramagnet (QP), and Spin Glass (SG).

Open symbols are results of the RS calculation: first-order transition line (open circles) separating

the CP and QP, with the corresponding spinodals (open diamonds). Full symbols are the result

of the 1RSB calculation: clustering transition (full squares) separating the CP and dCP, Kauzmann

transition (full triangles) separating dCP and SG, first-order transition separating the SG and QP (full

circles). The middle panel reports the transverse magnetization as a function of Γ, and the bottom

panel reports the free energy density from the cavity method or the energy density from Quantum

Monte Carlo (QMC) as a function of Γ, both at fixed temperature T = 0.05. In these panels, full

lines are the result of the cavity computation (RS or 1RSB depending on the figure) while symbols

are QMC results.

(Left) k = 4 and c = 3. In this case there is no SG phase. The CP phase becomes a dCP at low enough

temperature, while a first-order transition separates the CP (or dCP) and QP phases on increasing

Γ. The transverse magnetization jumps at the first-order transition.

(Center) k = c = 3. Also in this case there is no SG phase. QMC data are reported, for a sample

with N = 2049: red diamonds are obtained starting from the QP (Γ = 2) and decreasing Γ, while

black squares are obtained starting from a classical ground state (found using Gaussian elimination)

and increasing Γ.

(Right) k = 3 and c = 4. In this case a SG phase is present and delimited by the full triangles. A first

order transition between the SG and QP phases is found. QMC data are reported for N = 120 and

averaged over 20 samples (full symbols) and extrapolated in 1/N to the N→∞ limit (open symbols).

Black curve, starting from the classical ground state found using an exact MAXSAT solver [97]. Red

curve, starting from the QP.
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Figure 4.2: Complexity of the 4-XORSAT model at c = 3. (Main panel) Equilibrium complexity as a

function of Γ at fixed T . The complexity remains finite up to the spinodal of the CP phase, where it

jumps abruptly to zero. (Inset) Equilibrium complexity of the classical model (Γ = 0) as a function

of temperature. The dashed line marks the T = 0 value, log(2)/4.

Fig. 4.1. As in any first order transition for a mean field model, the two phases can be continued in

the region where they are metastable until a well defined spinodal point. The transition line and the

corresponding spinodals are shown in the (Γ, T ) phase diagram in Fig. 4.1; the transition is found at

a slightly temperature-dependent Γc(T ) ≈ 3/4 = c/k. We also report in Fig. 4.1 the cavity method

predictions for mx and the free energy density f = −T log(Z)/N at very low temperature T = 0.05.

Next, we discuss the outcome of the 1RSB computation. Following the classical case, discussed in a

simpler situation in Chapter 2, the key quantity that is computed in this approach is the equilibrium

complexity Σ(Γ, T ), which is reported in Fig. 4.2 as a function of T and Γ. Below the classical

dynamical transition Td(Γ = 0) ∼ 0.41, the complexity is positive in the classical case (see the inset of

Fig. 4.2). Increasing Γ, we found that Σ(Γ, T ) remains independent of Γ, until the first order transition

is met, the system jumps to the QP phase, and the complexity vanishes abruptly. The fact that Σ is

independent of Γ can be argued based on the discussion of the random subcubes model (Chapter 3).

If the clusters don’t have any internal entropy, and if their relative Hamming distance is of order

N , different solutions are not mixed at any finite order of perturbation theory in Γ. Therefore, each

classical ground state is continuously transformed in a quantum eigenstate. Moreover, since the local

environment around each ground state is the same for N → ∞, at any finite order of perturbation

theory the quantum energy is the same for all ground states, and the degeneracy is not lifted. The

number of ground states remains constant and equal to its classical value, 2N/4, so the complexity is

constant as a function of Γ. Indeed, performing exact diagonalization (see the left panel of Fig. 4.3)

one sees that there are no level crossings between low-energy states that classically have different

intensive energies, as in the quantum random energy model [59].

The main outcome is then that the equilibrium complexity is positive or zero everywhere. The implica-

tions of this result are twofold: first of all, it confirms that the RS computation of the thermodynamic

observables is in this case correct in the whole phase diagram (Γ, T ). Therefore, the only thermody-

namic singularity is on the first order RS transition line. Secondly, the complexity is strictly positive

for low enough values of T and Γ, implying that the CP phase is actually a “dynamical CP” where an

exponential number of states coexist. As seen in Chapter 2, the point where the complexity becomes
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positive is called dynamical transition temperature Td(Γ), and is reported in Fig. 4.1. We also recall

that equilibrium thermodynamic properties are unaffected as one crosses the transition between CP

and dCP.
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Figure 4.3: Lowest energy levels of k-XORSAT on a c-regular random graph, from exact diagonaliza-

tion. In the inset the region close to the phase transition is magnified. Left panel: Typical instance

of the 4-XORSAT model at c = 3, with N = 16. The classical ground state degeneracy is 24 = 16.

Right panel: USA instance of 3-XORSAT at c = 3, with N = 15.

In Fig. 4.3 we show Exact Diagonalization results for this case. The lowest part of the spectrum of a

typical instance with N = 16 is plotted as a function of Γ. The instance we show has a ground state

degeneracy N = 2N/4 = 16 at Γ = 0, which is the most probable value. Increasing Γ, we see that

the lowest 16 levels remain extremely close in energy (the difference is expected to be exponentially

small), up to a value of Γ ≈ 0.75, the location of the first order transition in the thermodynamic

limit. At this value of Γ we observe that the 17th state (the first classical excited state) goes down

in energy and approaches the bunch of ground states. The figure suggests the presence of an avoided

crossing between this state and the set of ground states. These data confirm the cavity prediction: the

ground state remains exponentially degenerate at any finite Γ < Γc, while at Γc a first order transition

happens, caused by a level crossing between these degenerate SG states and the QP.

The determination of the gap is complicated by the fact that for a given instance the ground state

has degeneracy N , the average of N−1 logN over instances being equal to the zero-temperature com-

plexity log(2)/4. Therefore, the interesting gap to determine the performances of quantum adiabatic

algorithms is the minimal gap (as a function of Γ) between the lowest energy state and the (N +1)-th

excited state: transitions to any lower energy state are not dangerous since these states will con-

tinuously transform into one of the classically degenerate ground states (although a more detailed

discussion of the transition dynamics in presence of almost degenerate levels might be in order here,

we leave this for future work). Since N increases exponentially fast in N (it concentrates quickly

around the value 2N/4), one has to compute an exponentially large number of levels, which slows

down considerably the exact diagonalization code and in practice limits us to N ≤ 20. In Fig. 4.4 we

report data for the minimum gap as defined above. Despite the strong size limitations, the scaling

of the gap appears to be exponential in N , as expected at a first order transition. We observed that

fluctuations in N induce large fluctuations of the gap: indeed, restricting the average to instances

having exactly 2N/4 classical ground states reduces a lot the fluctuations, and the curve is much closer

to an exponential, at the same time the difference at large N being extremely small (we don’t show the

corresponding data). We will discuss further the behavior of the gap at the transition in the simpler
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case c = k, which we analyze next.
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Figure 4.4: Exact diagonalization data for the minimum gap for k-XORSAT on c-regular random

graphs. Left panel: Data for k = 4 and c = 3 on random instances. In this case the classical

ground state has and instance-dependent degeneracy N , so the relevant gap is the one between the

ground state and the (N + 1)-th state, see Fig. 4.3. Full circles represent the average over instances

(100 for N = 8, 12 and 60 for N = 16, 20) of the minimal gap ∆min as a function of N . Full

bars represent statistical errors on the average, while dashed bars represent the standard deviation

over the instances of a single realization of the random variable ∆min. Fluctuations are extremely

large at small N , the main contribution being due to the fluctuations of N . Data are limited to

N ≤ 20 due to the need to compute N + 1 states for each instance. The dashed line is the function

∆min(N) = 1.244 exp(−0.065N) that appears to describe the large N behavior Right panel: Data

for c = k = 3 on USA instances. Here we can reach larger sizes, and moreover fluctuations are

reduced. (Main panel) Average of the minimal gap ∆min as a function of N . Dashed line is a fit to

∆min(N) = 0.911 exp(−0.081N). Inset: average of [dmx/dΓ]max. In both cases, error bars are of the

order of the symbol size except when explicitly shown (N = 24). Dashed bars represent the standard

deviation of a single realization of the random variables ∆min and [dmx/dΓ]max.

4.3 Finitely degenerate ground state: c = k = 3

We now turn to the case c = k, where the complexity at T = 0 vanishes and the number of ground

states is finite with finite probability. We choose as the simplest example c = k = 3. The phase

diagram, reported in Fig. 4.1, is qualitatively identical to the one we obtained for c < k, the only

difference being that the equilibrium complexity now vanishes for T = 0 and any Γ > 0, so the number

of ground states is finite for any Γ. Another quantitative difference is that the first order transition

line looks exactly vertical and equal to Γc = c/k = 1, suggesting the existence of a hidden duality

relating the model at large and small Γ, which was indeed proven in [98]. Finally, we note that in

this case the spinodal lines seems to merge with the dynamical transition line exactly at the point

where the first order transition disappears; however, we believe that this is just a visual effect, since

we don’t find any reason why this should be the case.

There is a definite advantage in this case, namely that a finite fraction fUSA = 0.2850 ± 0.0022 of

instances have a single ground state, as discussed above, making the numerical determination of the

minimum gap much easier (while in the previous case, as in [8], USA instances are exponentially rare,

therefore impossible to be constructed at large N). We have therefore investigated the consequences
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of the transition at Γc for the spectral gap by investigating with exact diagonalization tools the

dependence on Γ of the low-energy part of the spectrum of H for small sizes. We restrict to USA

instances in order to unambiguously define the gap ∆(Γ) between the ground state of H and its first

excited state at all values of Γ. The spectrum of a typical USA instance of N = 15 spins is reported in

Fig. 4.3. We observe, as expected, that the gap ∆(Γ) has a minimum ∆min close to the phase transition

at Γc (recall that Γc ≈ 1 for c = 3 at N →∞). Around the same Γc, mx changes abruptly, hence its

derivative has a large maximum [dmx/dΓ]max. In Fig. 4.4 we show the behavior of the average ∆min

and [dmx/dΓ]max as a function of N . The data are clearly consistent with an exponential scaling of

the gap, which is expected in presence of a first-order transition (see [59] for a discussion on how to

compute the prefactor in the exponential in fully-connected models), and an exponential divergence

of [dmx/dΓ]max. The probability distribution over instances of ∆min and [dmx/dΓ]max has a unique

peak close to their average, and its variance is also reported in Fig. 4.4 (dashed bars). This shows

that all instances undergo a first order transition of the same kind in the thermodynamic limit.

Another very instructive example of the relevance of the first order transition is found by comparing the

cavity results with Quantum Monte Carlo (QMC), see Fig. 4.1. As we already stressed several times,

in the case c = k = 3, instances have a finite probability of being SAT, and otherwise have an energy of

order 1/N (see [93, 94]): moreover, a ground state of SAT instances can be found in polynomial time

using the Gauss elimination algorithm. This curcial observation allows to find a classical ground state

of SAT instances for very large sizes (N = 2049). In [35] the results of QMC simulations have been

reported. Starting from the classical ground state at Γ = 0 and slowly increasing Γ, the system follows

the evolution of the classical ground states upon introduction of quantum fluctuations. In particular

the QMC data follow closely the cavity result up to Γc, see Fig. 4.1. Then, as expected for a first-order

transition, there exists some hysteresis around Γc and until the system finally jumps to the QP phase.

Next, it was considered a more interesting QMC run starting from large Γ = 2 in the QP phase and

slowly decreasing Γ. In this case, QMC data follow the cavity ones down to the transition Γc, but then

the energy remains extensively higher than the ground-state energy for any Γ < Γc. This is obviously

due to the difficulty in following adiabatically the ground state across an exponentially small gap,

and is then an important indication of the difficulty of finding the ground state, even in presence of

quantum fluctuations. This result is also an important proof of the usefulness of the cavity method:

in fact, if it weren’t for the Gaussian elimination that allowed to find the classical ground state and

run the QMC starting from it, one would never be able to compute the quantum ground state using

QMC. In some models (of which we give an example just below), finding the classical ground states

is extremely difficult for any classical algorithm. The cavity method allows at least to compute the

ground state energy, even when Monte Carlo methods fail to find solutions of the problem.

4.4 UNSAT case: c > k

Finally, we discuss the UNSAT case c > k, taking as an example c = 4 and k = 3. The results for the

phase diagram are displayed in Fig. 4.1. In this case the model has a richer phenomenology, very similar

to the one of fully-connected mean-field models [11, 12, 74, 13]. At the RS level, the phenomenology

is unchanged and a first order is found between the CP and QP phases, as usual. However, in this

case the equilibrium complexity in the dCP phase becomes negative below a temperature Tc(Γ), the

condensation transition discussed in Chapter 2, signaling that the RS solution becomes incorrect. The

dCP phase then undergoes a thermodynamically second-order phase transition at Tc(Γ) to a true glass

(SG) phase, with a sub-exponential number of pure states. Therefore, at low enough temperature the
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first-order thermodynamic transition happens directly between the 1RSB Spin Glass and the Quantum

Paramagnet. For this reason, the RS computation gives a wrong result for the first-order transition

line, see top panel of Fig. 4.1. The correct result is obtained by finding the crossing between the QP

free energy and the SG free energy, and the latter has to be computed by optimizing over m the 1RSB

free energy and is in general higher than the CP free energy as obtained from the RS calculation. Still,

also in this case we conclude on the existence of a first-order quantum phase transition at Γ = Γc and

zero temperature, separating the SG from the QP. The transition extends in a line Γc(T ) ≈ c/k = 4/3

at low enough temperature, and is almost independent of T (at variance with the RS result).

Quantum Monte Carlo simulation was finally implemented using the same protocol as in the c = k

case [35]. However, in this case the problem is typically UNSAT [93, 94]: the classical ground states

have a finite energy per spin, they are typically finite, and finding them is extremely hard (actually,

NP-hard). Therefore, in this case one is severely limited in the search of the classical ground state, and

we can only find it for quite small sizes (N ≤ 120). Still, repeating the QMC procedure of increasing

Γ starting from the classical ground state, it was computed the ground state energy at finite Γ. A

good extrapolation in 1/N to the thermodynamic limit is possible, and the result agrees well with

the cavity method result, see Fig. 4.1. As in the previous case, the QMC run starting at large Γ and

reducing Γ fails to find the ground state at small Γ.

4.5 Discussion

In this Chapter, we discussed the phase diagram of a typical locked problem: the k-XORSAT model

on a c-regular random graph. As in the REM, discussed in Section 1.3, low energy states are far apart

in phase space (point-like ground states) but the Hamiltonian is a sum of local constraints, so that a

spin-flip changes the total energy of order ∆E = O(1). The full phase diagram of the quantum model

as a function of T and Γ has been detailed. The main features that emerge are:

1. There is a first-order quantum phase transition at T = 0 between the low temperature classical

phase (which can be either a classical paramagnetic or a spin-glass phase) and a quantum

paramagnetic phase, at a critical value of Γ = Γc.

2. The transition is due to a crossing between the low-Γ classical-like ground states, and the high-Γ

quantum paramagnetic state. It is of very different nature from the level crossing at infinitesimal

Γ between different spin-glass ground states discussed in [60, 62, 64].

3. The first-order transition is observed for almost all instances, even for very small N . In general,

finite size effects are extremely small in this model, and they are mainly due to the fluctuations

in the number of classical ground states.

4. The first order transition is generically associated to an exponentially vanishing gap of H [59],

hence, in this model, the quantum adiabatic algorithm requires a run time scaling exponentially

with system size to find the ground state.

The main missing ingredient in locked models with respect to the general picture outlined in Chap-

ter 3 is the internal entropy of the clusters of solutions. Since in these models clusters are isolated

configurations, and they are very far away from each other, their degeneracy is not lifted by quantum

fluctuations. Hence, level crossings at small Γ are absents in these models, at least at the level of

the ground state, and in the thermodynamic limit the ground states remain exactly degenerate on

increasing Γ up to the first order phase transition.
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4.5.1 Energy landscapes and quantum perturbations

In this Section we aim to compare different scenarios that are drawn from the study of the quantum

random energy model, discussed in Section 1.3, the random subcube model in Chapter 3, k-XORSAT,

discussed in this Chapter, and k-SAT, whose study has not been addressed, yet. We start the discussion

from the classical energy landscape of the models, as we believe that it is particularly important for

understanding the effect of quantum fluctuations. In Fig. 4.5 we sketch pictorially the energy per

spin as a function of the configuration for different models. Points close on the x-axis represent

configurations close in phase space in terms of their Hamming distance. Points far apart are thought

to be connected by a large number of spin flips. The picture highlights the main features that

distinguish the models:

a. The entropy (or the number of configurations) associated to each local minima. Local minima

may be exponentially degenerate (the entropy is positive) or not (the entropy is zero).

b. The energy associated to a spin flip of the low energy configurations. The variation in the

intensive energy can be either O(1) or O(1/N).

It also shows some very general aspects of mean field-like glassy systems, which are shared by all the

models considered here:

c. The energy landscape is dominated by many local minima

d. The distance between low energy configurations belonging to different minima is O(N)

e. The height of the energy barriers separating two different minima in terms of the intensive

energies is O(1)

Let us explain in some more detail these properties considering separately each model.

1. Random Energy Model

The schematic picture of the classical energy landscape of the REM is depicted in the upper

left panel of Fig. 4.5. In the case of REM almost all configurations have zero energy per spin.

Typical fluctuations of the total energy are of order
√
N and they all concentrate close to the line

e = 0 in the large N limit. Large deviations associated to e ∼ O(1) are exponentially rare but

thermodynamically relevant in the low-temperature phase. In Fig. (4.5) they are represented

by the departure of few points from the zero-energy trend. (In the picture we omitted large

deviations of positive energies because these are completely irrelevant).

Note that a configuration with e ∼ O(1) is immediately followed by a “typical” configuration,

with e ∼ O(1/
√
N) → 0 meaning that a single spin flip from a low energy configuration will

typically cause an extensive change in the total energy. This is a property that derives from the

unstructured nature of model, it is shared with the RSM and does not survive in Hamiltonians

with local interactions. Adding a transverse field has no effect on the classical spectrum of the

spin-glass. In fact, as it was shown in Section 1.3, the perturbative expansion of the low-energy

states of the REM reads:

ePi (Γ) = ePi +
Γ2

NePi
+O

( 1

N2

)
, (4.2)

and there is a second order correction in Γ which is subleading in N and so it cancels in the

thermodynamical limit.
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Figure 4.5: Pictorial energy landscape of the Random Energy Model (upper left panel), Random

Subcubes Model (upper right panel), XORSAT on a random regular graph (lower left panel) and

k-SAT (lower right panel). The figures aim to represent the energy per spin as a function of the

configurations. Close points on the x-axis refer to configurations that have a small Hamming distance.

Furthest points are thought to be far away in configuration space.

2. Random Subcube Model

In the case of the Random Subcubes Model the situation is quite different with respect to the

REM. The classical landscape of the model is shown in the upper right panel of Fig. 4.5. Most

of configurations belong to the V -level, out of the set S. Several configurations live on the same

local minima (cluster). These minima are extensively degenerate which means that each of them

has its own entropy. In this respect REM and RSM differ concerning point (a). The entropy

allows to make local movements remaining to the bottom energy. Then flipping a spin in a cluster

may produce a configuration which either belongs to the cluster itself or to the V sector. This is

associated respectively with a change in the total energy ∆E = 0 or ∆E ∼ O(N). Considering

the latter case, RSM and REM have the same behavior regarding point (b). According to what

we discussed a transverse field inducing quantum fluctuations will have a strong impact on top of

such landscape, degenerate states being particularly sensitive to fluctuations. When a transverse

field acts on the classical Hamiltonian of the RSM the corrections to the intensive ground state

energy ePi of each cluster i are the following:

ePi (Γ) = ePi − ΓsPi +
Γ2(1− sPi )

N(V − ePi )
+O

( 1

N2

)
, (4.3)

where we changed a little the notation with respect to Chapter 3 to make it here more similar to

that used for the REM. The first order correction in Γ is due to the lifting of the degeneracy of the

clusters. This contribution remains in the thermodynamical limit. The second order correction

in Γ is subleading, as for the REM, and it vanishes at large sizes. In fact due to the form of

ĤQ at the second order in perturbation theory (removing first the degeneracy inter-cluster for

RSM) only the configurations distant one spin-flip and that do not belong to the same cluster

contribute. However, exactly as in the REM, these have typically an extensive energy difference

from the minima and this causes the scaling with N of the correction.
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Conversely, states in clusters far apart will be connected at higher order in perturbation theory,

∼ ΓNO(1), because they are distant O(N) spin flips, as explained in point (d). This will then

induce only exponentially small corrections.

3. k-XORSAT on a regular graph

In the lower left panel of Fig. (4.5) we represented a schematic view of the landscape of the

k-XORSAT problem on a random c-regular graph and c ≥ k.
As in the REM each local minimum has a unique ground state, as a point-like cluster, and

consequently it has zero entropy. According to property (a) REM and XORSAT behave the

same. However due to the structure of the Hamiltonian of XORSAT the barriers can be climbed

through local movements, allowing intermediate energies. More precisely since the Hamiltonian

is a sum of local terms a single spin flip of a low-energy configuration always leads to a change

∆E ∼ O(1) in the total energy. Thus, REM and XORSAT are different with respect to point

(b). This makes a substantial difference when a transverse field is acting. In fact due to the

presence of low excited states surrounding the local minima perturbative calculations give to

the unperturbed energies ePi second (and higher) order contributions of the form

ePi (Γ) = ePi + Γ2O(1) . . . , (4.4)

with corrections at the leading order in N which persist in the thermodynamical limit, differently

from REM.

4. Random k-SAT

In k-SAT (or q-COL), even close to the satisfiability threshold, it is possible to flip some spins

within a satisfying configurations, and end up with a solution of the problem, so that the lowest

energy minima are degenerate as in RSM. However, since the Hamiltonian is the sum of local

constraints, as in XORSAT, spin flips give corrections ∆E ∼ O(1) to the total energy. Thus

random k-SAT shares the same behavior regarding property (a) with RSM, while it is similar

to XORSAT for what concerns point (b). Recalling the situation of RSM and XORSAT, and

the consequence of point (a) and (b) with respect to the application of a transverse field, we are

led to conclude that perturbation theory over the lowest excited states with energy ePi will have

leading contributions in N at all orders in Γn and in particular it will start from the first order

in Γ because of entropic effects:

ePi (Γ) = ePi + ΓO(1)︸ ︷︷ ︸
Entropic effects

+ Γ2O(1)︸ ︷︷ ︸
Energetic effects

. . . . (4.5)

Despite the fact that the scaling with N of the corrections to the low energy states of k-SAT might

not change dramatically the physics displayed by the RSM, it definitely makes the spectrum more

complex in particular by enhancing finite size effects. Indeed, it turns out to be quite difficult to study

numerically problems with a finite entropy at T = 0, as k-SAT. The difficulties rely mostly on the fact

that one has to consider large system sizes in order to achieve a satisfactory scaling limit in which

both the entropy of solutions and quantum corrections (or the spectral gap) scale properly with N .

Note that the quantum cavity method can be used to study k-SAT and similar problems, however the

computational cost is quite heavy, in terms of time and memory resources. For this reason the study

requires a careful analysis that we aim to pursue in the future.
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5

Facets of glassiness

This Chapter outlines the relevant phenomenology of glassy systems emerged by experimental or

numerical studies. It discusses also the “anomalous” behavior observed in solid Helium at low tem-

peratures and the reasons for the proposal of a superglass phase. Then, it introduces one the classical

theoretical framework in which these phenomena have been explained and important results presented

in the literature that deal with quantum (super)-glass phases. In Section 5.1 we discuss the experi-

mental results, regarding glasses or solid Helium at low temperatures. In Section 5.2 we review the

theoretical studies and the ideas of the literature.

5.1 Some phenomenology of glassy systems

5.1.1 Beyond the melting transition

A large number of different liquids form a glass when they are cooled fast enough in order to avoid

crystallization [99]. The metastable phase that the system explores at temperatures below the avoided

melting transition Tm, is called “supercooled liquid”. In this regime the characteristic time scales of

the system increase dramatically until becoming experimentally unaccessible at the glass transition

Tg. Very remarkably the typical time τ over which density fluctuations relax, varies of 14 order of

magnitude (from ∼ 10−12s at Tm to ∼ 102s at Tg) in a small range of temperature (Tm−Tg ∼ Tm/3).

The variation of τ(T ) is associated with an increase of the viscosity η(T ). At Tg the liquid does

not flow anymore and for all practical purposes it can be considered as an amorphous solid, a glass.

However Tg depends on the protocol, in particular on the cooling rate: indeed the definition of solidity

relies on a reference time scale [100]. Thus, the temperature Tg is conventionally defined as the point

where the viscosity reaches the value η(Tg) = 1013 Poise.

5.1.2 Relaxation time and fragility

As we said in the supercooled phase the change in the relaxation time is very large and it is very

sharp as a function of the temperature. However the detailed dependence of τ(T ) with respect to

temperature is quite different from glass to glass and the concept of fragility was introduced in order

to discriminate between different behaviors. Supercooled liquids divide in strong and fragile glass-

formers and the easiest way to visualize the difference is to look at the so-called Angell plot [99]. The

Angell plot reports the logarithm of τ(T ) against Tg/T and the left panel of Fig.5.2 is an example.

Liquids which fall on the straight dotted line in 5.2 are strong-glass formers and their τ follows an

53
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Figure 5.1: Schematic representation of the entropy as a function of the temperature for a glass-

forming liquid. For the sake of simplicity we introduce only the most relevant temperatures for our

discussion. Tm is the melting point. Tc corresponds to the dynamical transition in mean-field models

(what is called Td in the manuscript). Tg represents the conventional experimental glass transition.

TK indicates the ideal thermodynamic glass transition (the condensation transition Tc in the previous

Chapters). Picture from [101].

Arrhenius law:

τ(T ) = τ0 exp
( E

kBT

)
. (5.1)

Eq. (5.1) is the expected behavior for a relaxation dynamics which follows an activated behavior

driven by an energy barrier E, and where the barrier does not depend on temperature. Archetypes

of this behavior are window glasses (SiO2). Fragile liquids, instead, are those plotted in Fig. 5.2 and

they can not be fitted by a straight line on the Angell plot. The correct fitting law in this case in

not evident and it reflects some assumptions on the glass transition. A good fit is provided by the

Vogel-Fulcher-Tamman law (VFT):

τ(T ) = τ0 exp
( E

kB(T − T0)

)
(5.2)

which predicts a divergence of the relaxation time at finite temperature T0. Other good fittings with

a divergence at T = 0 have been also proposed. Despite the fitting form it is clear that, contrary

to (5.1), the barrier E depends on the temperature and it becomes steeper and steeper close to Tg.

This suggests the emergence of a cooperative phenomenon close to Tg and T0 is interpreted as a

temperature at which a structural arrest takes place. The comprehension of this phenomenon is the

subject of a vast literature and remains still unresolved [2].

5.1.3 Thermodynamics

The slowdown of the dynamics of liquids close to Tg is characterized by a first time scale in which

particles relax in their local environment, determined by one of the many minima (“cage”) of the

energy landscape in which they are trapped. Then a second slow relaxation from one minima to the

other occurs. In this picture one divides the entropy of the liquid in a vibrational contribution, which
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Figure 5.2: Left panel : Excess entropy Sc(T ) as a function of the temperature. The black dots are

obtained by calorimetric measurements of the entropy, while the open dots derive from the measure-

ments of the relaxation time, inverting the relation (5.6). At T = Tg the system freezes in one of

the amorphous states, with an extensive configurational entropy with respect to the crystal. The

extrapolation Sc(TK) = 0, obtained by the fit with Eq. (5.5) (solid line) defines the Kauzmann tem-

perature TK . Right panel : Relaxation time log τ for Salol and other materials as a function of the

temperature. The dashed line indicates the Arrhenius behavior. Tg is conventionally taken as the

temperature below which the system is unable to establish equilibrium within a time scale set by the

experimental conditions τg ∼ 102s. From [102].

is associated to the free volume intra-cage and a “configurational” entropy which counts the number

Nm of possible metastable states:

Sliq(T ) = Svib(T ) + Sc(T ) = Svib(T ) + logNm . (5.3)

In the approximation in which the vibrational contribution of the liquid and of the crystal are taken

equal Sc also quantifies the excess of entropy of the glass with respect to the crystal:

Sc(T ) = Sliq(T )− Svib(T ) ∼ Sliq(T )− Scryst(T ) . (5.4)

The measurements for determination of Sc (see Fig. 5.2, left panel) reveal a finite contribution per

particle, suggesting an exponential number of metastable states. Below Tg, however, the glass remains

stuck in some amorphous configuration and one cannot follow entirely the curve describing the de-

pendence of Sc with the temperature (see Fig. 5.2, left panel). Along the equilibrium phase Sc(T ) is

well described by the function

Sc(T ) = S0

(
1− TK

T

)
(5.5)

and the extrapolation of such curve predicts that Sc vanishes linearly at some finite temperature TK

(the Kauzmann temperature), so that Sc(TK) = 0. Remarkably, for a large number of liquids it turns

out that,within a tiny error, TK ≃ T0, where T0 is the temperature where VFT predicts the divergence

of the relaxation time. The relation between TK and T0 let people argue that the divergence of τ is
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related to the vanishing of Sc and from this follows the proposal of Adam and Gibbs:

τ(T ) = τ0 exp
( E

TSc(T )

)
, (5.6)

where E is a system dependent energy scale. Eq. (5.6) has been successfully tested with many liquids

and Fig. 5.2 is an example. However since Sc is supposed to count the number of states, it is odd that

it could become negative below TK , as Kauzmann first noticed. This suggests that the specific heat

T dSc/dT jumps at T = TK and a (continuous) phase transition takes place.

5.1.4 Static and dynamic correlations

One of the most challenging and open problems in the study of glasses is the identification of a

diverging static correlation length. This represents an important issue if one assumes the existence

of a critical point at T = TK . However one cannot rely on standard observables which are suited for

detecting a crystalline order. Consider for example the structure factor

S(q) = 〈ρqρ−q〉 , (5.7)

where ρq = 1/
√
N
∑N

j=1 e
iqrj is the Fourier transform of the density, N is the number of particles and

{rj} their position. The structure factor of a glass does not show remarkable differences from that of

a liquid. The structure of a glass, then, looks like that of a liquid. This is in contrast to what happens

for crystals, where S(q) displays Bragg peaks revealing that a well-defined order is established. So, if

an emerging length scale develops approaching Tg, it should be much more subtle.

An encouraging theoretical result in favor of the existence of such length was the rigorous proof

that the existence of a diverging time scale, must be accompanied by a diverging length scale [103].

Unfortunately one is not able to follow the equilibrium behavior of the liquid at small temperatures

and verify the presence of such divergence of τ at finite temperature. This is instead deduced from a

fitted extrapolation and it leaves room for debate as we discussed. Conversely the slow dynamics of

glass-forming liquids is interpreted as the real fingerprint of glassy system.

The dynamical correlation function, known as coherent scattering function

F (q, t) = 〈ρq(t)ρ−q(0)〉 , (5.8)

where now ρq(t) = 1/
√
N
∑N

j=1 e
iqrj(t) and the average is over the dynamical histories, measures

how quickly correlations decay in time. Approaching Tg, the coherent scattering function, as well

as other dynamical correlations, changes qualitatively and develops a plateau at intermediate times

which signals a two-step relaxation, see Fig. 5.3.

The time scale on which the system approaches the plateau does not depend on the temperature, while

the length of the plateau increases as the temperature is lowered. It is this second time scale which is

associated with the sharply increasing relaxation time τ . This two-step relaxation is consistent with

the picture that we gave above of the movement of particles constrained in a cage for some time and

a successive collective rearrangement toward a more favorable minimum.

Another important remark is that the emergence of the plateau is quite gradual in temperature,

however its height is immediately different from zero as soon as it appears. In this respect the

“transition” is discontinuous. The height of the plateau is often called the non-ergodicity factor.

Remarkably, the quantity (which coincides with the non-ergodicity factor within the glass phase)

f(q) = lim
t→∞

lim
N→∞

F (q, t) , (5.9)

defines a dynamical order parameter for the glass transition, which is zero for liquids and different

from zero in the limit of a diverging relaxation time.
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Figure 5.3: Coherent scattering function of atoms of Si at q = 1.7 Å
−1

at different temperatures,

obtained with molecular dynamics. From [1].

5.1.5 Quantum effects: glassy behaviour in disordered supersolids

In one of the first pioneering works on supersolidity in 1970, Leggett [20] suggested the idea that the

property of non classical rotational inertia, inherent of superfluid liquid Helium, could manifest also

in crystalline systems for large enough quantum fluctuations.

Since then, the possibility that a solid state, i.e. a system with broken translational and rotational

invariance and with periodic structure in the case of a crystalline phase, could display off-diagonal long

range order and thus macroscopic quantum coherence revealed to be attractive enough to induce many

groups to look for it. This phase of matter was named “supersolid”. However the first experimental

evidence of this phenomenon came only more than thirty years later, in 2004, when Kim and Chan

[104, 18, 19] found striking anomalies in the so-called torsional oscillator experiments with solid 4He

(see Fig. 5.4). In their experiment Kim and Chan considered an oscillating cell suspended through

a torsional rod and containing solid Helium in an annular channel. At resonance the period τ of the

oscillations is related to the inertia I of the sample through the relation τ = 2π
√
I/K, where K is an

elastic constant determined essentially by the rigidity of the rod. The period of the oscillations can

be measured with high accuracy and it is seen to decrease with the temperature. This phenomenon

is interpreted as the decrease of the inertia of the rotating system caused by the appearance of a

superfluid component which decouples from the motion of the cell. Due to the existence of a critical

velocity in the hydrodynamics of superfluids the shift in the period is maximum for small driving

velocities, cfr. Fig. 5.4. The relative change in the inertia is called “non-classical rotational inertia

fraction” (NCRIF) and it is identified with the superfluid fraction:

NCRIF =
ρs
ρ

=
I(T )− I(T0)

I(T0)
, (5.10)

where ρs is the superfluid density, ρ is the density of the system, I(T0) and I(T ) are the inertia of the

sample above and below the critical temperature T0. Fig. 5.4 (right panel) reports the measurements

of NCRIF in the Kim and Chan’s experiment as a function of the temperature.

After Kim and Chan’s experiments many other groups carried out analogous studies, confirming the

presence of several anomalies, not only in the rotational properties, but also in the elastic behavior or

in the specific heat [19] of solid 4He samples. Despite the huge efforts from both the theoretical and the

experimental sides, however, the interpretation of these results is still debated, although the ensemble

of the results seems to support the idea that such anomalies are the manifestation of a supersolid



58 5. FACETS OF GLASSINESS

Figure 5.4: Left panel: Torsional oscillator used by Kim and Chan [18, 104]. Picture from [19]. Right

panel: Measurements of the non classical rotational inertia fraction (NCRIF) done by Kim and Chan

as a function of the temperature, for different velocities of the oscillating cell. Picture from [105].

state of matter. One of the most prominent question which is raised by the experiments is the role of

impurities in the superfluid behavior of solid samples and whether disorder can help it or not. Even

if many theorists agree on the necessity of defects to induce such phenomenon the consensus is not

universal and the possibility of supersolidity as an intrinsic property of perfect crystals is still under

verification [105].

The numerous experiments performed after the discovery by Kim and Chan pointed out some dis-

crepancies among the measurement of the superfluid fraction of solid 4He with different protocols

and samples. Important studies about the effect of disorder where carried out by Rittner and Reppy

[22, 106], who investigated the effect of the cooling rate. They first annealed the samples of solid 4He

for 14 hours. Annealing is a well-known method to improve the quality of the sample and in this way

they obtained that the magnitude of the NCRIF decreased below the noise level of their experiments.

Afterwards they considered rapidly cooled systems systems. They found that when the sample was

quickly quenched so that the solid was rich of defects, the percentage of NCRIF was remarkably larger.

The series of experiments by Rittner and Reppy highlighted the relevance of the disorder due to the

sample preparation in the final value of NCRIF.

Later, in [21] it was argued that the relaxation time of the resonant frequency and of the dissipation

as a function of temperature, during the cooling procedure increases very fast. It was also shown that

the response has a history dependence and displays aging effects. This slow dynamics and the out-of-

equilibrium effects, together with the anomalous rotational inertia, were interpreted as the presence

of a superglass phase, different from the crystalline structure of 4He solid usually discussed. Although
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Figure 5.5: Snapshot of a 4He crystal sample with many defects. From [19].

the interpretation of the experiments is very difficult and debated, these results motivate a deeper

theoretical investigation of this superglass phase. This is one of the main motivations that drive our

study on quantum glasses and the superglass phase.

5.2 Theoretical framework

As we already discussed in Chapter 2, our approach to glasses is based on mean-field theory. This

leads to a scenario called RFOT theory that is described below. Note, however, that other approaches

have been also proposed [1].

5.2.1 Mean-field approach

Before discussing the theoretical studies of quantum glasses and the superglass phase, let us first

introduce the theoretical framework on which we base our understanding of a “classical” glass. The

features outlined in the previous Section call for a classical theory of the glass phase able to encode

(i) the dynamical slowdown measured experimentally, (ii) the two-step relaxational dynamics and

(iii) a large number of amorphous states, the analogue of Sc. Random First Order Transition theory

(RFOT) is a mean field approach which starts from these observations and leads to a coherent picture

of the glass phase. RFOT theory [107] is the result of several years of studies and the merging of

the results obtained independently and consistently within three theories (Adam Gibbs Theory [108],

Mode Coupling Theory [109] and Spin Glass Theory [110]).

A number of thorough studies brought to a complete picture of fragile glasses [111, 112, 113], consis-

tently accounting for points (i) (ii) and (iii). These works focus on interacting potentials defined in real

space and apply mean-field-like approximations to compute the thermodynamics in a 3-dimensional

geometry. One of the major difficulties in the study of amorphous systems is that it is not easy to

handle the site-to-site fluctuations of densities which exist already at the mean field level. One cannot

express the free energy as a function of a single (order) parameter, but instead it is necessary to take

into account the entire density field. Connected to this problematic there are also some subtleties in

the computation of the order parameter which, following Edwards and Anderson, is defined as:

qEA =
1

V

∫

V

dr 〈δρ(r)〉2 (5.11)

where δρ(r) = ρ(r) − ρ is the fluctuation of density. The average in Eq. (5.11) is over one of the
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Figure 5.6: Phase diagram of soft spheres in the plane (ϕ, T ). The two black lines indicate the

dynamical and the Kauzmann transition, Td(ϕ) and TK(ϕ). At T = 0, ϕJ indicates the jamming

transition. Figure from [113].

equilibrium amorphous states and the result, in the limit of large volume, is not expected to depend

on the choice of such state.

In Section 6.1 we will recover some of these results but in the simplification of a lattice model. The

model is a generalization of [36] which proved to be a good lattice model for structural glasses. In [36]

a model of interacting particles is defined through a repulsive potential which prevents particles from

having more than ℓ neighbors, where ℓ is a parameter. This amounts to enforce a hard constraint,

assigning an infinite energy to “unsatisfying configurations”. In Section 6.1 we will consider instead

of the infinite barrier a finite repulsive soft potential. This is the analogue on the lattice of the

work [113] which focuses in the continuum on particles interacting with a harmonic soft potential and

which extends at finite temperature and high densities the results obtained for hard-sphere models

[111, 112]. The phase diagram is shown in Fig. 5.6.

In the absence of thermal fluctuations (so in the case of hard spheres) the only control parameter is

the density ρ = N/V , where N is the number of particles and V the volume. Equivalently in the

continuum one can use the packing fraction ϕ = πσ3ρ/6, σ being the particle diameter. Dealing with

soft-potentials one has two parameters at disposal to tune in order to drive the system into the glass

phase. Natural choices are the density ρ and temperature T .

As we already discussed in Chapter 2, a fundamental quantity in mean field models is the configu-

rational entropy or complexity which counts the number of metastable states. It is the analogue of

Sc, discussed in Section 5.1, and it is customary to indicate it Σ(ρ, T ) . There are three main points

which distinguish the phase diagram of mean-field glasses and in which Σ plays an important role.

• The dynamical transition (also known as clustering transition) signals the appearance of an

exponential number of glassy states. It occurs in correspondence of a given density ρd (or

temperature Td), beyond which the dynamics is arrested while the thermodynamic quantities

are analytic. This point is identified with the dynamical transition predicted by Mode-Coupling

Theory. Remarkably the dynamics of systems approaching ρd has a two-step relaxation.

• A Kauzmann transition is the “true” thermodynamical glass transition, where the compressibil-

ity or the specific heat have a jump. The transition is second order from the thermodynamic

point of view. Beyond ρK the system is frozen in a sub-exponential number of amorphous states.

• For a system of hard spheres the (random) close packing point defines the highest possible
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density that can be reached in the limit of infinite pressure. Higher densities are not allowed.

In the case of soft potentials it coincides with the jamming transition ρJ at T = 0 where the

energy increases continuously from zero. For ρ > ρJ the particles are not able to arrange in the

volume without overlapping and consequently the ground state has a positive energy [113].

In the interval ρ ∈ [ρd, ρK ] the complexity is positive. For ρ < ρd it jumps to zero in a discontinuous

way, while at ρK is vanishes continuously remaining zero for ρ > ρK .

Interestingly, all these transitions, as well as the configurational entropy Σ(ρ, T ), are the same outlined

in Chapter 2 and thus have an analogue in the study of constraint satisfaction problems. The density

of particles plays the role of the density of constrains and the complexity takes the same meaning.

Then, the dynamical transition αd, the condensation transition αc and the SAT/UNSAT transition

αs of CSPs are the counterparts of ρd, ρK and ρJ , as they describe the same physical phenomena.

This picture, on the analogy between CSPs and glasses, is the further result which followed the initial

observations on the similarities between spin-glasses and supercooled liquids obtained by RFOT theory.

5.2.2 Quantum glassy systems: first-order phase transitions

The extension of RFOT theory to quantum systems has been initiated by studying different quantum

versions of fully connected p-spin glasses [11, 12, 74, 13]. Quantization of the models was carried out

by introducing a transverse field [11, 12] or by considering the spherical spins as the coordinate of a

particle moving in a N dimensional space and then by introducing the momentum with appropriate

commutation relations [74, 13]. The models were studied via imaginary time path integral and replica

method, or by a TAP approach extended to the quantum case. In all the cases considered in [12, 74, 13],

where classically the model undergoes a RFOT transition, it was found that the system displays a

second to first-order phase transition at low temperature T as a function of the quantum parameter

Γ. Along the first-order phase transition the linear susceptibility has a jump and there is latent

heat. These studies highlight the strict connection between the thermodynamical properties of CSPs

introduced in Chapter 1 and structural glasses. Indeed the phase diagrams found in [12, 74, 13] and

in the quantum REM or in XORSAT on a regular random graph are very similar (see Figs. 1.3 and

4.1). The strong similarities shared by the p-spin model and k-XORSAT can be understood because

the latter is the dilute version (finite connectivity) of the fully connected p-spin model. However,

the picture provided by these studies is not complete, since all the models are in the glass phase

at low enough T in absence of the quantum term; in other words, none of these models display,

in the classical limit Γ = 0, a glass transition at low temperature as a function of another control

parameter (e.g. the density). The possibility of studying the glass transition at low T as a function

of ρ adds an important ingredient to the discussion, which is entropy. In fact, the models studied in

[11, 12, 74, 13, 59, 114, 35] have a non-extensively degenerate ground state, hence their entropy at

T = 0 vanishes. Conversely, lattice glass models might have a finite entropy even at T = 0 (think for

instance to hard spheres [112]) and in this case the glass transition is completely driven by entropy.

In Chapter 3 we presented a preliminary attempt to take into account the role of entropy in this class

of problems with a toy model. We showed that due to the interplay of classical entropy and quantum

fluctuations, the latter may induce the formation of a glass: from a liquid phase at Γ = 0 the system

can fall in a glassy situation as soon as Γ > 0.

A crucial aspect concerning the properties of classical glassy systems is their slow dynamics. From the

perspective of quantum systems this issue has been first addressed in [115], thanks to a Schwinger-

Keldish formalism which enables the study of the real time dynamics. We will comment more on this
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in Section 8.2, however for the moment let us anticipate that in [115] it was shown that a quantum p-

spin model displays the same slow dynamics and the two-step relaxation as the classical counterpart.

Thus, quantum fluctuations, at least for some region in phase diagram, do not destroy glassiness.

Interestingly enough, very recently [116] a thoughtful study on quantum particles interacting via

a Lennard-Jones potential suggested that quantum fluctuations could promote the glass transition,

analogously to what we found in the random subcube model. Differently from the p-spin interaction

this model retains entropic effects also at low temperature. In order to study this problem it was

developed a suitable scheme to extend the results of mode coupling theory to quantum systems. The

glass transition was then identified dynamically, as the point where the relaxation time diverges. A

similar phenomenon where quantum fluctuations favor the formation of the glass phase has been

shown very recently in an analytical study based on the replica method on quantum particles with

Lennard-Jones interactions [117]. Within this scheme the complexity is accessible and it turns out

that the Kauzmann transition at fixed density occurs at higher temperature in the quantum case

with respect to the classical model. However in both works [116] and [117] the techniques used did

not allow to include exchange effects, so that the interplay with the superfluid phase could not be

investigated.

5.2.3 Superglass phases

A very interesting point that remains open is the possibility that a glass could display superfluidity.

The studies presented in the previous Section either do not take into account the exchange of particles

or they consider a quantum term which is not responsible for superfluidity (like a transverse field).

Moreover the low temperature transition between the glass phase and the quantum paramagnetic

phase is of first order. This led to argue that the “quantum” and the “glass” regime are well distin-

guished and do not interplay cooperatively. On the contrary, the simultaneous presence of amorphous

order together with off-diagonal long range order would lead to a particular supersolid phase called

“superglass”. From the experimental side the understanding of this issue is of prominent importance,

being one of the proposals for the explanations of some experiences with disordered samples of 4He.

As discussed in Section 5.1 the experimental results obtained by Ritner and Reppy [22, 106] raised

the question on the role of impurities in the superfluid behavior of solid 4He samples and whether

disorder could help it or not. The natural and still open question is why freezing in an amorphous

density profile should enhance superfluidity compared to the crystalline case, which instead is thought

to show zero or very small condensate fractions [118, 119].

The existence of a superglass phase has by now only been shown numerically [25] or analytically in [23].

The model considered in [23] consists of bosonic particles interacting via a short-range potential in

three dimensions. The approach is based on a mapping between quantum Hamiltonians and (classical)

Fokker-Planck operators which allows to fully characterize the ground state wavefunction and to obtain

time-dependent correlations from the analysis of the stochastic dynamics of a classical equilibrium

system. In this way they found a model with a glassy order and a small but strictly non-zero superfluid

density fraction. In [25] a system of 4He was simulated by imaginary time Path Integral Monte

Carlo method (PIMC) for two representative densities, ρ = 0.0292 Å−3 and ρ = 0.0359 Å−3. They

initialized the simulation with two different initial conditions, one corresponding to a hcp crystal and

one highly disordered which was afterwards quenched down in temperature. It turned out that the

one-body density matrix n(r′, r) =
〈
ψ†(r′)ψ(r)

〉
decays exponentially with the distance |r′ − r| for

the crystalline configuration (see Fig. 5.7), while it remains finite for the amorphous state, which they

called “superglass”. In Chapter 7 we will comment more on these results.
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Figure 5.7: Single particle density matrix n(r) for the glass (open symbols) and the crystal (filled

symbols) at the same densities and temperature. n(r) is the spherical average of n(r′, r) =〈
ψ†(r′ + r)ψ(r′)

〉
where ψ(r) is the annihilation operator. The glass exhibits off-diagonal long range

order. Picture from [25].

Clearly it is very hard to to study the quantum glass phase. The phase is in fact metastable with

respect to the crystalline order, and this can represent a problem also for a classical study. However

the analysis of the dynamics is much more complex in the quantum case. In a classical system,

for instance, one can quite easily simulate the physical dynamics of the system by solving Newton’s

equations of motion [120]. In contrast, the real-time dynamics of quantum systems is very often not

accessible numerically, because of the sign problem for instance, and calculating properties involving

glassy quantum system is problematic.

We conclude by mentioning that other examples of superglass phases have been found in systems

displaying a standard second order spin-glass transition [110, 24, 26]. However, the physics of RFOT

is quite different from that of a second order spin-glass transition, therefore the extension of these

results to the RFOT scenario is not straightforward.
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6

Quantum glasses on the Bethe

lattice

In this Chapter we study a bosonic quantum version of a lattice model (the Biroli-Mézard lattice

glass model [36]) whose classical counterpart captures the physics of structural glasses. The aim is

to examine the effect of quantum fluctuations in the system. In particular we are interested in the

interplay between quantum effects and the amorphous order developed in the glass phase, and with

the large degeneracy of states that in the classical limit leads to a finite entropy at T = 0. We

compute the phase diagram of the system to find the liquid-glass transition line, and we investigate if

a superglass phase is present. We do this by means of the quantum cavity method, whose treatment

for the particular problem is reported in Appendix A. We find a complex phase diagram at low

temperature, characterized by two phenomena: (i) A re-entrance of the glass transition line towards

lower density on increasing quantum fluctuations, driven by entropy; (ii) A first-order phase transition

between superfluid and glass at zero temperature. Our results suggest that a true superglass phase is

not present in the model, but we find a phase coexistence between superfluid and glass, which might

have interesting phenomenological consequences.

The Chapter is divided as follows. In Section 6.1 we introduce the classical model. We discuss the

RS and the 1RSB solutions and the phase diagram that emerges. In Section 6.2 we generalize the

model as a quantum many-body system. Then we present the main results for the quantum system,

discussing in different subsections the order parameters of the different phases, some details of the

cavity computations and the main results on the phase diagram of the model. Finally we investigate

the quantum dynamics of the model in imaginary-time: we show that approaching the glass phase

the quantum dynamics becomes slower and slower and the density correlations do not relax. Finally,

in Section 6.3 we summarize our results.

6.1 The classical model

The classical model considered in the following is a generalization of a lattice glass model proposed

in [36, 121] and widely used as a prototype for the description of particle systems undergoing a glass

transition. Its degrees of freedom are occupation numbers ni = {0, 1} of the sites i = 1, . . . , N of a

graph, a particle being present on site i if and only if ni = 1. If a site i is occupied it feels a repulsive

interaction with the particles on the neighboring sites of the graph, the set of which shall be denoted

65
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∂i. More precisely, each particle can have at most ℓ neighbors without any energy cost and it is

subject to an interaction V > 0 for every neighboring particle in excess. The Hamiltonian describing

this interaction is the following:

H = V
∑

i

ni qi θ(qi)− µ
∑

i

ni , (6.1)

where qi =
∑

j∈∂i nj − ℓ is the number of neighbors “in excess”. Here and in the following θ(x) = 0

if x < 0 and θ(x) = 1 if x ≥ 0. We included in H the chemical potential µ conjugated to the total

particle number. The original model of [36, 121] corresponds to the case V → ∞; configurations

where one particle has more than ℓ neighboring sites occupied are then strictly forbidden. This finite

V version will be more convenient for the quantum generalization described later on.

The model above can be defined on any finite graph. Its finite dimensional version has been studied

numerically by Monte Carlo simulations in [36, 122, 123], demonstrating that it exhibits the phe-

nomenology of glassy systems. Note that there is no quenched disorder in the Hamiltonian; as in real

liquids the disorder and frustration that yield an amorphous glassy order are in fact self-generated by

the different possible arrangements of particles. In order to obtain analytical results we will study the

model on the Bethe lattice through the cavity method, similarly to [36, 121].

For completeness let us give here the definition and the relations between thermodynamic observables,

i.e. the partition sum at temperature T = 1/β, Z(β, µ) =
∑

{n} e
−βH({n}) = e−βNf(µ,β), the Gibbs-

Boltzmann distribution µ({n}) = e−βH({n})/Z(β, µ), the free energy per particle f(µ, β) = e−µρ−Ts,
where e = V ∂V f , s = −∂T f , ρ = −∂µf are respectively the average energy and entropy per particle,

and the density.

6.1.1 The liquid phase: RS solution

We now proceed to discuss the cavity method at the replica symmetric (RS) level, extending the

derivation of [121] to the soft (finite V ) model. The derivation of the RS cavity equations (see

Chapter 2) can start by considering the solution of the model on a finite tree (a slightly different

method will be used in Appendix A). As represented pictorially in Fig. 6.1, trees admit naturally a

recursive description. Consider the sites 1, . . . , k in absence of their common neighbor 0 (they become

so-called “cavity sites”). Because of the tree structure the Gibbs-Boltzmann probability distribution

factorizes over the k-subtrees rooted at 1, . . . , k. Each “cavity site” i can be found in three different

states: empty if ni = 0, saturated if ni = 1 and if the number of occupied neighbors above it (which

is k at most) is ≥ ℓ and unsaturated if ni = 1 and if the number of neighboring particles above is

< ℓ. We shall denote {ψei , ψui , ψsi } the respective probabilities of these three states with respect to the

Gibbs-Boltzmann measure. Thanks to the factorization properties of trees one can obtain recursion

relations between these cavity probabilities [78, 121]:

ψe0 =
1

ziter

ψu0 =
eβµ

ziter

(
k∏

i=1

ψei

)
ℓ−1∑

j=0

∑

1≤i1<···<ij≤k

j∏

p=1

ψuip + ψsip e
−βV

ψeip

ψs0 =
eβµ

ziter

(
k∏

i=1

ψei

)
k∑

j=ℓ

e(ℓ−j)βV
∑

1≤i1<···<ij≤k

j∏

p=1

ψuip + ψsip e
−βV

ψeip

(6.2)

where ziter is a normalization constant ensuring ψe0 + ψu0 + ψs0 = 1. Note that the j = 0 term in the

sum in the second line of the above equation (which is the only one for ℓ = 1) should be interpreted
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Figure 6.1: Illustration of a cavity iteration for the classical system. The sites 1, · · · , k are described,

in absence of site 0, by cavity fields ψe,u,sl , l = 1, · · · , k. Integrating out these sites leads to the

expression of ψe,u,s0 in Eq. (6.2).

formally as giving a contribution equal to 1. Deep inside a very large regular tree, for an homogeneous

liquid phase, the cavity probabilities converge to the fixed-point solution of Eq. (6.2),

ψe =
1

ziter

ψu =
eβµ

ziter

ℓ−1∑

i=0

(
k

i

)
(ψe)k−i(ψu + ψse−βV )i

ψs =
eβµ

ziter

k∑

i=ℓ

(
k

i

)
(ψe)k−i(ψu + ψse−βV )ie(ℓ−i)βV .

(6.3)

The solution of Eq. (6.3) can be easily found numerically for any choice of the parameters β, µ, V .

The recursive equations written above were strictly valid for trees. The local tree-like character of

random graphs allows however, under the correlation decay hypothesis of the RS cavity method, to

apply these results to the thermodynamic limit of Bethe lattices. One finds in particular for the free

energy density [78, 121]:

f = ∆fsite −
c

2
∆flink = − 1

β
log zsite +

c

2β
log zlink (6.4)

with

zlink = (ψe)2 + 2ψeψu + (ψu)2 + 2ψeψs + 2ψsψue−βV + (ψs)2e−2βV ,

zsite = 1 + eβµ

[
ℓ−1∑

i=0

(
k + 1

i

)
(ψe)k+1−i(ψu + ψse−βV )i +

k+1∑

i=ℓ

(
k + 1

i

)
(ψe)k+1−i(ψu + ψse−βV )ie(ℓ−i)βV

]
.

(6.5)

Equations (6.4) and (6.5) express the Bethe free energy, that we introduced in Chapter 2 with the

generic equation (2.7), for this particular model. All thermodynamic observables can then be obtained

from Eq. (6.4) by derivation with respect to the parameters β, µ, V . Actually only their explicit

dependence has to be derived, the order parameter equations (6.3) being stationary point conditions

of f with respect to ψe,u,s.

The replica symmetric solution provides the natural description for the homogeneous, liquid (or para-

magnetic) phase where all correlations are short ranged. However, the correctness of the RS ansatz

breaks down when one approaches the glass phase, where the system develops amorphous density

profiles and long range correlations. In this model this happens at low enough temperature, when

the competition between the chemical potential µ and the interaction energy V is the strongest. One
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evidence for the inconsistency of the RS assumption is the fact that the associated entropy becomes

negative in this region of parameters, which is impossible for a discrete model. Another criterion for

the incorrectness of the RS ansatz is the divergence of the so-called “spin-glass” susceptibility, defined

as χSG(β, µ) = N−1
∑

i,j〈ninj〉2c . For all parameters we investigated we found no divergence of the

susceptibility. This means that the resolution of the entropy crisis requires a phase transition which

has to be discontinuous since it is not associated to a diverging susceptibility. This scenario is typical

for models displaying 1 step replica symmetry breaking (1RSB) [121].

6.1.2 The glass phase: 1RSB solution

As we discussed in Chapter 2 in the 1RSB description one partitions the Gibbs measure characterizing

the model in many pure states, identified by an index α, each of them having free-energy fα and

assumes that these states are exponentially numerous N (f) ∼ eNΣ(f).

We call η = {ψe, ψu, ψs} the set of the (normalized) fields that appear in Eq. (6.2) and P(η) their

joint probability distribution. Eq. (6.2) defines a map η0 = η̄(η1, · · · , ηk) that allows to construct a

new field from a set of k fields. Using this map, the 1RSB equation reads:

P(η) =
1

Z

∫ k∏

i=1

dηi P(ηi) δ(η − η̄(η1, ..., ηk)) ziter(η1, ..., ηk)m , (6.6)

where Z is the normalization constant and ziter = exp(−β∆fiter), similarly to what we discussed in

Chapter 2. Moreover the quantities defined by the equations (2.15) and (2.16), that enter in the

definition of φ(m), Eq. (2.14), for this model are given by:

zsite(η1 · · · ηk+1) = 1 + eβµ

(
k+1∏

i=1

ψei

)

ℓ−1∑

j=0

∑

1≤i1<···<ij≤k+1

j∏

p=1

ψuip + ψsip e
−βV

ψeip

+
k+1∑

j=ℓ

e(ℓ−j)βV
∑

1≤i1<···<ij≤k+1

j∏

p=1

ψuip + ψsip e
−βV

ψeip


 ,

zlink(η1, η2) = ψe1ψ
e
2 + ψe1ψ

u
2 + ψu1ψ

e
2 + ψu1ψ

u
2 + ψe1ψ

s
2 + ψs1ψ

e
2 + ψu1ψ

s
2e

−βV + ψs1ψ
u
2 e

−βV + ψs1ψ
s
2e

−2βV .

(6.7)

Depending on the value of the external parameters β, µ, V and m the three situations already outlined

several times can occur: (i) the RS solution P(η) = δ(η − ηRS), (ii) the d-1RSB solution with P(η)

non trivial, m = 1 and Σ > 0, (iii) the c-1RSB solution with P(η) not trivial, m < 1 and Σ = 0.

The RSB equations (6.6) can be solved through the population dynamics method [78], as explained

in Section 2.1.3. As we discussed, in order to get an accurate solution of the 1RSB equations by

the iteration of the population dynamics algorithm, the inverse participation ratio (IPR) should be

maintained as close as possible to one. We observed that the implementation of the population

dynamics method with the definition of the fields given in Eqs. (6.2) leads to very small values of the

IPR (this can be traced back to the presence of the factor eβµ which takes very high values for the

relevant values of the parameter). It turns out that a redefinition of the fields allows to bypass this

problem. We found much larger values of the IPR using:

φei =
1

z′iter
ψei φui =

e−βµru

z′iter
ψui φsi =

e−βµrs

z′iter
ψsi , (6.8)

where ru and rs are two a priori arbitrary parameters (a good choice for the case c = 3, ℓ = 1 was

ru = 1/5 and rs = 2/5). In terms of the transformed fields, the local self consistent equations (given
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here only for ℓ = 1 for simplicity) become:

φe0 =
1

z′iter

k∏

i=1

(
φei + φui e

βµru + φsi e
βµrs

)

φu0 =
eβµ(1−ru)

z′iter

k∏

i=1

φei

φs0 =
eβµ(1−rs)

z′iter

k∏

i=1

φei

k∑

j=1

e(1−j)βV
∑

1≤i1<···<ij≤k

j∏

p=1

φuipe
βµru + φsip e

−βV+βµrs

φeip

=
eβµ(1−rs)

z′iter
eβV

(
k∏

i=1

(
φei + e−βV (φui e

βµru + φsi e
−βV+βµrs)

)
−

k∏

i=1

φei

)
.

(6.9)

Of course analogous transformations take place in the expression of zsite and zlink given in Eq. (6.7).

This change of parameters was particularly important in the quantum case discussed below where the

population sizes are much more limited by computational costs.

6.1.3 Thermodynamics of the classical model

In Fig. 6.2 we report the phase diagram for the classical model with c = 3 and ℓ = 1, as a function

of density and of temperature (in units of V ). The two lines denote the dynamic and Kauzmann

transitions, below which the system is found in the glass phase. Increasing the density from a low

value, for a fixed low enough temperature, the system encounters first the dynamic transition and

then the Kauzmann transition towards the condensed glass phase. However if one keeps increasing

the density the system returns to a liquid phase; this is because if the chemical potential is large

enough (µ≫ V ), almost all sites will be occupied leaving only a small fraction of “holes”. The system

of holes has a short range interaction similar to the original one (i.e. for particles) and is therefore

liquid when the density of holes is small enough, while it becomes glassy when the density of holes is

large enough. The “hole glass” transition which is approached from higher density is therefore due to

the fact that we introduced a finite repulsion V which can be overcome by a large enough µ, and it

is qualitatively equivalent to the transition which takes place at lower densities. A very similar phase

diagram has been found in the study of a realistic model for colloidal systems [124], which confirms

the validity of the Biroli-Mézard model to describe the physics of structural glasses.

The thermodynamics of the system inside the glass phase has to be computed exploiting the 1RSB

formalism. Fig. 6.3 shows in blue the density as a function of the chemical potential at β = 8 and

β = 30, both in the liquid and in the glass phase. The red dashed line represents the RS solution within

the glass region, which clearly differs from the true 1RSB solution. For the same two temperatures

the behavior of the parameter m∗ as a function of the density is shown in Fig. 6.3. It differs from

one only inside the condensed glass phase, after the Kauzmann transition. It decreases fast going

deeper into the glass phase, down to a value proportional to the temperature. Note that the model

presents a glass transition also at zero temperature, as a function of the density, with ρd = 0.5708 and

ρK = 0.5725 on the “particle” side [121, 125]. This is of particular interest in view of the extension of

the model to the quantum case.

In the limit of zero temperature the parameterm∗ approaches zero at a finite density ρJ = 0.57574 [121,

125]. Below this value of density, the average energy is zero, while above this value it becomes non-

zero (the system is so dense that it is unable to satisfy the constraint that each particle has less or

equal than ℓ neighbors). This point corresponds to the “random close packing” or “J-point” in the
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Figure 6.2: Classical phase diagram in the (ρ, T ) plane for c = 3 and ℓ = 1. The dynamical (Td) and

Kauzmann (TK) temperatures are plotted as a function of the density. See Ref. [124] for a study of a

realistic model that displays a similar phase diagram.
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Figure 6.3: Left panel : Average density as a function of the chemical potential, at β = 8 (upper

panel) and β = 30 (lower panel). The inset shows a zoom of the β = 30 data around the Kauzmann

transition. Right panel : Behavior of the parameter m∗ as a function of the density at β = 8 and

β = 30.
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literature on hard spheres in the continuum, that we introduced in Section 5.2 (see e.g. [112] for a

review and a list of relevant references). This is seen in more detail in the inset of Fig. 6.3 which

reports data for β = 30 that are very close to the zero temperature limit: above the glass transition

ρK , the density in the 1RSB solution increases slower than in the RS solution and reaches a plateau

at the value ρJ = 0.57574 for µ < V = 1. Only when µ > V = 1 the constraints are violated at zero

temperature and the density can increase above ρJ. The latter is marked by the horizontal dashed

line in the figure.

One can recognize that the glass transition of the original model proposed in [36, 121] is recovered

here as the zero temperature limit of the glass transition, and it is here reached in the “SAT” (namely

zero energy) phase. It corresponds indeed, to the limit βV →∞ for a suitable and finite value of βµ.

On the other hand, in that context, the presence of a “hole” glass transition is excluded a priori by

the definition of the model, which does not allow configurations violating the energy constraint.

6.2 The quantum model

The quantum version of the model is obtained by adding to its classical potential energy a kinetic

term allowing hoppings of particles between neighboring sites. Since the classical energy forbids

configurations with more than one particle per site, we are in fact dealing with interacting hard-

core bosons. The Hamiltonian is now an operator acting on the Hilbert space spanned by the 2N

classical configurations of the occupation numbers. The potential energy is diagonal in this basis.

Denoting J the intensity of the quantum tunneling between neighboring sites one obtains the following

Hamiltonian:

Ĥ = −J
∑

〈i,j〉

(â†i âj + â†j âi) + V
∑

i

n̂i q̂i θ(q̂i)− µ
∑

i

n̂i , (6.10)

where the first sum runs over the pairs of adjacent sites, â†i and âi are standard hard-core bosonic

creation and annihilation operators on site i, n̂i = â†i âi and q̂i =
∑

j∈∂i n̂j−ℓ. A thermodynamic study

of the model then amounts to the computation of the quantum partition function Z = Tr
[
e−βĤ

]
and

of the average value of the observables Ô defined as 〈Ô〉 = Tr
[
e−βĤÔ

]
/Z.

As in the classical case we consider the model on the Bethe lattice and we solve it through the quantum

cavity method that was outlined in Chapter 2. The particular equations for this model are instead

reported in the Appendix A. We remark, that differently from the discussion of Section 2.2 that deals

with quantum spins in a transverse field, here, the case of hopping particles needs a more sophisticated

treatment, explained in Appendix A.

The system investigated here presents a rich phase diagram, which emerges from the classical case

discussed in Section 6.1 when the additional effect of the hopping is taken into account. In the following

we first discuss the finite temperature phase diagram, which is directly accessible to our method, and

then we argue on how it extrapolates to the zero temperature limit.

Note that the hopping amplitude J/V controls the strength of quantum fluctuations. As we showed

in the previous sections, for the classical problem where J = 0, the thermodynamic glass phase

is delimited by the curve TK(ρ) of Fig. 6.2 (while the dynamical glass is delimited by Td(ρ)) in

the temperature-density plane, similarly to what happens for more realistic models of structural

glasses [124]. One can then imagine to approach the glass phase from higher or lower densities. As

we discussed in section 6.1.3, the two transitions are qualitatively equivalent and in the following we

will focus on the region of the phase diagram corresponding to small densities. From a physical point

of view, this side of the glass transition is the most interesting one, since it corresponds to a packing
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problem, which we have relaxed through the soft constraint V . From now on we will focus on the

model defined by c = 3 and ℓ = 1. As before we will measure energies in units of V throughout this

section, leaving it implicit in the text (but not in the figures).

6.2.1 Order parameters: definitions

Edwards-Anderson parameter

As we already discussed for the classical case, a fingerprint of the glass transition is the appearance

of a local inhomogeneous density profile, signaling the breaking of translation invariance. If one

considers the Gibbs measure over imaginary-time paths which is constructed by the Suzuki-Trotter

decomposition, the transition that separates the liquid phase from the glass is of the same kind of the

one described in Section 6.1.2 for the classical system.

As in Section 6.1.2, we can label the different glass states by an index α; each state has free energy fα

and we can perform the same construction as in Section 6.1.2 to compute the complexity for the Gibbs

measure on imaginary-time paths. We denote by 〈Ô〉α the average of an observable Ô in the restriction

of the Gibbs measure to a given glass state. Inside each glass state one has 〈n̂i〉α 6= 1
N

∑
i〈n̂i〉 = ρ,

while the average density is the same for each state, ρ = 1
N

∑
i 〈n̂i〉α. These density fluctuations are

conveniently characterized by the Edwards-Anderson order parameter [110]:

qEA =
1

N

∑

i

∑

α

Wα[〈n̂i〉α − ρ]2 , (6.11)

where we take the average over the states according to their weights Wα ∝ exp(−βNfα), and the over

bar indicates the average over random graphs. The order parameter qEA jumps to a finite value at

the dynamical transition, where the glassy states appear for the first time [126]. This non-zero value

of qEA corresponds physically to the long time limit of the density-density correlation function [126],

as we will discuss later on. As we already said, the jump of the order parameter is a peculiarity of the

glass transition which still remains second order from the point of view of the singularity of the free

energy.

Condensate density

In presence of a finite hopping strength, the system might display Bose-Einstein condensation (BEC).

This is manifested by a finite expectation value of the bosonic operator 〈â〉 6= 0 in the grand-canonical

ensemble. However, since the number of particles is conserved by the Hamiltonian and by the cavity

equation, in absence of symmetry breaking terms the expectation value 〈â〉 is always zero. More

precisely, one possibility to define the order parameter of the BEC transition amounts to add a small

perturbation to the Hamiltonian that breaks that symmetry Ĥh = Ĥ − h∑i(âi + â†i ) and then send

it to zero after the thermodynamic limit is taken

〈â〉 = lim
h→0

lim
N→∞

〈â〉h , (6.12)

where 〈•〉h denotes the thermodynamic average in presence of the perturbation. Note that this

procedure does not present any particular difficulty for the cavity method, that gives direct access

to the thermodynamic limit. However, an equivalent and more practical way to allow the symmetry

breaking, that we used here, is to initialize the population dynamics algorithm with a fraction of

“asymmetric trajectories”, i.e. trajectories such that the number of hoppings from a given site i to

a given neighbor j is not equal to the hoppings from j to i. In absence of BEC, these trajectories
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disappear under the cavity iterations, while in the BEC phase the symmetry breaking is preserved,

thus allowing for a non zero value of 〈â〉. Indeed in the BEC phase, there are long range exchanges,

and “incoming” and “outgoing” currents from a site to a given neighbor do not balance: even if they

balance on average, they do not on each individual trajectory of the population. The mathematical

reasons for this have been detailed in [83] and we have reported it in Appendix A.

The order parameter 〈â〉 defined above also signals the presence of off-diagonal long range order in

the system [127]. In a uniform phase such as the liquid phase, one can define the condensate density

as [127]:

ρc = lim
|i−j|→∞

〈â†i âj〉 = |〈â〉|2 . (6.13)

If the latter is finite, there is off-diagonal long range order; ρc represents the number of bosons that

are condensed in the ground state divided by the volume. In a non-uniform phase, one has:

ραc =
1

N

∑

i

|〈âi〉α|2 (6.14)

for each glass state, and one can define the average over states and graphs:

ρc =
∑

α

Wαραc . (6.15)

6.2.2 Order parameters: results

In the following we give the results and some details of our implementation of the procedure used to

solve the cavity equations and to investigate the properties of the different phases. In [128] we reported

the details of our computations and the parameters used. Let us note that the RSB calculations turned

out to be particularly demanding. As far as possible given our computational resources, the results

have been checked to be robust with respect to these parameters by increasing the population sizes

in some representative points.

RS calculations: the superfluid-normal liquid transition

In Fig. 6.4 we show the behavior of the order parameter of the superfluid phase, ρc/ρ (black circles),

as a function of increasing µ (corresponding to increasing density). We observe two different behaviors

depending on the hopping strength:

• At high temperature or small hopping (small βJ), we observe that ρc/ρ vanishes continuously

at some µc corresponding to the superfluid transition (upper panel in Fig. 6.4), which is then a

second order transition. The density is also continuous at the transition. Close to µc, we observe

a power-law behavior 〈â〉 ∼ |µ − µc|1/2, with an exponent 1/2 typical of the mean field nature

of the underlying lattice; correspondingly, the condensate fraction vanishes linearly.

• At low temperature or large hopping (large βJ) we observe that ρc/ρ jumps to zero at some

value µc, indicating that the transition is first order (middle panel in Fig. 6.4). In this case,

we observe a small hysteresis when we perform increasing or decreasing µ scans (see the middle

panel of Fig. 6.4). As a consequence of the first order phase transition in the µ variables, the

density, which is defined as ρ = −∂f(µ)/∂µ, has a jump at µc, which implies the existence of a

region of phase coexistence for ρ ∈ [ρ−, ρ+] in the canonical ensemble. The determination of µc

and of ρ−, ρ+ can be done in two equivalent ways: either by looking at the grand-canonical free

energy as a function of µ (which is directly accessible within the cavity method) and determining
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Figure 6.4: Left panel: Order parameters of the superfluid (ρc/ρ, black circles, left scale, RS cavity

method) and glass (qEA, red squares, right scale, 1RSB cavity method) phases for c = 3 and ℓ = 1,

for three representative values of the hopping J at the same temperature βV = 15, as functions of the

chemical potential µ. The first order transitions are accompanied by hysteresis; full lines corresponds

to following the solution upon increasing µ, dashed lines correspond to decreasing µ. Arrows mark

the first order transition points µc as determined by the Maxwell construction. See text for a more

detailed description. Right panel: Sketches of the free energy as a function of µ for the corresponding

left panels: from left to right, black lines represent the superfluid, red lines the normal liquid, blue

lines the glass; µc and µK indicate the phase transitions (we do not report data because the jump in

the derivative of f at the first order transition is very small and would be invisible in the figure).

the point at which the free energies of the two phases cross, or Legendre transforming the free

energy as a canonical function of ρ and then performing the Maxwell construction over it. Since

the jump in density is extremely small at the transition, ρ+− ρ− ≪ (ρ+ + ρ−)/2, we found that

the Maxwell construction is numerically more precise than looking directly at the slope of the

free energy −∂f(µ)/∂µ, which is dominated by the average density.

1RSB calculations: the glass transition

The 1RSB calculation turned out to be very involved. Fig. 6.4 shows the behavior of the order

parameter of the glass phase, qEA (red squares), obtained through the 1RSB cavity method, as a

function of the chemical potential. In general, we found that µK and µd are always extremely close

to each other, as in the classical case. A precise determination of µK can be done by looking at the

point where the complexity at m = 1 vanishes. On the contrary, the determination of µd is much

more difficult since it corresponds to the point where the non-trivial 1RSB solution disappears and

qEA = 0; this is a kind of “spinodal point” and its precise location is very sensible to details of the

computation such as population size, initialization, number of iterations, etc. Although we managed

to get reliable data for µd, in the following we focus only on µK , keeping in mind that the two are

very close and follow similar trends. Finally, it is worth to note at this point that we did not find any

superfluid non-trivial 1RSB solution: we comment on this in more details in the following.
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Summary

To summarize, we observed generically three different behaviors upon varying µ, that are summarized

in the three panels of Fig. 6.4 (we set β = 15 in the figure):

1. The upper panel, at small hopping (J = 0.15), represents a second-order superfluid-normal liquid

phase transition, followed by a liquid-glass transition at higher µ. The system is superfluid until

ρc vanishes at µc, then it is a normal liquid in an interval of µ, until the parameter qEA jumps

from zero to a finite value signaling the dynamic glass transition µd. Upon further increasing

µ, the complexity vanishes at µK and the system enters the glass phase, where m∗ < 1 (note

that µd and µK are indistinguishable on the scale of the figure). Both the transitions are second

order in the sense of Ehrenfest classification: the first derivative of the free energy is always

continuous and the second derivative is discontinuous at both transition points.

2. The middle panel (J = 0.2) shows a first order transition between the superfluid and a normal

fluid, followed again by a liquid-glass transition. Here the condensate fraction ρc/ρ jumps

suddenly to zero at µc. In this regime the free energy of the superfluid intersects that of the

normal liquid at µc with a discontinuity in the first derivative. As in the previous case, the

glass transition happens here at a higher value of µ where qEA jumps to a finite value and the

free energy of the glass grows smoothly from that of the liquid with continuous first derivative.

The figure also shows the hysteresis which is a consequence of the first order transition, when

we follow the evolution of the order parameter ρc coming from the superfluid phase or from the

normal phase.

3. The lower panel, corresponding to a larger hopping J = 0.3, shows a direct first order phase

transition between the superfluid and the glass phases. Indeed, in this case the free energy of the

superfluid crosses directly the free energy of the glass at µc. At the transition the condensate

fraction jumps to zero while qEA jumps to a non-zero value. Also in this case we observe a

phenomenon of hysteresis, and the exact first order transition point has to be determined by

the crossing of the RS free energy of the superfluid phase and the 1RSB free energy of the glass

phase.

In the next section, we investigate the evolution of these phase boundaries by varying hopping, tem-

perature and chemical potential.

6.2.3 Phase diagram of the quantum model

The quantum cavity method (at least in its present formulation) allows only to access the finite

temperature properties of the system. We therefore start the discussion of the phase diagram from

finite temperature, and then we discuss how to extrapolate the results to the T = 0 limit.

Finite temperature phase diagram

The phase diagram, at finite temperature in the (µ, J) plane is shown in Fig. 6.5.

For any fixed (and low enough) temperature, there is a curve µc(J), or Jc(µ), which separates a

superfluid phase from a normal phase. A tricritical point divides this transition line into two parts.

On one side, at small chemical potential, the transition is second order. Beyond the tricritical point

instead, the transition becomes first order. This happens at bigger values of µ, close to the glass

transition. We chose different colors to represent the phase diagram at different temperatures. Solid
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Figure 6.5: Phase diagram for the quantum model in the (µ/V, J/V ) plane, for c = 3 and ℓ = 1, for

three different temperatures βV = 8, 15 and 30. The lines divide the phase diagram into three main

regions where the system is found in a glass, superfluid or (normal) liquid phase. Solid lines and circles

indicate the second order superfluid transition. The large dots mark the tricritical point where the

superfluid line changes from second to first order. Dash-dotted lines and squares represent the first

order transition between the superfluid phase and the normal (glass or liquid) phase. Dotted lines

and triangles indicate the Kauzmann glass transition JK(µ). The dot-dot-dashed black line indicates

the normal liquid-superfluid transition for hard core bosons at zero temperature. Since below this

line ρ = 0 at T = 0, the interaction is not relevant around it, so this line is the T = 0 limit of the

normal liquid-superlfuid transition also for the model investigated here. The dashed black line serves

as a guide to the eye: it has been obtained by interpolating the large µ superfluid lines at different

temperatures (see text for details).

lines and circles indicate second-order superfluid transitions while their continuations, dash-dotted

lines and squares, represent first-order transition between a superfluid phase and a normal liquid or

glass phase. The liquid-glass Kauzmann transition, µK(J) or JK(µ), is reported using a dotted line

and triangles. It hits the horizontal axis, at J = 0, in correspondence of the classical glass transition;

on the other side, it crosses the first-order superfluid-normal phase transition. The dynamic transition

line is very close to the Kauzmann transition so we don’t report it for clarity.

We now describe the phase diagram as a function of the density. Since the cavity method works

necessarily in the grand-canonical ensemble, we are forced to measure the density at fixed µ. Therefore,

the density has some fluctuations due to numerical noise. Unfortunately, for this model the interesting

part of the phase diagram is contained in a very small interval of density, and for this reason the noise

is important and prevents us to obtain transition lines as clean as in the (J, µ) phase diagram of

Fig. 6.5. For this reason, in Fig. 6.6 we report a schematic (J, ρ) phase diagram together with the

actual data. We keep the same code of colors and lines as in Fig. 6.5.

The main difference between the (J, µ) and (J, ρ) phase diagrams is that in the latter case, as already

discussed, we observe a phase coexistence between the superfluid phase and a normal (liquid or glass)

phase. The region of superfluid-glass phase coexistence is particularly interesting since it represents a

region which manifests both amorphous order and off-diagonal long range order, even if they are phase
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Figure 6.6: Left panel: Schematic (J/V, ρ) phase diagram of the model. The full line represents the

second order superfluid transition Jc(ρ), separated by a tricritical point (large dot) from a first order

superfluid transition accompanied by phase coexistence (dot-dashed lines). The dotted line represents

the Kauzmann transition JK(ρ). In the limit T → 0, the transition lines have distinct behaviors: the

first order transition line has J ≫ T , and it has a finite limit for T → 0. On the contrary, the other

lines have J ∝ T and they shrink to the J = 0 axis for T → 0. Therefore, at T = 0 and for J > 0,

the low-ρ part of the phase diagram contains the superfluid phase while the large-ρ part contains

the glass. The red lines indicate the behavior of the superfluid-glass transition at T = 0. Right

panel: Data for the (βJ, ρ) phase diagram, for c = 3 and ℓ = 1, and for three different temperatures

βV = 8, 15 and 30. The three regions, glass, superfluid and normal liquid phase, are here reported.

The transition lines are plotted using the same styles as in Fig. 6.5. As a consequence of the first order

phase transition a region of phase coexistence – delimited by dash-dotted lines – is present. The inset

shows the re-entrant behavior of the glass transition line, at low enough temperature. We plot βJ on

the vertical axis in order to show that the transition lines are proportional to T in the limit T → 0.

separated. Besides the superfluid transition in Fig. 6.6 we reported the glass (Kauzmann) transition

(dotted line) which is also expanded in the inset. From the inset it is clear that the glass transition as

a function of the “quantum parameter” βJ , has re-entrant behavior. In fact, looking at the β = 30 or

β = 15 curves, one can note that the system reaches the glass phase at lower densities when we switch

on quantum fluctuations. This phenomenon, which at first sight can appear very surprising, has been

recently found in a related work, focusing on the description of the quantum glass transition from the

point of view of a microscopic theory of the system dynamics [116]. Moreover it has also been found

analytically in the random subcubes model, in Section 3.7. In that context the introduction of the

transverse field has in fact the effect of promoting the clusters with largest entropy and this induces a

rapid condensation phenomenon. Finally, in a similar way it has been shown recently in an analytical

study based on the replica method on quantum particles with Lennard-Jones interactions [117] that,

at fixed density, the quantum model undergoes the Kauzmann transition at higher temperatures than

the classical one. In general, one can imagine that, beyond the details which pertain to this model,

this re-entrant behavior might have a more general interpretation, in terms of an order-by-disorder

mechanism which is induced by quantum fluctuations and in which a particular order is selected for

entropic reasons, as we will argue in the following.
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Zero temperature limit

We now give some hand-waving arguments on the behavior of the transition lines for T → 0. Although

we don’t expect our arguments to be completely convincing, the following is the only consistent

scenario we were able to elaborate that is in agreement with the observed behavior of the lines at low

temperatures.

The evolution of the phase transition lines in the (µ, J) plane of Fig. 6.5, suggests that in the limit

T → 0 both the second order superfluid transition line and the Kauzmann transition line shrink to the

origin of the axis. Note that we are not interested in the region µ < 0 since in this region, at T = 0,

the system has a small density and it behaves very similarly to weakly interacting hard core bosons.

Note also that in the classical case J = 0, we know that µK is proportional to T at low temperature,

which is consistent with the shrinking of the line µK(J) to the origin. Therefore, for T → 0 the glass

phase “invades” the lower part of the phase diagram in Fig. 6.5, while the superfluid phase “invades”

the upper part, and the first order superfluid-glass transition line at µ > 0 extends down to the origin

(J = 0 and µ = 0).

Unfortunately, our 1RSB code becomes very slow and unstable for too large βJ , preventing us from

drawing the superfluid-glass line for J ≫ T . Still, we observe that the lines at higher temperature

seem to be close to the continuation of the lines at lower temperature. This indicates that, as expected,

for large enough J and µ, the system has reached its zero temperature limit. At the same time, this

allows us to “extrapolate” the first order superfluid-glass transition line at T = 0 by taking, at each

T , the largest values of J that we can access, and interpolating these values. The result is shown as

a black dashed line in Fig. 6.5, and we believe that the extrapolation is a very reliable representation

of the T = 0 line. Therefore, at strictly zero temperature (T = 0) and positive hopping (J > 0), the

phase diagram contains only a superfluid and a glass phase separated by a first order transition. On

the other hand, at strictly zero hopping J = 0 and zero temperature, one recovers the classical model

of [36], which displays a RFOT between a liquid and a glass (however, one has to rescale µ by the

temperature in the classical limit, therefore the transition happens at µ = 0 in Fig. 6.5). Hence, at

T = 0, the limit of vanishing hopping is extremely singular, the behavior of the quantum model at

any J > 0 being completely different from that of the classical model at J = 0.

It is interesting to understand in more details how this singularity develops in the limit T → 0. Indeed,

at large β, the normal liquid phase exists only in a region 0 ≤ µ . 1/β and 0 ≤ J . 1/β, see Fig. 6.5.

Since both J and µ go to zero with temperature, in this part of the phase diagram V is much larger

than any other energy scale and one can consider it as infinite. Then, only the three energy scales

J, µ, T remain and the phase diagram must be a function of βJ and βµ only. In the limit β → ∞,

also this energy scale disappears, and we conclude that at T = 0, Jc(µ) ∝ µ, i.e. the superfluid-glass

transition line must be linear at small J and µ.

When we eliminate the chemical potential and look to the plane (ρ, J), the scenario described above

leads to a phase diagram characterized by two distinct regimes, as shown schematically in the left

panel of Fig. 6.6:

• If J remains finite while T → 0 (i.e. if βJ ≫ 1), the normal liquid phase disappears. Only

the superfluid and glass phase survive, and they are separated by a phase coexistence region,

determined by the Maxwell construction, and delimited by lines that reach a finite limit when

T → 0. We expect that when J/V & 1 the system is superfluid at all densities while when

J/V . 1 the glass phase appears at large enough densities: therefore the coexistence line must

have the shape reported in the schematic plot (left panel) of Fig. 6.6. Although our 1RSB code

is unable to access the region J ∼ V ≫ T , we could check that these lines have the expected
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behavior at least within the RS approximation, which should be a good approximation at least

for not too small temperatures (we don’t report these data to avoid confusion in the figures).

• On the contrary, in the interval J . 1/β the system is still sensitive to finite temperature effects,

but as we argued above, we expect these effects to depend only on the quantity βJ at fixed ρ,

since no other energy scale is relevant here (J ∼ T ≪ V , therefore V is infinite and disappears

from the problem). In this regime a normal liquid phase, a second order superfluid transition

Jc(ρ) and a glass transition JK(ρ) still survive, but both critical values of J vanish proportionally

to the temperature in the limit T → 0, therefore confining the liquid phase to a smaller and

smaller region of the phase diagram which at T = 0 reduces to the classical region J = 0 alone.

• The phase coexistence boundaries start from the tricritical point, located at J ∝ T for T → 0,

and they extend into the large J region of the phase diagram where they have a finite limit for

T → 0. The only possibility to match the two regimes is that the lines become vertical in the

(ρ, J) plane in the region βJ ∼ 1; this should be evident from the schematic plot in the left

panel of Fig. 6.6. In this way we define the two values of density that delimit the coexistence

region at T = 0 and small J > 0.

Looking at the data at finite temperature in right panel of Fig. 6.6 one sees that the superfluid

transition far from the glass satisfies well the scaling with βJ for ρ . 0.3, where the transition

remains second order for all values of β. However Fig. 6.6 shows that around densities of the order

ρ ≃ 0.3 the transition lines do not scale very well. To observe the scaling with βJ one has to go to

lower temperatures which are not easily accessed with our method. Still, the phase coexistence lines

become almost vertical at large βJ around ρ ∼ 0.5 which is an estimate of the coexistence density for

T = 0 and J & 0, according to the argument above. The glass transition line is strongly re-entrant at

the lowest temperature (we recall that for the classical model ρK ≃ 0.5725), which is consistent with

this estimate. This means that in presence of quantum fluctuations a glass can be formed at zero

temperature for densities as low as ρ = 0.5, where the corresponding classical system is in the liquid

phase and quite far from the glass.

The re-entrance of the glass transition line

The re-entrance of the glass transition shown in the inset of Fig. 6.6 is rather unexpected a priori.

It shows that if we consider the classical model at a density slightly below the Kauzmann transition,

then it is possible to make it condense into a glass phase just by switching on quantum fluctuations,

for low enough temperatures. This means that the quantum dynamics induced by the hopping be-

tween neighboring sites has a profound effect on the thermodynamical properties of the systems. In

fact, the kinetic exchange selects as equilibrium states some states which are no more exponentially

numerous, inducing the vanishing of the complexity function. As we mention, we can interpret it with

a mechanism similar to that displayed by the random subcubes model, in terms of the entropy of the

states (see Section 3.7). Since the re-entrance happens close to the classical glass transition, we can

for this discussion consider V ≫ µ, J, T , i.e. V = ∞ going back to the original hard sphere model of

Biroli and Mézard [36]. At low enough temperatures, since V = ∞, only zero energy configurations

contribute to the measure. Beyond the dynamical transition ρd, the states (or “clusters”) in which

the Gibbs measure splits, are generically characterized by a distribution of internal entropies, encoded

in the complexity Σ(s), whose generic form for a classical system is that shown in Fig. 6.7. Assuming

that when quantum fluctuations are introduced, if J is sufficiently small, the distribution Σ(s) is not
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Figure 6.7: A schematic plot of the typical behavior of the complexity as a function of the internal

entropy of the states for various densities ρ increasing from top to bottom.

strongly modified, then, the major effect of quantum fluctuations in this regime is rather to induce,

for each cluster, a kinetic energy gain proportional to its entropy. This gain comes from the fact that

higher entropy clusters are larger, therefore in those clusters particles can delocalize more, allowing

to lower the kinetic energy. Conversely, in small entropy clusters, particles are tightly packed and

cannot delocalize to lower their kinetic energy. In other words, the entropy of each cluster measures

the number of “neighboring” configurations belonging to the state, namely configurations which can

be reached one from the other through single particle movements. The shift of the quantum energy,

proportional to J times the classical entropy, has an effect on the selection of the equilibrium states:

it will favor states with bigger entropy because their energy is lowered more. Since these states are

less numerous, increasing the hopping J , one expects that the complexity will be lowered, and a

condensation transition will be eventually induced at large enough J . Based on the analogy on the

random subcubes, moreover, all these arguments are not modified when besides the entropy, each state

is also characterized by a classical energy (i.e. for finite V ). A distribution of energies of the states

must be included, but this does not change the result, just implying a more complicated temperature

dependence.

6.2.4 Imaginary time quantum dynamics

From a classical point of view the dynamics of glassy systems has received a lot of attention and their

slow dynamic behavior has been the subject of a vast part of the literature (see e.g. [120, 129]).

Since dynamics and thermodynamics are inevitably intertwined in quantum mechanics, the study

of time dependent equilibrium correlations is particularly interesting to understand to what extent

the phenomenology of glassy quantum systems resembles that of their classical counterpart. In this

Section we analyze the local Green function and the local density-density correlation in imaginary

time.

Green function and time scales

The Green function is defined, for −β/2 ≤ τ ≤ β/2, by

Gi(τ) = θ(τ)Gi>(τ) + θ(−τ)Gi<(τ) =
〈
T âi(τ)â

†
i (0)

〉
, (6.16)
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Figure 6.8: Time-dependent correlation functions obtained with the RS cavity method. Upper panel :

Imaginary time advanced Green function G>(τ), for c = 3 and ℓ = 1, at βV = 30 and J/V = 0.1, in

the superfluid phase at µ/V = 0.275 and in the liquid phase just before the Kauzmann transition, at

µ/V = 0.388. The dotted line indicates the square of the expectation value of the bosonic operator

〈â〉2 corresponding to the superfluid phase. Note that the Green function G(τ) is obtained by the

periodic image of period β of this function for τ ∈ [−β/2, β/2]. Bottom panel : Time dependent

density-density correlation for the two same regimes. The dotted line indicates the value of the qEA

for the normal liquid (obtained with the 1RSB cavity method).

with the advanced and retarded Green functions

Gi>(τ) =
〈
âi(τ)â

†
i (0)

〉
=

1

Z
Tr
[
e−(β−τ)Ĥ âie

−τĤ â†i
]

=
1

Z

∑

a,b

e−(β−τ)Ea−τEb|〈ψb|â†i |ψa〉|2

Gi<(τ) =
〈
â†i (0)âi(τ)

〉
=

1

Z
Tr
[
e−(β+τ)H â†ie

τĤai
]

=
1

Z

∑

a,b

e−(β+τ)Ea+τEb |〈ψb|âi|ψa〉|2 ,
(6.17)

where the many-body eigenvalues and eigenstates satisfy Ĥ |ψa〉 = Ea|ψa〉. The way to compute

time-dependent correlation functions such as the above within the cavity formalism has been detailed

in [83] and we reported in Appendix A.

The plot in Fig. 6.8 shows the advanced Green function G>(τ) in the superfluid phase and in the

normal liquid phase, just before the Kauzmann glass transition and slightly above the dynamical

transition. The Green function follows three main regimes. First, for τ → 0+ one finds a fast decay

of the correlations. The energy scale which fixes the particle decay is the interaction potential. This

is the dominant contribution to the average energy of the state a†i |ψa〉 just after the insertion of one

particle on a low energy state |ψa〉. On the other hand the contributions from the chemical potential

and the kinetic energy are negligible with respect to V . Then for τ → 0+ the process brings the system

to highly excited states first. On the contrary, on the side of holes, when τ → β−, the interaction V
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doesn’t play any role. Removing a particle cannot lead to a cost in terms of V , and for short time

the dominant energy excitation is measured by a loss of chemical potential and the proper time scale

is fixed by µ. Finally, in between the two exponential relaxations, the Green function present a third

regime in which the decay is slower. Here in the region where the system is not superfluid we expect

an exponential decay, with a small exponent, of the order of the hopping.

Density correlation and ergodicity breaking

The second time-dependent correlation which is interesting from the point of view of glassy dynamics

is the density-density correlation, defined in imaginary time as follows:

〈n̂i(τ)n̂i(0)〉 =
1

Z
Tr
[
e−(β−τ)Ĥn̂ie

−τĤ n̂i
]
. (6.18)

In the limit of large time and small temperatures this quantity (in particular its connected component)

decays to the overlap parameter qEA defined in (6.11). In fact, rewriting Eq.(6.18) we obtain

〈n̂i(τ)n̂i(0)〉 = 1

Z

∑

a,b

e−βEa−τ(Eb−Ea)|〈ψa|n̂i|ψb〉|2

=
1

Z

∑

a

e−βEa|〈ψa|n̂i|ψa〉|2 +
1

Z

∑

a6=b

e−βEa−τ(Eb−Ea)|〈ψa|n̂i|ψb〉|2 .
(6.19)

The second term in (6.19) goes to zero when βJ ≫ τJ ≫ 1 (assuming that J . V, µ since this is the

interesting regime for the purpose of this discussion), therefore in this limit

〈n̂i(τ)n̂i(0)〉 → 1

Z

∑

a

e−βEa|〈ψa|n̂i|ψa〉|2 . (6.20)

The same result is obtained for real time correlations in the large time limit, for any β, if one assumes

that terms in the sum with a 6= b vanish due to fast oscillations. In the following we focus on

imaginary time correlations in the regime βJ ≫ τJ ≫ 1, but the same arguments can be repeated for

real time correlations at any β and large times. Moreover, in the following we implicitly assume that

the thermodynamic limit N →∞ is taken before any other limit.

Let us discuss first what happens in the liquid phase. Here, we expect that the connected correlation

functions vanish in the large time limit (since the liquid phase is assumed to be ergodic). Therefore

we expect that the large time limit of 〈n̂i(τ)n̂i(0)〉 equals 〈n̂i〉2, which leads to

1

Z

∑

a

e−βEa |〈ψa|n̂i|ψa〉|2 =

[
1

Z

∑

a

e−βEa〈ψa|n̂i|ψa〉
]2

. (6.21)

Defining

Pβ [ni] =
1

Z

∑

a

e−βEaδ[〈ψa|n̂i|ψa〉 − ni] (6.22)

as the probability distribution of nai over eigenstates sampled at temperature 1/β, Eq. (6.21) can hold

if and only if

Pβ [ni] →
N→∞

δ [ni − 〈n̂i〉] . (6.23)

Since the sum is dominated by eigenvectors that have energy Ea of the order of the average energy at

temperature β, the equation above states that the quantity nai = 〈ψa|n̂i|ψa〉 does not fluctuate from

eigenvalue to eigenvalue in this range of energy. Indeed, even if up to now we chose the canonical

ensemble, this requirement is unessential and one could have equivalently stated this concentration
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property of local observables also at the level of microcanonical averages. This assumption is known

as a weak form of the eigenstate thermalization hypothesis [130, 131, 32, 132, 33], see [133] for a more

detailed discussion.

We now repeat the same discussion in the glass phase. To this aim, we need to make an important

assumption on the spectrum of the Hamiltonian in the 1RSB phase. Indeed, as we previously discussed,

the cavity method allows us to establish that the imaginary-time path Gibbs measure constructed via

the Suzuki-Trotter formalism undergoes a clustering transition as in the classical case. Yet, imaginary

time paths are abstract objects, and the consequences of this clustering transition on the spectrum of

the Hamiltonian are not clear, since a priori clustering might depend on the particular basis that is

chosen and on other details of the Suzuki-Trotter decomposition. In the following, we assume that in

the clustered phase, the relevant eigenstates of the Hamiltonian (those which dominate the canonical

sum) are also arranged in disconnected clusters corresponding to the thermodynamic states [134, 23].

Other states of the Hilbert space do not belong to any cluster, but their energies are extensively

different from the thermodynamic energy and therefore they are exponentially suppressed in the

canonical sum. We can then decompose the canonical sum as a sum over the clusters and a sum over

the eigenstates belonging to the same cluster. A reasonable hypothesis that holds in the classical case

and that we believe to hold also here, is that the dynamical behavior of the states inside each cluster

is thermal (or ergodic). In other words, we assume that the reasoning we made for the liquid can be

applied within any cluster α, leading to

1

Zα
∑

a∈α

e−βEa| 〈ψa|n̂i|ψa〉 |2 →
N→∞

〈n̂i〉2α =

[
1

Zα
∑

a∈c

e−βEa 〈ψa|n̂i|ψa〉
]2

(6.24)

and

Pαβ [ni] =
1

Zα
∑

a∈α

e−βEaδ(ni − 〈ψa|n̂i|ψa〉) →
N→∞

δ [ni − 〈n̂i〉α] . (6.25)

On the other hand, we expect 〈n̂i〉α to fluctuate from cluster to cluster, therefore eigenstate ther-

malization can be assumed to hold at most inside each cluster, signaling, globally, a breakdown of

ergodicity. Substituting (6.24) in (6.19) one obtains:

〈n̂i(τ)n̂i(0)〉 → 1

Z

∑

a

e−βEa |〈ψa|n̂i|ψa〉|2 =

=
1

Z

∑

α

Zα
[

1

Zα
∑

a∈α

e−βEa | 〈ψa|n̂i|ψa〉 |2
]
→

N→∞

1

Z

∑

α

Zα 〈n̂i〉2α . (6.26)

This reduces to the average of the square local density over the amorphous states. Averaging over

different sites and subtracting the connected term one recovers the definition of Eq. (6.11), since

Wα = Zα/Z:

〈n̂i(τ)n̂i(0)〉 − 〈n̂i〉2 −→
βJ≫τJ≫1

1

Z

∑

α

Zα 〈n̂i〉2α −
[

1

Z

∑

α

Zα 〈n̂i〉α

]2

= qEA . (6.27)

When the quantity in (6.27) goes to zero, it means that (6.23) holds in the whole Hilbert space and

thus the system is ergodic. We note that a consequence of this discussion is that in the quantum

case, the RS solution can give informations about clustering. Remarkably, in fact, the quantum cavity

method contains information about the imaginary time dynamics and, at the RS level the slow decay

of 〈n̂i(τ)n̂i(0)〉 signals the proximity of the glass transition.
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In Fig. 6.8 we have plotted the time dependent density-density correlation for the same parameters

used for the Green functions, namely β = 30, J = 0.1 and two different densities such that the system

is in the superfluid and in the liquid phase close to the glass transition. The plot shows that the

function within the glass does not relax at large times. It remains at a high plateau, higher than

qEA. The discrepancy might be due to the fact that βJ is not sufficiently high to allow the complete

relaxation of the correlations. This is seen also in the superfluid phase where the correlation remains

always above zero.

6.3 Discussion

The novelties of the system that we studied are the following: (i) it presents a glass transition at

zero temperature as a function of density, and (ii) it presents a large degeneracy of glassy states with

different entropies. Investigating the thermodynamics of the model we find a complex phase diagram

displaying superfluid, normal liquid, and glass phases, separated by different phase transitions. We

showed that at low enough temperature the glass transition line is re-entrant as a function of quantum

fluctuations, implying that one can form a glass by increasing quantum fluctuations at fixed density.

This result is the same that we found in Section 3.7 when discussing the condensation transition

of the random subcubes model. Similar results have been also obtained in [116] by an extension

of mode-coupling theory to quantum hard spheres, and analytically with replica techniques in [117].

Additionally, we showed that the standard RFOT glass transition is replaced by a first order superfluid-

glass transition at zero temperature, accompanied by phase coexistence between the two phases, while

at the same time the glass transition completely disappears. This shows that for a model with such

a complex phase space in the classical limit, introducing quantum fluctuations has a dramatically

singular effect, changing completely the nature of the transition between the liquid and the glass

phases. Moreover, the first order superfluid-glass transition is accompanied by a jump in density,

implying that there exists an interval of densities where the two phases would coexist in a finite

dimensional version of the model. One would therefore obtain a simultaneous presence of superfluid

and glassy ordering, which however would not give rise to a true superglass phase since they would

be phase separated. At variance to what happens in models displaying a second-order spin glass

transition [24, 26], we did not find any pure “superglass” phase in the quantum Biroli-Mézard model:

in more technical terms this means that, for the range of parameters considered here, we have not

found a solution of the quantum 1RSB equations within the broken phase 〈â〉 6= 0.



7

Investigation of superfluidity in

amorphous solids

In this Chapter we aim to investigate in more details the interplay between superfluidity and glassiness.

As we mentioned in Section 5.1 the experiments on solid Helium suggest that highly disordered samples

show a larger NCRI, but it is unclear why disorder should help superfluidity. In Chapter 6 we found

that for a lattice model the glass phase is insulating. Here instead we will see what happens in the

continuum. We present a study devoted to the understanding of the constraints on the superfluid

fraction of an amorphous solid following from a variational upper bound derived by Leggett [20]. In

his work on supersolidity, Leggett showed how to derive an upper bound for the fraction of superfluid

density of a generic many-body system in which translational invariance is broken, by means of a

variational computation [20]. The output of Leggett’s computation is a formula that needs as only

input the average density profile of the solid. This formula has been applied to Helium crystals, and

the aim of this work is to use it to study the amorphous solid. At present, there is not yet any reliable

first principle computation or experimental measurements of the density profile of amorphous Helium

4. We endeavor to generate robust estimates of it using a number of different techniques, in particular

by investigating a model of zero-point Gaussian fluctuations around classical configurations, and Path

Integral Monte Carlo (PIMC) simulations without exchange (which should be closer to the classical

dynamics).

The Chapter is organized as follows. In Section 7.1, we discuss how to adapt Leggett’s bound to an

amorphous solid. In Section 7.2 we compute the bound for a profile made of Gaussian fluctuations

around a classical configuration, and compare the results for an amorphous and an ordered solid.

Then, we discuss previous numerical computations [25]. In Section 7.3 we try to obtain more precise

information by comparing a classical simulation of a glass-forming system with a PIMC numerical

simulation of Helium. In Section 7.4, we show that under some approximations one can obtain a

formula for the bound that can – at least in principle – be computed from neutron or X-ray scattering

data.

7.1 Non-classical rotational inertia and Leggett’s bound

In his work Leggett [20] studied the NCRI of a solid confined in a rotating annulus at T = 0. Inspired

by the case of liquid Helium he argued that the change in the energy of the system in the rest frame

85
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as a consequence of the rotation, for small ω, should be of the form:

E(ω) = E0 +
1

2
I0ω

2 + ∆E(ω) , (7.1)

where E0 is the energy for ω = 0 and I0 is the classical moment of inertia. He assumed that the

departure from the classical energy should be of the form

∆E(ω) = −1

2

ρs
ρ
I0ω

2 , (7.2)

allowing for a definition of the superfluid fraction ρs/ρ. For a system of N bosonic particles E0 is the

expectation value over the ground state wavefunction of the generic interacting Hamiltonian describing

the particles in the annulus:

Ĥ = − ~
2

2m

N∑

i=1

∇2
i +

1

2

N∑

i,j=1

U(|~ri − ~rj |) +

N∑

i=1

V (~ri) , (7.3)

where V is the potential induced by the enclosing walls, which is time-independent when the system

is at rest. The ground state wavefunction of the system at rest, in order to be single valued, must

satisfy in cylindrical coordinates the boundary condition:

ψ(r1, z1, θ1; . . . ; rj , zj , θj + 2π; . . . ; rN , zN , θN ) = ψ(r1, z1, θ1; . . . ; rj , zj, θj ; . . . ; rN , zN , θN ) , (7.4)

for all j. Leggett showed that the wavefunction of the ground state inside the rotating cylindrical

container can be obtained by considering the ground state of the non-rotating system but with new

boundary conditions. He argued, in fact, that, for a rotating cylinder the condition for a single-valued

wave function should be substituted by:

ψ(r1, z1, θ1; . . . ; rj , zj, θj+2π; . . . ; rN , zN , θN ) = e−2πimR2ω/~ ψ(r1, z1, θ1; . . . ; rj , zj, θj ; . . . ; rN , zN , θN ) ,

(7.5)

where R is the radius of the annulus, m is the particle mass and ω is the frequency of rotation. In

Eq. (7.5) we assumed that the thickness of the cylinder is much smaller than the radius R. From

the difference in energy ∆E(ω) = E(ω)−E0 between the expectation value of the Hamiltonian (7.3)

defined for the system in the annulus over a ground state wave function satisfying (7.4) or (7.5) one

could define the superfluid fraction for the (solid) system, through:

ρs
ρ

= lim
ω→0

1

I0

∂2Emin(ω)

∂ω2
(7.6)

where ρ is the particle density and I0 = NmR2 the classical moment of inertia. From this expression it

is clear that upper bounds on the superfluid density can be obtained by using variational wavefunctions

that in the ω → 0 limit tend to the wavefunction for a non-rotating container. Leggett used a

variational wavefunction of the form Ψ(~r1, · · · , ~rN ) = Ψ0(~r1, · · · , ~rN ) exp[i
∑
i ϕ(~ri)], where Ψ0 is the

ground state wavefunction for the non-rotating case and φ =
∑

i ϕ(~ri) a sum of phases satisfying the

condition ϕ(θ) = ϕ(θ + 2π) − 2πmR2ω/~ [20, 135]. Note that in the following, we will denote the

fraction of superfluid density by “superfluid fraction” and we always refer to Leggett’s upper bound

obtained with this variational ansatz to this quantity, unless otherwise specified. Defining

ρ(~r) =

∫
d~r1 · · · d~rN |Ψ0(~r1, · · · , ~rN )|2

∑

i

δ(~r − ~ri), (7.7)
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which is the density profile in the ground state, one finds that the variational estimation of Emin(ω)

reads:

Emin(ω) = E0 +
~

2

2m

∫
d~r[∇ϕ(~r)]2ρ(~r), (7.8)

where E0 is the ground state energy in the non-rotating case.

Because of the assumption that the thickness of the cylinder is much smaller than the radius, one

can simplify the problem even further by “unrolling” the annulus and consider the system inside a

parallelepiped of length L = 2πR in the x direction. In this geometry the phase ϕ has to satisfy the

boundary condition ϕ(0, y, z) = ϕ(L, y, z)− v0L where v0 = mRω/~. The minimization of (7.8) with

respect to ϕ leads to the equation for ϕ(~r):

~∇ · [ρ(~r)∇ϕ(~r)] = 0 (7.9)

and results in an upper bound on the superfluid density:

ρs =
1

V v2
0

∫

V

d~rρ(~r) |∇ϕ(~r)|2 . (7.10)

Note that if ϕv0(~r) is a solution of (7.9) with boundary conditions ϕ(0, y, z) = ϕ(L, y, z)− v0L, then

ϕv′0 = (v′0/v0)ϕv0 is a solution with boundary conditions corresponding to v′0. Hence, Eq. (7.10) does

not depend on v0 and we can choose v0 = 1 without loss of generality. Furthermore, while in the

geometry described above the wavefunction should satisfy hard wall conditions at the boundary of

the box in the y and z directions, we will simplify the problem by considering periodic boundary

conditions in the y and z directions.

In order to find a solution of Eq. (7.9) satisfying the correct boundary condition it is useful to rewrite

ϕ as

ϕ(~r) = ~v0 · ~r + δϕ(~r), (7.11)

where δϕ(~r) is defined inside the volume V and satisfies periodic boundary conditions, and ~v0 is a

unit vector. In the original problem ~v0 = x̂, but since we reformulated the problem in a periodic cubic

box, the direction of ~v0 can be varied without affecting the result, in the limit V → ∞. Since δϕ(~r)

is periodic, we can write the equations in Fourier space (see Appendix B for details):

~q · ~v0ρ~q =
∑

~p6=~0

(~q · ~p)ρ~q−~p iδϕ~p , (7.12)

and from the solution for iδϕ~q one can obtain the Leggett bound [135], that reads in Fourier space:

ρs
ρ

= 1− 1

ρv2
0

∑

~q 6=~0

(~v0 · ~q)iδϕ~qρ−~q . (7.13)

Given the density profile, the linear equation (7.12) for iδϕ~q can be solved by truncating the sum over

momenta at a given cutoff, |~q| < qmax, so that the problem reduces to solving a finite set of linear

equations, which can be done by matrix inversion.

An important remark is that the truncation preserves the variational nature of the computation.

Indeed, it can be seen as setting δϕ~q = 0 for |~q| ≥ qmax, which amounts to a particular choice of the

variational function δϕ(~r) and hence still gives an upper bound on the true superfluid fraction.

Another important remark is that the bound derived above applies only, strictly speaking, to the true

ground state of the system. In the following however, we are interested in applying it to the glass

state, which is at best a long-lived metastable state, the crystal being always the true ground state.

Still, it is clear from the derivation that if the life time τ of the state is very long, such that for any

experimentally accessible frequency one has ωτ ≫ 1, then the system does not have time to escape

from the metastable state during the experiment and the bound should apply without modification.
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Figure 7.1: Leggett upper bound for ρs/ρ, for a Gaussian profile of width A1/2 around an amorphous

jammed configuration and in a FCC lattice, as a function of the adimensional parameter ℓ = ρ1/3A1/2

(the Lindemann ratio).

7.2 Superfluid fraction of amorphous solids

7.2.1 Hard sphere systems

In order to understand whether disorder in the density profile can lead to an increase of the superfluid

density, we shall compare the result of the bound for an amorphous glassy profile and the corresponding

crystal. The only input for our study are the density profiles of the amorphous and crystal state.

Unfortunately, the former is not available for He4 in realistic conditions. As a consequence, we

decided for a first study to focus on a more simple and academic case that can still provide insights on

the role of disorder. We consider the amorphous and crystalline density profiles that one obtains for

classical hard spheres. Although this certainly is not a realistic model of density profiles for He4, it

allows us to address the role of disorder on ρs. Furthermore, a mapping from quantum systems at zero

temperature and classical Brownian systems allows one to find quantum many particle models whose

ground state wave-function can be mapped exactly on (the square of) the probability distribution of

classical hard spheres systems [23]. Thus, the results of this section apply directly to those models.

Classical hard spheres are known to be characterized by a high density crystal FCC phase. However,

if compressed fast enough, or due to a small polydispersity, the hard spheres freeze in an amorphous

glassy state. A typical density profile of a very quickly compressed glassy state can be obtained

by the Lubachevski-Stillinger compression algorithm [136] (we used the implementation of [137]),

which is know to be very efficient in producing amorphous jammed configurations. The output of

the algorithm are the positions R = {R1, · · · , RN} of the particles in a random close packed state

(at infinite pressure). The algorithm is deterministic, but different final configurations are obtained

by starting the compression from random initial configurations of points. The compression runs were

performed at very fast rates (we fixed the parameter γ = 0.1, see [137, 112] for details) in order to

avoid crystallization.

Furthermore, we will assume that the density profile of a typical glassy configuration at finite pressure

is the sum of Gaussians centered around the amorphous sites, which are the output of the previous

algorithm. For classical systems, this assumption has been tested numerically for FCC crystals [138],

and has been often used in density functional computations of both ordered [139] and amorphous
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HCP, Leggett’s bound Glass, Leggett’s bound Glass, QMC

Ref.[142] (this work) (Ref. [25])

ρ (Å−3) ℓ ρs/ρ ρs/ρ ρs/ρ

0.029 0.167 0.22 0.282 0.6

0.0353 0.143 0.06 0.127 0.07

Table 7.1: Leggett’s bound for 4He in the HCP crystal state [142] and glassy state. Quantum Monte

Carlo results for the glass are also reported [25].

structures [112], giving accurate results. For quantum systems, the Gaussian model has been shown

to be accurate enough, at least for the purpose of computing the Leggett’s upper bound [140, 141, 142].

For a given configuration R, the density profile we use is defined as

ρ(~r|R) =
∑

i

γA(|~r − ~Ri|) =

∫

V

d~s γA(|~r − ~s|)
∑

i

δ(~s− ~Ri) , (7.14)

where γA(~x) = exp(−|~x|2/(2A))/(2πA)3/2 is a normalized Gaussian of width A, and |~r − ~Ri| is the

distance on the periodic box, i.e. it is the distance between ~r and its closest image of ~Ri. The

corresponding Fourier transform reads (neglecting terms of order exp(−L2/A)):

ρ~q(R) = e−Aq
2/2 1

V

∑

i

ei~q·
~Ri . (7.15)

In solving Eqs. (7.12) and (7.13) we considered amorphous configurations of N = 20 and N = 100

particles. We solved numerically Eq. (7.13) via a LU decomposition [143]. All the calculations were

done with the cut-off set at qmax = 20π/L. We checked that the result does not depend on the specific

amorphous configuration used by considering different amorphous configurations Rα, α = 1, · · · ,N ,

as it is expected since the superfluid density is a macroscopic quantity. The reported results are

therefore averaged over 10 independent configurations. More details on the numerics can be found in

Appendix B.

The results are plotted in Figure 7.1. One can notice that, apart from the smallest values of the

dimensionless parameter, the two curves corresponding to 20 and 100 particle configurations perfectly

agree. The discrepancy in the region of small ℓ = ρ1/3A1/2 is due to the approximation brought by

the introduction of a cut-off, and vanishes in the limit qmax ≫ 1/
√
A.

In order to understand to what extent the disorder influences the value of the superfluid density, we

compare the superfluid fraction found in the amorphous system to the values obtained through the

same calculations in the case of a crystal [135, 140, 141, 142]. Figure 7.1 reports the results for the

average superfluid fraction of the amorphous solid just described and those corresponding to the FCC

lattice (which is the thermodynamically stable one for hard spheres) for the ~Ri, according to the same

Gaussian model (in the latter case our results are consistent with previous ones [135, 140, 141, 142]).

The difference between the two is very small, suggesting two conclusions.

1. Disorder does not influence much the superfluid behavior of the system for comparable values

of ρ1/3A1/2, at least at the level of this variational calculation.

2. The dependence of ρs on the density profile is mainly through the Lindemann ratio ℓ = ρ1/3A1/2.

This conjecture allows us to obtain an estimate of the Leggett upper bound for ρs in more realistic

cases as we will do in the next section.
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To conclude this section, we observe that the above results allow to obtain a quantitative upper

bound for the superfluid fraction of a system whose wavefunction is exactly the Jastrow wavefunction

corresponding to classical hard spheres. The quantum glassy phase of this system has been discussed

in [23]. In both the crystal and glassy phases, the values of A1/2 for classical hard spheres do not

exceed 0.1 (in units of the sphere diameter) [138, 139, 112], and the same is true for ℓ, since the density

is very close to 1 (in the same units) in both solid phases. Using the results of Fig. 7.1, we obtain

an upper bound ρs/ρ . 0.1%, which is consistent with the extremely small values of the condensate

fraction found in [23].

7.2.2 Superfluid fraction of amorphous solid Helium 4

In the following, we attempt an application of our results to the more interesting case of disordered

solid He4, based on the observation above, that an estimate of the Lindemann ratio ℓ = ρ1/3A1/2,

together with the results of Fig. 7.1, should provide a reasonable estimate of Leggett’s bound.

At the end of Ref. [142] it is stated that, by fitting the Path Integral Monte Carlo density profile

of HCP solid He4, one obtains a value
√
A = 0.1274 d at ρ = 0.0353 Å−3 and

√
A = 0.1486 d at

ρ = 0.029 Å−3. Here d is the nearest-neighbor distance for the HCP lattice. The number density of

the HCP lattice satisfies the relation ρd3 =
√

2, hence d = 21/6/ρ1/3 and ℓ =
√
Aρ1/3 = 21/6

√
A/d.

In the same reference it is also stated that the upper bound computed by using the fitted Gaussian

density profile coincides with the one obtained by using the true PIMC density profile, and corresponds

respectively to ρs/ρ = 0.06 and 0.22. These values are reported in table 7.1.

We now make the following assumptions:

1. At least for the purpose of computing Leggett’s upper bound, the true density profile can be fitted

to a Gaussian profile. This is true for the crystal [142] and we assume that it remains true for

an amorphous solid.

2. The parameter ℓ for the amorphous solid is smaller than that of the crystal at the same density.

This can be understood by observing that crystalline configurations are better packed than

amorphous configurations, therefore leaving more room (“free volume”) for fluctuations. It is

true for Jastrow wavefunctions [23] (i.e. classical system) and we do not find any reason why

quantum fluctuations should dramatically affect this property.

Based on these assumptions, the true Leggett’s bound for the amorphous system should be smaller

than the same bound for the crystal at the same density. This can be estimated using the values of ℓ

reported in [142] and reading the corresponding superfluid fraction from Fig. 7.1 or using the results

obtained in [142] for the HCP crystal. These values are reported in table 7.1 and are similar.

We compare the upper bound obtained in this way with the values of ρs obtained numerically by

Boninsegni et al. via PIMC [25]. Interestingly, we find that the bound is very close to the PIMC

numerical result, and in particular at the smallest density the bound is violated by the PIMC result.

This can be due either to the very rough approximations involved in our computation, or to the

fact that the glass is not a really long-lived metastable state at this very low density. The latter

possibility, i.e. that the system is rapidly evolving out of equilibrium, would invalidate the derivation

of Leggett’s bound but it would also raise problematic questions regarding the measurement of ρs

using the Ceperley formula [144], which is strictly valid if thermodynamic equilibrium is achieved and

in the limit of small frequency.
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7.3 Comparing dynamics: from a classical glass to Helium 4

In order to study the stability of the glass phase in Helium 4, we performed Path Integral Monte Carlo

simulations, that we discuss in this section. Before discussing the more complex quantum simulation,

we present some classical simulations in order to deal with a well controlled situation, where the

presence of a glass transition has been firmly established.
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Figure 7.2: Evolution of the density profile after a quench from high to low temperature for a classical

glass forming system, using Molecular Dynamics. Top left: instantaneous value of S~q(t) for three

representative values of ~q (the corresponding (nx, ny, nz) are indicated in the caption). Top right:

instantaneous values of ρ~q(t) for a representative value of ~q. Bottom: the time average of S~q(t) over

the whole simulation, as a function of q (in reduced LJ units). Scatter points are values for a given ~q,

the full black line is the angular average over all vectors with the same modulus.

Dynamics in glass-forming systems: a classical simulation

We performed standard Molecular Dynamics (MD) simulations of the Kob-Andersen binary mix-

ture [120], which is known to be a good glass former and does not show any sign of crystallization

even after very long MD runs at low temperature. The latter is a mixture of two types of particles (A

and B) with the same mass m, interacting through different Lennard-Jones potentials:

Vαβ(r) = 4εαβ

((σαβ
r

)12

−
(σαβ
r

)6)
(7.16)

with α, β ∈ {A,B} and parameters εAA = 1, σAA = 1, εBB = 0.5, σBB = 0.88, εAB = 1.5, σAB = 0.8,

as specified in [120]. In the rest of this section we use reduced Lennard-Jones units, namely we use
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σAA and εAA as units of length and energy, and m as unit of mass. Consequently,
√
mσ2

AA/εAA is the

unit of time (the latter convention is slightly different from the one of [120]). Note that to compare

with Helium one should keep in mind that for that system σ ∼ 2.56 Å and ε ∼ 10.2 K.

We quenched a dense (ρ = 1.2) system of N = 216 particles from very high temperature (T = 2)

to very low temperature (T = 0.05) deep in the glass phase (the glass transition temperature being

around T = 0.435 at this density [120]). We run the simulation for a total time τ = 15000 and

we printed configurations every ∆t = 5 which is of the order of the decorrelation time in the glass

(estimated from the decay of the self scattering functions). From each configuration we deduced

ρ~q(t) =
1

V

∑

j

ei~q·~rj(t) , (7.17)

where ~rj(t) is the position of particle j at time t, and the corresponding instantaneous value of the

static structure factor S~q(t) = V |ρ~q(t)|2/ρ.
In Fig. 7.2 we plotted ρ~q(t) and the structure factor S~q(t) as a function of MD time after the quench.

The vectors ~q = 2π/L(nx, ny, nz) and the corresponding integers are given in the caption. We see that

after a short transient, the density profiles fluctuate around a non-zero value which is quite stable,

except for some rare “crack” events where the density changes abruptly. These are probably due

to groups of particles that switch back and forth between two different locally stable configurations.

This system is indeed extremely dense and at very low T , therefore its dynamics is basically that of

harmonic vibrations around local minima of the potential (except for the rare cracks). The largest

instantaneous value of S~q(t) corresponds to the (2, 1,−6) curve in Fig. 7.2 for all t > 1000; therefore,

all values are smaller than 20 at all times, showing that there are no Bragg peaks. This is what we

expect to see in a glass. In this case, we can easily deduce the average values of ρ~q for a given glassy

configurations by taking the average of ρ~q(t) over a time interval where there are no crack events.

From these, we could compute the Leggett bound as previously discussed.

Absence of a stable glass phase from a Path Integral Monte Carlo simulation

Motivated by results of [25] we tried to compute the superfluid fraction based directly on Path Integral

Monte Carlo data. Unfortunately, PIMC does not give access to the real time dynamics of the system,

but following [25] we studied the Monte Carlo dynamics, in the hope that this is a reasonable proxy

for the real time dynamics.

The representation of quantum systems in PIMC involves certain important extensions beyond the

classical representation of point particles. To begin with, particles are represented by paths (or

polymers) in space. These paths manifest the zero point motion inherent in the quantum mechanical

system. For distinguishable particles, this is the only difference. For particles with statistics (bosons),

these paths then can permute onto each other forming larger paths or cycles.

We initially focus on studying a quenched quantum system of Helium particles but require that they

act like distinguishable particles. There are a number of potential advantages of this approach. To

begin with, one may hope that distinguishable particles are more likely to retain the relationship

between real dynamics and the Monte Carlo dynamics. Secondly, the simulation of distinguishable

particles is faster and able to be parallelized over many processors allowing for longer simulations.

We used the Aziz potential as a model for Helium [145], and in this section we always use Angstroms

as units of length and Kelvins as units of temperature. The pair product action is used as the

approximation for the high temperature density matrix and an imaginary time step of δτ = 0.025 K

is used. We equilibrated a system of N = 216 particles in the liquid phase at a density of 0.029 Å−1
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Figure 7.3: Evolution of the density profile after a quench from high to low temperature for a quantum

Helium 4 system, using Path Integral Monte Carlo. Time here represents the number of Monte Carlo

sweeps (see text). The panels are the same as in Fig. 7.2, except that the average of S~q(t) in the lower

panel has been taken for t > 75000, and the angular average is not reported because of the strong

anisotropy of the result. All quantities are plotted using Å as units of length.

and a temperature of T = 2 K. The system is then instantaneously quenched to T = 0.166 K. This

is accomplished by taking a snapshot of the paths from T = 2 K and then, for each time slice of the

old path, placing 12 time slices for the new lower temperature path, similarly to what was done by

Boninsegni et al. [25]. We then run the PIMC from this quenched configuration. These paths are

obviously highly artificial because the distances between many adjacent time slices are zero. Over

a very short period at the beginning of the quenched run, though, this artificial aspect of the path

quickly relaxes leaving the paths in a configuration that mirrors the higher temperature formation.

In the following we refer to t as the PIMC “time” (number of PIMC sweeps, a sweep being defined

as N particle moves), while τ is the imaginary time. At each “time” t, the PIMC code returns a

configuration ~rτj (t), the latter being the imaginary time trajectory of particle j as function of the

imaginary time τ . We can define the instantaneous density as

ρ~q(t) =
1

βV

∑

j

∫ β

0

dτ ei~q·~r
τ
j (t) , (7.18)

and the instantaneous structure factor

S~q(t) =
1

βN

∑

j,k

∫ β

0

dτ ei~q·[~r
τ
j (t)−~rτ

k(t)] . (7.19)
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Note that in the quantum case, at variance with the classical case, these two quantities are not directly

related. At each PIMC sweep we recorded the values of the above quantities, which we then averaged

over 50 PIMC sweeps in order to eliminate part of the fluctuations.

The results for a representative run of the above procedure are reported in Fig. 7.3. Unfortunately,

the dynamics of this system looks quite different from the formation of a glass from a quenched liquid.

First of all, the structure factor becomes quite large for some values of ~q, therefore suggesting the

presence of large crystallites in the sample. Indeed, the largest value of the structure factor corresponds

to the (5, 0, 4) curve in Fig. 7.3 at large times and to the (5, 4, 2) curve in Fig. 7.3 at short times.

We see that while at short times the values of S~q(t) are smaller than 10, at larger times they grow

up to 50, which clearly indicates the presence of large crystallites in the sample (note in addition

that these values have been averaged over 50 PIMC sweeps and also over imaginary time). Moreover,

the ρ~q(t) (reported for a representative value of ~q in the middle panel of Fig. 7.3) are not fluctuating

around some stable value; they display a sluggish evolution that does not allow to identify a region

of times where the system is close to some metastable density profile that does not evolve in time.

What we can learn from this is that the quenching from a (exchange-free) liquid to a (exchange-free)

low temperature liquid froze to a crystal relatively quickly without showing any intermediate signs of

glassiness. Note however that this behavior was not observed in all runs: some runs did not display

signs of crystallization for times up to ∼ 200000 PIMC sweeps. Still the dynamics was sluggish enough

to prevent the identification of a stable glass phase. We also tried turning off some moves (the displace

moves) in order to slow down the relaxation to the crystal, but the system still seems to freeze just

as quickly.

In conclusions, we were not able to find a long-lived metastable glassy state in our quantum simulations.

This is probably due to the fact that monodisperse systems always crystallize quite fast. This is well

known in the classical case and seems to also hold true when quantum zero point motion is introduced

(at least in this specific example). One possibility is that exchange, that we neglected, may be critically

important for exhibiting the glassy behavior of Helium 4: it could be that the path integral at the low

temperatures we are focusing on is dominated by exchange paths, whereas the paths that make the

glass unstable are mainly without exchange; indeed we find them with our PIMC. In this case, the

instability of the glass would be a much rarer process once one takes into account exchange paths. In

particular, since crystals have a very low or zero superfluid fraction, we know that their corresponding

path integral is dominated by paths without exchange. In consequence, eliminating the exchange

could also make crystal nucleation easier since it makes it a less rare process.

An additional possibility is that the glassy behavior is sensitive to the specific details of the simulation

(type of Monte Carlo moves, length of the paths, etc.). We leave a more detailed investigation of this

point for future study.

7.4 Leggett bound and non-ergodic factor

As we discussed previously, the problem in applying our analysis to realistic system is that the amor-

phous density profile of He4 cannot be easily measured experimentally. Below, we endeavor to connect

the bound on ρs to the so-called non-ergodic factor g̃q, which in principle could be measured in ex-

periments, e.g. by neutrons or X-ray scattering. It is defined as

ρ2

N
g̃q =

1

N
∑

α

ρα~q ρ
α
−~q = ρ~qρ−~q , (7.20)
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where the overbar denotes the statistical average over the amorphous states sampled statistically by

the system. These are indexed by α = 1, · · · ,N , and under the Gaussian approximation each profile

ρα~q is obtained from Eq. (7.15) by plugging the reference positions corresponding to each different

amorphous configurationRα. The statistical average is performed with the weights α that correspond

to the frequency with which they appear in an experiment, or equivalently their Boltzmann weight.

First, let us focus on ρs, which is the average of the superfluid density ραs corresponding to each amor-

phous state. Since the superfluid density is a macroscopic quantity we expect (and we have checked

numerically, see Appendix B) a self-averaging behavior, i.e. the fluctuations of ραs are negligible.

However, as usual for disordered systems, the computations are easier for ρs. Multiplying Eq. (7.12)

by ρα−~q and averaging over α we obtain

(~q · ~v0)
ρ2

N
g̃q =

∑

~p6=~0

(~q · ~p)F (~q, ~p) , (7.21)

where we define, for ~p, ~q 6= 0 (that are the only cases involved in the equation above)

F (~q, ~p) =
1

N
∑

α

ρα~q−~p iδϕ
α
~p ρ

α
−~q = ρ~q−~p iδϕ~pρ−~q . (7.22)

Clearly iϕ~q is strongly correlated to ρ~q, being the solution of (7.12). In order to simplify the problem

we assume that these variable are Gaussian distributed. Using Wick’s theorem, one has

F (~q, ~p) = ρ~q−~p iδϕ~p ρ−~q + ρ~q−~p iδϕ~pρ−~q

+ ρ~q−~piδϕ~p ρ−~q + ρ~q−~pρ−~q iδϕ~p .
(7.23)

Note that, due to translation invariance of the averages over α, one has ρ~q = ρδ~q,~0 and ρ~qρ−~p =
ρ2

N g̃qδ~q,~p. Hence, for ~p, ~q 6= 0, we get

F (~q, ~p) = ρ~q−~p iδϕ~pρ−~q = ρδ~q,~p iδϕ~qρ−~q ≡ ρδ~q,~p F (~q) . (7.24)

Substituting the last expression in (7.21), we obtain

F (~q) =
ρ(~q · ~v0)g̃q
Nq2

. (7.25)

Averaging (7.13) over α, we get

ρs
ρ

= 1− 1

ρv2
0

∑

~q 6=~0

(~v0 · ~q)F (~q) = 1− 1

N

∑

~q 6=~0

(~v0 · ~q)2
v2
0q

2
g̃q . (7.26)

In the thermodynamic limit, the sum can be replaced by an integral, and performing the angular

integration we obtain:
ρs
ρ

= 1− 2

3

∫ ∞

0

dq q2

(2π)2ρ
g̃q . (7.27)

The same result can be obtained by means of a large A expansion of the system of equations, which

however is poorly convergent and cannot be used in a systematic way, see Appendix B.

As before we need to introduce a cut-off in the sum on ~q in (7.15) and calculate numerically the non-

ergodic factor g̃q by averaging the density over the same configurations Rα considered above. We set

the cutoff according to the spherical constraint |~q| ≤ qmax . We increased qmax until qmax = 20π/L,

when the convergence in g̃q was reached. For the purpose of computing the non-ergodic factor and

then the approximate bound, as given in Eq. (7.26), we averaged over 100 different configurations.
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Figure 7.4: Result for ρs/ρ as a function of ℓ = ρ1/3A1/2, where ~Ri are the center of the spheres in

an amorphous jammed configuration of N spheres with periodic boundary conditions. We report the

exact computation according to Eq. (7.12) and the approximate result Eq. (7.27).

In this case, in fact, one does not face the computational problem of inverting the linear system

(7.12) and thus a larger statistics can easily be taken. The results of the computations are shown

in Figure 7.4. We plotted the superfluid fraction obtained through the exact procedure (7.13) and

the approximated one (7.27), both for the configurations with 20 and 100 particles. The agreement

between the approximated curve and the exact one is good for large value of ℓ while they start to

differ when the localization parameter decreases, for values of the bound around 0.7. Unfortunately

for the interesting values of ℓ the approximated calculation gives wrong results. However, we find it

useful, since it allows to estimate the typical scale of ℓ at which the bound starts decreasing fast from

1 to 0 and we hope that it will be possible to improve it in the future, in order to be able to apply it

to realistic cases.

7.5 Discussion

In this Chapter we discussed Leggett’s upper bound for amorphous quantum solids. We showed that

for quantum systems described by a hard sphere Jastrow wavefunction, the superfluid fraction must

be smaller that 0.1%, which is consistent with a previous investigation that found extremely small

condensate fractions for this system [23]. Moreover, the hard sphere result suggests that crystal and

glass phases characterized by the same Lindemann ratio should have similar Leggett’s upper bounds

for the superfluid fraction.

On this basis, we attempted to apply our results to glassy He4 [25]. We found that the upper bound

for ρs is in general very close to the numerical results of Ref. [25], and at density ρ = 0.029 Å−3 it is

below. One possible origin of this discrepancy could be that at such low density the life time of the

metastable glassy state is too short, and the system is intrinsically out of equilibrium; in that situation

Leggett’s bound is inapplicable, since it assumes that the reference wave-function corresponds to a

truly metastable state. Indeed we generically found from Path Integral Monte Carlo calculations that

(at least if exchange is neglected) the system crystallizes very fast after the quench, which is consistent

with a very short lifetime of the metastable glass.

Overall, our findings suggest two possible scenarios (not necessarly antithetic) relative to the region of
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Figure 7.5: Phase diagram of 4Helium. Note that here we draw the phase diagram in the plane density

ρ and temperature T instead of the more common representation in terms of pressure and temperature.

Equilibrium phases: The red line delimits the liquid (L)-gas (Ga) coexistence region. The green line

is the λ-line that separates the liquid from the superfluid (SF). The blue line is the melting transition

below which the crystal phase is stable, and the disordered phase is metastable. Glass phase: The

pink line is the glass (G) transition line obtained in [117] within a first-order semiclassical expansion

which neglects the permutation symmetry of particles. The behavior of the amorphous phase, say,

within the dashed black line is currently not understood. The two black dots mark the state point

investigated numerically in Ref. [25]. Figure from [117].

low densities and temperatures studied in this work. (1) An amorphous stable glass has a superfluid

fraction, not only a Leggett’s upper bound, very similar to a defect-free crystal with the same Lin-

demann ratio. Since we know from experiments and simulations that this superfluid fraction is very

small, or possibly zero, we are bound to conclude that the glassy supersolid phase found in experiments

does not correspond to a truly stable glass: the system is instead rapidly evolving out of equilibrium

and, somehow, this enhances superfluidity. (2) Exchange promotes glassiness and a superglass can

develop. This could be partially tested by comparing the stability of the glass phase in imaginary

time simulations with and without exchange. Finally, based on the experience on classical systems,

we remark that it is likely that in more complex systems (such as binary mixtures) crystallization will

be avoided and a long-lived quantum glass phase will be stable even without exchange [116]. In this

case, it should be very easy to measure the density profile and compute the Leggett bound using the

procedure detailed above.

In Fig. 7.5 we present the phase diagram of 4He as a function of density and temperature, with

the inclusion of the results of [117] for the high temperature/density amorphous phase and with the

indication of the two points studied in [25].

Combining the results of the works [117, 146, 23, 26, 24] and those of Chapters 6 and 7 we speculate

about the possible phase diagrams that concern the metastable phases of 4He, as discussed in [117].

The models studied in those works are quite abstract with respect to a 3-dimensional sample of
4He. However as we argued in Chapter 5, at least for classical systems, mean field glassy models

still reproduce nicely the property of amorphous solids (or supercooled liquid) interacting via van

der Walls-like interactions. For this reason we think that it is instructive to take inspiration from

them in considering the phases of 4He. Different scenarios emerge from these works and in particular

the way in which the λ-line continues in the metastable phase is not understood. (i) The study of

mean-field glassy systems suggests that the transition becomes first order before crossing the glass

transition. The model considered in Chapter 6 was studied at finite, but very low, temperature and in
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Figure 7.6: Left panel: a conjectural phase diagram for amorphous phase of 4Helium as it is suggested

by the works [117, 146] and the results in Chapter 6 and 7. The equilibrium parts of the phase diagram

are the same as in Fig.7.5. The metastable “supercooled” phases are indicated in italic. The pink line

is the glass transition line obtained in [117]. The λ-line becomes, at some point inside the supercooled

liquid, a first-order transition line as for the model studied in Chapter 6. One should therefore observe

a superfluid (SF)-glass (G) coexistence. Note that we currently do not have any quantitative estimate

of the behavior of the λ-line inside the metastable phase, which is drawn at arbitrary position in the

figure. Right panel: another possible phase diagram for metastable 4Helium, based on the results

of [24, 23]. The λ-line always remains a second-order transition. When it crosses the glass transition

line, a superglass (SG) phase appears. Figures from [117].

this regime the glass phase was found not superfluid. This implies that superfluid and glassy behavior

would coexist in a region of the phase diagram but they would be phase separated. This hypothesis

is schematized in Fig. 7.6 (left panel), where the green dotted line represents the continuation of the

superfluid transition in the metastable phase while the pink curve represents the the glass transition.

(ii) Other studies [23, 24, 26] instead suggest the possibility of a true superglass phase, where the λ-line

remains of second order and thus intersects the glass transition in a continuous way. However there

are difficulties in drawing a clear explanation from the results of the models considered in [23, 24, 26]

since they are quite different among themselves:

• In [23] the model has at T = 0 a glass transition which is of RFOT type, i.e. that is the

prototype of structural glasses. This is different from the other quantum models with RFOT

transitions where at low temperature the transition becomes first order [13, 74, 128]. However

the ground state wave function in [23] is obtained from a classical-to-quantum mapping that does

not allow for long range correlations between the particles, and this might be a simplification of

the description of the system at very low temperature. The superglass phase shows a superfluid

fraction which is small but strictly not zero. This small number could be not in contradiction

with the results of Chapter 6, that found an insulating lattice glass.

• In [24, 26] instead, the transition to the amorphous solid is a spin-glass transition (a full replica

symmetry breaking). Contrary to RFOT this transition is characterized by an order parameter

which grows continuously and the relaxational dynamics approaching the glass transition would

be very different from the one of classical supercooled liquids. In [24, 26] the superglass phase

develops a superfluid fraction which is not necessarily small. A scenario compatible with this

situation could imply that the pink line that at high temperature has a genuine RFOT transition,

becomes of second order, as it happens for instance for the p-spin model in a longitudinal

field [147].
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Effective temperatures

In this Chapter we introduce the concept of effective temperature which has been developed in different

contexts to characterize the out-of-equilibrium dynamics of classical and quantum systems. We start

the analysis with the study of the out-of-equilibrium dynamics of classical glasses and we discuss the

thermodynamical meaning of the effective temperature defined in that case on the basis of generalized

fluctuation-dissipation relations. Then we discuss how the same definition has been applied in the

context of dissipative quantum glassy systems. Finally we introduce the problem and the motivations

for studying the quantum dynamics in isolated systems driven out of equilibrium, typically by a

sudden change of a parameter in the Hamiltonian, i.e. a quantum quench. We discuss how the

effective temperature has been defined in this context. In Section 8.1 we introduce the definitions

of classical and quantum dynamical correlations and responses, as well as the associated FDRs. In

Section 8.2 we outline different out-of-equilibrium situations. In particular we discuss the physical

framework from which we borrow the definition of an effective temperature and the context where we

aim to apply it, i.e. within quantum quenches.

8.1 Linear response theory in and out-of-equilibrium

8.1.1 Correlations and responses

In this section we provide the basic definitions of the dynamical correlations and responses in classical

and quantum systems. Then, we recall the fluctuation-dissipation theorem in the two cases.

Classical systems

The dissipative dynamics of a classical system in contact with an environment is usually described by

a Langevin equation. The motion of a particle of mass m coupled to a thermal bath at temperature

T , which may be seen as a collection of harmonic oscillators, is characterized by the stochastic law for

the position x(t)

mẍ(t) +

∫ t

0

dtγ(t− t′)ẋ(t′) = −V ′(x(t)) + ξ(t) (8.1)

〈ξ(t)ξ(t′)〉 = Tγ(t− t′) , (8.2)

where γ(t) is the retarded friction and ξ(t) is a time-dependent Gaussian random force with zero

mean and correlations given by Eq. (8.2). The average in (8.2) is over the probability distribution

of the noise and very often the friction is memory-less, γ(t − t′) = γ0δ(t − t′). Equation (8.1) was

101
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first introduced in order to describe the Brownian motion and later applied to model a variety of

phenomena [148]. The equation can be generalized to study more complex situations like many-body

interacting systems and/or systems subject to time dependent or non-conservative forces.

The Langevin equation is the starting point to study the dynamics of the system. Its solution xsolξ (t)

encodes the trajectory of the particle for a particular realization of the noise ξ(t). The macroscopic

properties of the system are then recovered by averaging over the dynamical histories, namely over

the distribution of the noise. The dynamical average can be recast within the generating functional

Martin-Siggia-Rose-Janssen-De Dominicis-Peliti path integral formalism [149, 150]. The correlation

function of two observables A(t) and B(t) is defined by

CAB(t, t′) = 〈A(t)B(t′)〉 , (8.3)

where the average is over the probability of the possible paths. In general one considers connected

correlations so that if 〈O(t)〉 6= 0 the observable under consideration is replaced with O(t) → O(t) −
〈O(t)〉.
The response function is the average reaction of an observable A to a perturbation that modifies the

potential V → V −h(t)B in Eq. (8.1) at a given instant of time t. At the linear order in the perturbing

field h the response reads:

RAB(t, t′) =
δ 〈A(t)〉
δh(t′)

∣∣∣
h=0

. (8.4)

Clearly the instantaneous linear response is also a two-time function. Note that R(t, t′) vanishes if

t < t′ because of the causality principle. Often one is interested more in the integrated dynamical

susceptibility χ(t, tw) than in the instantaneous response, defined as:

χAB(t, tw) =

∫ t

tw

dt′ RAB(t, t′) , (8.5)

where we used the notation tw to recall the notion of “waiting time” as it is often referred to in the

literature. This quantity represents the response at time t to a step-like perturbation in the interval

t′ ∈ [tw, t]. At equilibrium time translational invariance holds and the correlation and response

functions are stationary, so C(t, t′) = C(t− t′) and R(t, t′) = R(t− t′).

Quantum systems

The dynamics of a quantum system and its bath is dictated by the Shrödinger equation. Langevin-

like equations for quantum systems have been considered in several cases but they typically remain

strongly model-dependent and there, no general formalism emerges. Differently from the classical case,

the noise statistics generated by the quantum thermal bath is usually correlated in time. The real time

dynamics of a system coupled to a bath is more conveniently studied, in and out of equilibrium, within

the Schwinger-Keldysh formalism. Let us consider the case of a system described by the Hamiltonian

Ĥ and at equilibrium, so that its density matrix is ρ̂(β) = exp(−βĤ)/Z(β), where β is the inverse

temperature. Dynamical correlations are usually more easily studied in the Heisenberg representation,

which evolves the operator Â(t) as given by

Â(t) = eiĤtÂe−iĤt . (8.6)

Two-times correlations in equilibrium are defined by

CAB(t, t′) =
〈
Â(t)B̂(t′)

〉
= Tr

[
ρ̂(β)Â(t)B̂(t′)

]
(8.7)
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and clearly for generic Â, B̂ one has
〈
Â(t)B̂(t′)

〉
6=
〈
B̂(t′)Â(t)

〉
. Accordingly, we define the symmetric

and antisymmetric correlations as follows:

CAB± (t, t′) =
〈[
Â(t), B̂(t′)

]
±

〉
(8.8)

where [X,Y ]± = (XY ±Y X)/2. Without loss of generality we consider operators with zero mean and

we take Ô(t)→ Ô(t)−
〈
Ô(t)

〉
otherwise. The instantaneous linear response function is defined as for

classical systems from the variation of the expectation
〈
Â(t)

〉
due to a perturbation which couples

to the operator B̂, up to the linear term. In and out of equilibrium it is related to the antisymmetric

correlation by the Kubo formula [151]:

RAB(t, t′) = 2iθ(t− t′)CAB− (t, t′) , (8.9)

where θ(t) is the Heaviside function, θ(t < 0) = 0 and θ(t > 0) = 1, which enforces causality.

Clearly at equilibrium time-translational invariance holds and correlations and responses are station-

ary, CAB± (t, t′) = CAB± (t−t′). The same definition of the susceptibility (8.5) given for classical systems

applies also to the quantum case. In the following we will be concerned with Fourier transforms of

these quantities, defined for the stationary case as:

f̃(ω) =

∫ ∞

−∞

dt e−iωtf(t) f(t) =

∫ ∞

−∞

dω

2π
eiωtf̃(ω) (8.10)

Generalization to a non-stationary case can also be considered [115].

8.1.2 Fluctuation-Dissipation Theorem

The fluctuation-dissipation theorem (FDT) establishes a relation between the linear response of a

given system to an external perturbation and the spontaneous fluctuations of the system in thermal

equilibrium. The FDT provides fundamental model and observable-independent equations which the

dynamics of the system has to obey. The search for the connection between fluctuations and dissipation

started with Einstein who derived a relation between the mobility and the diffusion coefficient of a

particle suspended in a fluid in his study on the Brownian motion. The mobility is in fact related

to the frictional force generated against the action of a perturbation, while the diffusion constant is

determined from the mean-square displacement, and it is defined by the unperturbed fluctuation. Eq.

(8.2) is already a fluctuation-dissipation relation which express the equilibrium of the bath.

Classical systems

For classical systems at equilibrium FDT relates correlation and response as follows:

RAB(t− t′) = −T−1∂tC
AB(t− t′)θ(t− t′) . (8.11)

The proof of this relation can be done in several ways, for instance within the generating functional

formalism mentioned in the previous section. Integrating Eq. (8.11) FDT becomes:

χAB(t− tw) = T−1(CAB(0)− CAB(t− tw)) , (8.12)

i.e. it establishes a linear relation between the susceptibility χAB and the correlation CAB. A para-

metric plot of χAB versus CAB constructed with fixed tw and for increasing t is therefore a straight
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line with slope −1/T . This relation, being independent of A and B and of the time scale considered,

unambiguously defines the temperature of the system.

The departure from the linear relation between χAB and CAB is the signal of a non equilibrium

behavior. In fact out of equilibrium Eq. (8.12), or equivalently Eq. (8.11), does not hold. Moreover

time-translational invariance is not guaranteed and the two-time dependences must be considered

separately. One can still introduce the FDT fluctuation-dissipation ratio and define an effective

temperature through it:

XAB(t, t′) ≡ TRAB(t, t′)

∂t′CAB(t, t′)
; TABeff (t, t′) ≡ T

XAB(t, t′)
, (8.13)

where we assumed t > t′ and T is the temperature of the thermal bath. One can consider for instance

the situation in which the system is quenched from a high temperature T ′ to a low temperature T

and it evolves in contact with a thermal bath at temperature T . If the dynamics is slow the system

falls out-of-equilibrium because of its large relaxation time scales. The asymptotic value

XAB
∞ = lim

t′→∞
lim
t→∞

XAB(t, t′) and the associated quantity TAB∞ ≡ T

XAB
∞

, (8.14)

is often considered and it turned out to be particularly useful for critical quenches [152, 153, 154].

Clearly one can always define an effective temperature through a generalized fluctuation-dissipation

relation (FDR), as in Eq. (8.14), however its interpretation is not straightforward and the possible

thermodynamic significance of Teff is not ensured a priori.

Quantum systems

In the following we reinstate ~ to make the classical limit ~ → 0 of the quantum FDT transparent.

The quantum FDT is obtained by combining the Kubo formula (8.9) with the Kubo-Martin-Schwinger

(KMS) conditions stating that correlation functions at equilibrium must satisfy the relation:

CAB(t, t′) = CBA(t′, t+ i~β) = CBA(−t− i~β, t′) , (8.15)

where analytic continuation to complex times is considered and Eq. (8.15) follows from the cyclic

properties of the trace. In the frequency domain the KMS properties take the form:

C̃AB(ω) = exp(−β~ω)C̃BA(−ω) , (8.16)

from which the relation between symmetric and antisymmetric correlations are easily derived. As for

classical observables, quantum FDT implies a relation between RAB and CAB+ through a function of

the temperature [151]. The quantum FDT can be expressed in the time domain as follows:

RAB(t) =
i

~

∫ ∞

−∞

dω

π
e−iωt tanh

(β~ω

2

)
C̃AB+ (ω) , (8.17)

and the classical FDT is recovered when ~ → 0. Eq. (8.17) reveals the double source of fluctuations

which may be attributed to thermal (β) or quantum (~) effects. Fourier transforming Eq. (8.17) the

quantum FDT can be recast in a compact form in the frequency domain:

~ ImR̃AB(ω) = tanh
(β~ω

2

)
C̃AB+ (ω) . (8.18)
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8.2 Non-equilibrium dynamics

8.2.1 Classical glasses

As we mentioned several times, glasses fall out of equilibrium, because from their very definition, the

equilibration time exceeds the experimental time. The hallmark of their out-of-equilibrium dynamics

is the aging behavior. Aging means that the older the systems is, the slower its relaxation dynamics

becomes, taking longer to forget the past. The age of a system is the time spent in the phase under

study. Generally, in equilibrium, one does not specify the reference time at which the system is

prepared in the conditions after which it is let evolve, or this time is implicitly taken to be t∗ = −∞.

On the contrary, out of equilibrium this time is a fundamental reference for the definition of the age

of the system. In the context of thermal or quantum sudden quenches, this is the time of the quench

and here and thereafter we will assume t∗ = 0.

The analysis in terms of generalized FDRs in mean-field glasses brought to a deeper understanding

of fluctuations in these systems and it made possible a comparison with replica/cavity calculations

describing static thermodynamical properties [27, 148]. Fig. 8.1 shows a sketch of the equilibrium

(T & Td) and of the aging (T < Td) dynamics of a mean-field glassy system, of RFOT type. One

can think of the dynamical correlation reported there as a spin-spin correlation for the p-spin model

or a density-density correlation for Lennard-Jones-like interacting particles. The left panel presents

the stationary correlation as a function of time for different temperatures. Similarly to what we
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Figure 8.1: Left panel: Stationary relaxation of the correlation for T1 & T2 & · · · & Td. Right panel:

Aging decay of the correlation at fixed T < Td for several tw. Picture from [148].

discussed in Section 5.1.4 the decay presents a two-step relaxation and the approach to the plateau

is independent of T . Moreover the plateau, as soon as it appears, has a finite height, while its length

increases with the inverse temperature β. The right panel of Fig. 8.1 shows the out-of-equilibrium

aging regime that we aim to discuss in this context. Observables in the aging phase depend upon

two times and Fig. 8.1 reports the correlation with fixed t′ = tw (the age of system) as a function of

t − t′, for a fixed temperature and for several waiting times tw. For long t′ the correlation displays

a separation of time scales. It first reaches in a t′-independent manner a plateau qEA(T ) which

depends upon temperature. Then the time to relax below the plateau value qEA(T ) increases with t′.

Finally, for each t′ there is a sufficiently large time after which the correlation decays to zero. This

phenomenology was referred to as a weak ergodicity-breaking scenario suggesting that at fixed t′ there

exists a crossover in t between two time-scales regimes. This crossover is identified by a characteristic
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time τ(t′) which is an increasing function of t′ defined by the model under study. In particular for

t > t′ and t− t′ ≪ τ(t′) the correlation decays from 1 to qEA(T ) in a stationary way. While for larger

t− t′ it relaxes from qEA(T ) to zero in a t′-dependent manner.

Let us discuss this out-of-equilibrium dynamics in terms of generalized FDRs which demonstrated to

be very fruitful. Following the equilibrium relation (8.12) one can study the relation between χ(t, tw)

and C(t, tw) at different times (t, tw). Plotting χ(t, tw) and 1 − C(t, tw) at fixed tw as a function of

t − tw one obtains the plots shown in the left panel of Fig. 8.2. The curves go together and also

coincide for different tw, until t− tw reaches a certain time which is identified as τ(tw). Then, in the

fastest time scale, t− tw < τ(tw) FDT holds. For larger t− tw the two curves differ and the behavior

depends on tw. In the slowest time scale FDT does not hold. What turned out to be particularly

remarkable is the way in which these non-equilibrium effects can be recast in a modification of FDT.

The starting point is suggested by the analytical solution of mean-field models, from which it follows

that in the limit tw →∞, after that N →∞, where N is the size of the system, it holds:

lim
tw→∞,C(t,tw)=C

χ(t, tw) = χ(C) . (8.19)

This means that in the limit t > tw → ∞ the susceptibility as a function of C reaches a limit curve.

Motivated by Eq. (8.12) one can define an effective temperature as follows:

Teff(C) = −[χ′(C)]−1 , (8.20)

that is in general a function of C. Under appropriate circumstances this quantity has the properties of

a temperature in the sense that it can be measured by a suitable thermometer [28] and it determines

the direction of the heat flow when other systems at different temperatures are put in contact. The

graphical interpretation of this relation is easy. One fixes tw and then plots χ(t, tw) vs C(t, tw) letting

t vary from tw to ∞. Assuming that C(tw , tw) = 1 and C(∞, tw) = 0 and defining χ(∞, tw) = χ̄

the curve will join the point (1, 0) and (0, χ̄). The right panel of Fig. 8.2 shows in red and in green

this construction for two different tw. The solid blue line represents the limiting curve obtained in

mean field structural glasses (RFOT-like) when tw → ∞. The very suggesting result concerns the

asymptotic curve, made by two straight lines. The slope of the line for larger values of C concides with

the “equilibrium” −1/T , while the second is identified with an effective temperature which governs the

out-of-equilibrium aging regime. The dashed and dot-dashed lines represent, respectively, the results

for the out-of-equilibrium dynamics of mean field systems undergoing domain growth and models with

full replica-symmetry breaking, like the Sherrington-Kirpatrick model.

Let us conclude by mentioning that many works have been devoted to the study of the out-of-

equilibrium dynamics of classical systems driven by external currents [155], and their analysis in

terms of FDRs. Note that in the driven case the non-equilibrium is a consequence of an external

force, differently from glasses or coarsening systems, where the large time scales of the system do not

allow for equilibration.

8.2.2 Open quantum systems

The analysis of the out-of-equilibrium dynamics through generalized FDRs in quantum dissipative

systems is a field much less explored and understood than its classical counterpart. However, it is

recently receiving growing consideration. Early works focused on quantum mean-field glassy systems,

described by Hamiltonians of the form considered in the previous Chapters, i.e. a classical glassy term

and a transverse field or a simple non-commuting term (we denote with Γ its strength) [156, 115, 157].
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Figure 8.2: Left panel: χ(t, tw) and 1−C(t, tw) at tw fixed as a function of t− tw for two different tw.

Right panel: Parametric plot of χ(t, tw) vs C(t, tw) at fixed tw in a slowly relaxing out-of-equilibrium

system. Different curves represent different values of tw. The blue curve is the limit tw →∞ in three

different kinds of models. The solid line represents mean-field structural glasses. Figure from [148].

As in the classical case the out-of-equilibrium behavior is induced by a quench from the disordered

to the ordered phase, which may be performed via a sudden change of the temperature or of Γ, the

system being in contact with a thermal bath.

Let us summarize the results obtained for the real-time dynamics in mean-field quantum glasses [115,

157], that complement the discussion of the previous Chapters. Like in classical systems the dynamical

correlations of mean-field quantum glasses in the ordered phase develop a plateau at intermediate

times. The relaxation though, is modulated by quantum oscillations at very short times t (and for

any tw) which later disappear. Also in the quantum case the comparison between responses and

correlations in the low-temperature phase is particularly instructive. It turns out that for t− tw ≪ tw

correlation and response functions satisfy the quantum FDT (8.17), with the temperature of the

thermal bath. The two quantities then display a (quantum) equilibrium-like behavior, until the

correlation reaches the plateau value. In the aging regime, quantum FDT does not hold, similarly to

the classical case. However, a parametric plot in which the integrated response is compared to the

classical correlation, as explained in the previous sections, shows that they satisfy a classical FDR

with an effective temperature Teff > T that depends on T and Γ, the strength of quantum fluctuations

(and on the properties of the bath).

As for the classical case, a different and very natural set-up in which the out-of-equilibrium dynamics

of quantum systems takes place is when driving currents are induced by unbalanced reservoirs. Also

in this context, the study of the non-equilibrium dynamics in terms of generalized FDRs is receiving

attention. In particular mesoscopic systems subject to time dependent magnetic/electric fields or

currents have been considered [158, 159] but also the competition of driving currents and glassiness

have been addressed [157]. In these works it was shown that for gently driven systems a constant

effective temperature emerges.
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8.2.3 Quantum quenches in isolated systems

Quite important differences compared to the cases discussed in the previous sections emerge when

studying isolated systems, whose dynamics occur at constant energy. In the case of quantum quenches,

the system is not described by a thermal equilibrium state - it is a generic highly excited state, different

from a Gibbs density matrix ρ̂(β) - and the dynamics is unitary. The study of this non-equilibrium

quantum dynamics and the issue of thermalization in this situation, in the limit of long times and large

system sizes, is currently attracting a lot of interest [160, 161, 162, 163, 164, 165, 166, 33, 167, 168,

169, 170, 171]. It is a quite well-established empirical fact that a large enough isolated system reaches

equilibrium and is able to act as a thermal bath for a part of itself. In the classical case this is usually

justified in terms of a chaotic dynamics, that ensures ergodicity in phase space and thermalization

in terms of a microcanonical ensemble [172]. This implies also that a large subpart of a much larger

system thermalizes to a canonical ensemble. How this is justified in a quantum setting remains an

open and fundamental problem, which was actually posed more that 90 years ago [173, 174]. Indeed,

the analogy between classical and quantum systems hides many subtleties and many concepts, as for

instance the integrals of motions for the dynamics, deserve a separate consideration.

Without going in the details of the state of the art of the subject, which is very broad, here we aim to

recall only few notions that will be important for the study of Chapter 9 and that represent a bridge

to the previous discussion. These notions concern the definitions of effective temperatures that have

emerged in this context. In quantum quenches the system is prepared at time t = 0 at equilibrium in

the ground state of Ĥ(Γ0), that we denote |0〉Γ0
, and afterwards it is let evolve, isolated, with Ĥ(Γ),

where Γ 6= Γ0. The sudden change in the parameter Γ pushes the system out of equilibrium and

injects an extensive amount of energy into it. Note that the initial condition |ψ(t = 0)〉 = |0〉Γ0
is

the most studied but one could consider much more general protocols. Very often quantum quenches

have been studied (and we will do it next) in low-dimensional and integrable systems and clearly

this context is very different from that of mean-field glasses. However, in both cases, the desire to

characterize the out of equilibrium behavior has naturally called for an operative definition of effective

temperature Teff , in order to understand if the behavior of the system could be described with an

effective equilibrium description at the temperature T = Teff . Instead of taking inspiration from

FDRs, in quantum quenches Teff is usually defined through the energy of the system. This choice is

the most natural, also compared to that of classical systems, as it reflects a fundamental property of

the dynamics which occurs at constant energy. On the contrary, when the system is in contact with a

thermal bath, the FDRs are very naturally defined. The dynamics is dissipative, the temperature is

fixed and it appears explicitly in the FDT. Note however that FDRs hold also for an isolated dynamics

once that the initial condition is an equilibrium thermal (Gibbs) state.

Let us specify the common definition of Teff = TEeff in quantum quenches. Since the system dynamics

is unitary the energy is conserved and one can define an implicit equation for TEeff as follows [163, 164,

166, 33]: 〈
Ĥ(Γ)

〉
Q

=
〈
Ĥ(Γ)

〉
T=TE

eff

, (8.21)

where the average on the l.h.s. is over the ground state of Ĥ(Γ0) while on the r.h.s. it is over

an equilibrium state of Ĥ(Γ) at temperature T = TEeff . Note that Eq. (8.21) is time independent

because the energy is a constant of motion, but in general one has to deal with time varying quantities〈
Ô(t)

〉
Q

and eventually study the stationary limit. In this way it is possible to compare generic

stationary averages
〈
Ô
〉
Q

= limt→∞

〈
Ô(t)

〉
Q

after the quench with the thermal ones
〈
Ô
〉
T=TE

eff

and

see whether they are equal or not. Of course, if the two averages coincide this would support an
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effective thermal-like behavior of the system, with temperature T = TEeff , but this is not always the

case [163, 164, 166, 33].

It turns out that when the system is integrable the situation is quite subtle [175, 176, 169]. Suppose

to be able to write the Hamiltonian in the diagonal form:

Ĥ(Γ) =
∑

k

ǫk(Γ) ĉ†k ĉk (8.22)

where the ĉk’s are creation operators for free bosonic or fermionic particles (here k is just an index

to label the degrees of freedom) and let us call n̂k = ĉ†k ĉk their number. Clearly it holds [n̂k, Ĥ ] = 0,

implying that the set {n̂k} is a set of constants of motion for the dynamics induced by Ĥ(Γ), regardless

of the state of the system. When the quench is performed this enforces a large number of integrals of

motions that constraint the dynamics. Similarly to Eq. (8.21) one can then define a set of effective

temperatures {T keff}, one for each k, from the equality 〈n̂k〉Q = 〈n̂k〉T=Tk
eff

. These quantities proved

to be particular meaningful since they naturally appear in the computation of (stationary and non)

expectation values [175, 176, 169]. It was in fact suggested [175] that the stationary behavior of the

system after quenches towards Hamiltonians of the form (8.22) is captured by the density matrix

ρ̂GGE that is obtained by maximizing the von Neumann entropy S = −Tr[ρ̂ log ρ̂] and satisfying the

constraints on the expectation values of 〈n̂k〉. This density matrix is of the form:

ρ̂GGE =
1

Z
exp[−

∑

k

λkn̂k] , (8.23)

where λk = ǫk/T
k
eff are Lagrange multipliers that enforce the values of the integrals of motion. Al-

though ρ̂GGE is not in a strict sense the state that is evolving, very often the averages in the long time

limit after the quench coincide with averages over the density matrix (8.23). The ensemble (8.23)

is known as Generalized Gibbs Enseble (GGE). Despite the definition of all the temperatures T keff is

quite natural and the conjecture that Eq. (8.23) provides the correct long-time averages is very rea-

sonable it remains to be understood whether out of this infinite set of temperatures one could extract

few relevant “thermodynamic” quantities and how they stand, together with TEeff , with respect to the

possible definition of effective temperatures derived from FDRs. In the next Chapter we will address

this issue for the particular case of the transverse field Ising chain.
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9

Critical quenches in the transverse

field Ising chain

In this Chapter we study the unitary dynamics of the transverse field Ising chain after a quantum

quench, i.e. after a sudden change in the parameter of the Hamiltonian that drives the system out

of equilibrium. Focusing on critical quenches, we study several observables. We characterize the

time-dependent behavior of correlations and responses, mainly in the stationary regime. We study

and compare the different effective temperatures proposed in Chapter 8, with particular emphasis on

the analysis of generalized FDRs. In Section 9.1 we introduce the model as well as the procedure

to exactly solve the spectrum and compute the dynamics. In Sections 9.2, 9.3 and 9.4 we discuss

respectively the dynamics of the transverse magnetization, of the global transverse magnetization and

of the order parameter. In Section 9.5 we discuss our results.

9.1 The Ising model and its dynamics after a quantum quench

9.1.1 The model

We consider the transverse field Ising chain of finite lenth L, described by the Hamiltonian:

Ĥ(Γ) = −J
L∑

i=1

[
σ̂xi σ̂

x
i+1 + Γ σ̂zi

]
, (9.1)

where we assume periodic boundary conditions σ̂xL+1 = σ̂x1 and the length L of the chain to be even.

Note that the Hamiltonian (9.1) is precisely of the form considered, for instance, for the quantum

annealing in Chapter 1, the only difference being that here, in (9.1), we exchanged the role of the z

and x-components of the Pauli matrices in order to adopt a standard convention for the model. The

reason for this convention, and for which we follow it here, consists in thinking of the transverse field

term as the diagonal part of Ĥ and then to introduce a transformation able to handle the interacting

part and to turn the Hamiltonian into a quadratic form. In what follows we set J, ~, kB = 1 and

we measure time in units of ~/J and the temperature T in units of J/kB. The Hamiltonian can be

diagonalized performing three transformations. First we introduce Jordan-Wigner fermionic operators

ĉ†j , ĉj [177]:

σ̂+
j = ĉ†j exp

[
iπ

j−1∑

k=1

ĉ†k ĉk

]
, (9.2)

111
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where σ̂+
j = (σ̂xj + iσ̂yj )/2. Note that in terms of the fermions ĉ†j , ĉj , the operator σ̂zj reads:

σ̂zj = 2ĉ†j ĉj − 1 , (9.3)

and σ̂xj = σ̂+
j + (σ̂+

j )† follows from Eq. (9.2). After this change of variables the Hamiltonian reads:

Ĥ(Γ) = −J
L−1∑

i=1

[
ĉ†i ĉi+1 + ĉ†i ĉ

†
i+1 + h.c.

]
− 2Γ

L∑

i=1

ĉ†i ĉi + (−1)NF

[
ĉ†Lĉ1 + ĉ†Lĉ

†
1 + h.c.

]
, (9.4)

where NF =
∑L
i=1 ĉ

†
i ĉi is the number of fermions. From the last term it follows that when NF is

odd periodic boundary conditions on the fermions must be enforced and antiperiodic otherwise. The

Hamiltonian conserves the parity of fermions NF%2, and we restrict to the even sector which contains

the ground state. Note that however the restriction to one of the two sectors is justified only when

one considers expectation values of operators defined by an even number of fermions. Eq. (9.4) is the

sought-for quadratic Hamiltonian. However in order to diagonalize it the next step is to perform a

Fourier transformation

ĉj =
1√
L

L∑

k=1

eikj ĉk k = ±π(2n+ 1)

L
(9.5)

with n = 0, . . . , L/2− 1. In the l.h.s. of Eq. (9.5) we consider the fermions in real space and in the

r.h.s. the fermions in Fourier space. Finally the Hamiltonian is diagonalized by a Bogoliubov rotation:
(

γ̂Γ
k

γ̂Γ †
−k

)
=

(
cos θΓk −i sin θΓk
−i sin θΓk cos θΓk

)(
ĉk

ĉ†−k

)
= R(θΓk )

(
ĉk

ĉ†−k

)
(9.6)

where γ̂Γ
k represents fermionic quasi-particles and

tan 2θΓk =
sink

Γ− cos k
. (9.7)

In terms of γ̂Γ
k the Hamiltonian reads:

Ĥ(Γ) =
∑

k>0

ǫk(Γ)
(
γ̂Γ †
k γ̂Γ

k + γ̂Γ †
−k γ̂

Γ
−k − 1

)
, (9.8)

with ǫk(Γ) = 2
√

Γ2 − 2Γ cosk + 1 being the dispersion law of the quasiparticles. Fig. 9.1 shows the

dispersion relation ǫk(Γ) as a function of k ∈ [−π, π] for different Γ. At Γ = 1 the spectrum is gapless.

The ground state of the system |0〉Γ is the vacuum of quasiparticles, γ̂Γ
k |0〉Γ = 0 ∀k and as a function

of the fermions ĉk takes the form:

|0〉Γ =
∏

k>0

(cos θΓk ĉ
†
k ĉ

†
−k + i sin θΓk )

∣∣0̃
〉
, (9.9)

where
∣∣0̃
〉

is the vacuum of fermions ĉk
∣∣0̃
〉

= 0. Then, the structure of |0〉Γ is that of a superposition

of Cooper pairs ĉ†k ĉ
†
−k. At zero temperature and in the thermodynamical limit, the system is charac-

terized by a quantum phase transition at Γ = 1 which separates a paramagnetic phase (PM, Γ > 1)

〈σ̂xi 〉 = 0 from a ferromagnetic phase (FM, Γ < 1) with spontaneous symmetry breaking 〈σxi 〉 6= 0 and

long-range order along the x direction. 〈σzi 〉 6= 0 for all Γ > 0.

9.1.2 Equilibrium and non-equilibrium dynamics

Thanks to the transformations (9.2), (9.5) and (9.6) the Hamiltonian (9.1) becomes diagonal, Eq.

(9.8), which makes the system and its dynamics exactly solvable. However, the possibility to arrive at
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Figure 9.1: Dispersion relation ǫk(Γ) as a function of k for different values of the transverse field Γ.

this form is not just a fortunate chance, but has a major effect on the physics of the problem. Clearly

the building blocks of the model are the quasiparticle operators γ̂Γ
k associated to Ĥ(Γ) and they

represent the key to access all (thermo)dynamical properties. These quasi-particles evolve trivially in

the Heisenberg picture:

(
γ̂Γ
k (t)

γ̂Γ †
−k (t)

)
=

(
e−iǫk(Γ)t 0

0 eiǫk(Γ)t

)(
γ̂Γ
k

γ̂Γ †
−k

)
= U(ǫΓk , t)

(
γ̂Γ
k

γ̂Γ †
−k

)
. (9.10)

This property is completely independent of the state of the system under study and, in a similar

way, the average number of quasiparticles
〈
n̂Γ
k (t)

〉
=
〈
γ̂Γ †
k (t)γ̂Γ

k (t)
〉

=
〈
n̂Γ
k

〉
is a constant of motion

regardless of the measure that determines the expectation value. At equilibrium the dynamics for a

given observable O(t) is then solved by expressing O(t) in terms of the quasiparticles γ̂Γ
k (t) (it is easier

through the intermediate transformation into ĉΓk (t) fermions) and then calculating the expectation

values that are traced back to some function of the integrals of motion
〈
n̂Γ
k

〉
.

In the quench set-up the system is prepared at t = 0 in the ground state |0〉Γ0
of Ĥ(Γ0), while it

subsequently evolves, isolated, with Ĥ(Γ). The quench from Γ0 to Γ injects an extensive amount of

energy into the system which is henceforth conserved. A convenient way to compute correlations in

this situation consists in expressing all the (time-dependent) observables in terms of the operators

γ̂Γ0

k (t) of the original Hamiltonian, Ĥ(Γ0). The merit of this procedure is evident when computing the

expectation values over |0〉Γ0
, because by definition |0〉Γ0

is the vacuum of γ̂Γ0

k (t) and this simplifies

at this stage the calculations. The mapping between the quasiparticles of Ĥ(Γ) and those of Ĥ(Γ0)

consists in a rotation of the suitable Bogoliubov angles. Note that R(θΓk )R†(θΓ0

k ) = R(θΓk − θΓ0

k ) ≡
R(δk(Γ,Γ0)).

The time evolution of the fermionic operators ĉk(t) can be finally expressed as follows:

(
ĉk(t)

ĉ†−k(t)

)
= R†(θΓk )U(ǫΓk , t)R(δk(Γ,Γ0))

(
γ̂Γ0

k

γ̂Γ0 †
−k

)
≡
(
uΓ,Γ0

k (t) −(vΓ,Γ0

k (t))∗

vΓ,Γ0

k (t) (uΓ,Γ0

k (t))∗

)(
γ̂Γ0

k

γ̂Γ0 †
−k

)
.

(9.11)

Thanks to this mapping one can then express all the averages in terms of uΓ,Γ0

k (t) and vΓ,Γ0

k (t) defined

above, where, here and in the following, the expectation values 〈•〉 = Γ0 〈0| • |0〉Γ0
are over the initial

condition |0〉Γ0
.

In the out-of-equilibrium situation induced by the quench protocol, all the observables but the integrals

of motion (and their functions) show a non-stationary behavior. After a transient (studied in Ref. [178,
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179] for the chain with free boundaries) the system reaches an asymptotic stationary regime. The

time scale of this transient depends on the observable under study and on the initial and the final

condition, Γ0 and Γ.

Recalling the notation of Chapter 8 (see Eq. (8.8)) for two-time quantities, natural choices for A and B

are the order parameter σ̂xi and the transverse magnetization σ̂zi . We will denote by Cx±(t) and Cz±(t)

the respective autocorrelation functions. Moreover, we will also consider the global magnetization

M̂(t) = 1/L
∑L
i=1 σ̂

z
i and thus CM± (t). Let us here introduce an important property that distinguishes

these operators [180, 165]: σ̂xi is non-local with respect to the quasi-particles in the sense that it

has non-vanishing matrix elements with most of the states of the Hilbert space. σ̂zi , instead, is local

in the same variables, in the sense that it couples only few states. This distinction should appear

more transparent if one recalls their expression in terms of the Jordan-Wigner fermions (9.2): σ̂zi is a

quadratic function of the ĉk, and thus also of the excitations γ̂Γ
k , while σ̂xi is the product of a string

of fermions and therefore it is not local in these operators that define the natural basis of the Hilbert

space.

9.1.3 Effective temperatures for the Ising model

Let us recall here the various definitions of effective temperatures given in Chapter 8 and make them

specific for this case. As we anticipated in Section 9.1.2, because of the quench and of the unitary

dynamics, the energy of the system is conserved. This suggests to compare this energetic excess with

an equilibrium thermal average. The effective temperature TEeff(Γ,Γ0) given by this energetic balance

is implicitly defined by

∫ π

0

dk

2π
ǫk(Γ)cos∆k(Γ,Γ0) =

∫ π

0

dk

2π
ǫk(Γ)tanh

ǫk(Γ)

2TEeff(Γ,Γ0)
, (9.12)

with ∆k(Γ,Γ0) = 2δk(Γ,Γ0) and

cos∆k(Γ,Γ0) =
4 [ΓΓ0 − (Γ + Γ0) cos k + 1]

ǫk(Γ)ǫk(Γ0)
. (9.13)

In Eq. (9.12) the l.h.s. represents the average
〈
Ĥ(Γ)

〉
over the state |0〉Γ0

, while the r.h.s. is the

average
〈
Ĥ(Γ)

〉
T=TE

eff

over the equilibrium density matrix ρ̂ = exp[−Ĥ/TEeff]/Z. The angle ∆k(Γ,Γ0)

is a crucial quantity that encodes the dependence on the initial state and fixes the non-thermal

statistics of the excitations created at t = 0. Requiring that the integrands of (9.12) equalize, i.e. that

cos∆k(Γ,Γ0) = tanh ǫk(Γ)

2Tk
eff (Γ,Γ0)

, defines a mode-dependent effective temperature T keff . This is nothing

but the temperature that controls the population of the k-th mode and could be derived equivalently

by imposing that each mode k is populated according to a Fermi distribution with temperature

T keff(Γ,Γ0):
〈
n̂Γ
k

〉
=
〈
n̂Γ
−k

〉
=

1

1 + eǫk(Γ)/Tk
eff

. (9.14)

Note that in the thermodynamic limit T keff(Γ,Γ0) is actually a continuous function of k. This means

that the diagonal structure of Ĥ(Γ) (i.e. the integrability of the model) naturally introduces an

infinity of “microscopic” temperatures, each one associated with a particular integral of motion
〈
n̂Γ
k

〉
.

The relevance of these temperatures is transparent recalling that all expectations values, in the end,

are recovered from functions of
〈
n̂Γ
k

〉
. However, for generic observables, these functions are typically

complex combinations of multidimensional integrals, determinants, oscillatory factors in times, etc.
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The quest for understanding whether, out of this, one could extract a single (or a few) “macroscopic”

temperature, and the relation with TEeff(Γ,Γ0), is definitely an important issue. This led us to consider

generalized FDRs, as in Chapter 8, in order to test the physical properties of the system in the

framework of the linear response theory. In the following we will focus on the stationary regime

after the quench. Because of time-translational invariance we can easily move from the time to the

frequency domain. We study correlations and responses enforcing the quantum FDR relation

~ ImR̃AB(ω) = tanh
(βABeff (ω) ~ω

2

)
C̃AB+ (ω) , (9.15)

where we assumed stationary CAB+ (t) and RAB(t). Eq. (9.15) allows us to define an observable

dependent effective temperature βABeff (ω). Note that a priori one must explicitly take into account

the frequency dependence because in the non-equilibrium case the temperature varies with the time

scale. The study of the ω dependence clearly provides an important piece of information about the

dynamical scales of the system with respect to a given observable. As we mentioned we could also

consider a time-dependent formulation of the quantum FDT, which takes a slightly more complicated

form:

RAB(t) =
i

~

∫ ∞

−∞

dω

π
e−iωt tanh

(β∗
eff ~ω

2

)
C̃AB+ (ω) , (9.16)

where we enforced a single effective temperature β∗
eff (we removed the AB superscript to simplify

the notation but the dependence on the observable remains). Note that Eqs. (9.15) and (9.16) are

equivalent only if the frequency dependence of βeff is allowed. This is because in the definition of

the ω-dependent βABeff (ω) there are no assumptions and it represents just a way of writing R̃AB(ω) in

terms of C̃AB+ (ω). In this respect then, with the ω-dependent value, Eqs. (9.15) and (9.16) express

the same condition over the symmetric and the antisymmetric correlations.

In the following we will be interested in understanding if it is possible to make contact between the

effective description that emerges considering the FDRs in the frequency and in the time, at least for

some regimes (small frequencies and long times). In particular we aim to compare βABeff (ω → 0+) with

the value β∗
eff obtained taking the long time limit in Eq. (9.16). Clearly in equilibrium β does not

depend on time and this is possible. In order to take the long-time limit in Eq. (9.16) - which may

not be evident for the non-equilibrium case despite the knowledge of CAB+ (t) and RAB(t) - one can

expand in power series the hyperbolic tangent in Eq. (9.16) and observe that this returns a sum over

the odd time derivatives of CAB+ (t). At this point one can compare, order by order in the long time

decay, the l.h.s. and the r.h.s. of Eq. (9.16). This will turn in an equation for β∗
eff that hopefully at

the leading order does not depend on time. The result of this procedure is what we take as a good

definition of the effective temperature in the long time limit. Since one could expect the quantum

behavior being more relevant for the short time scales, we will also consider, in the same long time

limit, the effective temperature extrapolated from the classical FDT:

T cl
eff = − lim

t→∞

∂tC
AB
+ (t)

RAB(t)
. (9.17)

9.1.4 Critical quenches. Motivations

Even though all the considerations up to now are very general, in what follows we will focus on the

case Γ = 1, i.e. on critical quenches. Since this choice may appear rather arbitrary let us argue about

the reasons behind it. The model presents three regimes: two phases PM (Γ > 1) and FM (Γ < 1) and

the critical point (Γ = 1). Clearly, in the quench problem, the possibilities are much more because

one has to consider these three regimes in the initial and in the final Hamiltonian and to treat them
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separately. Pragmatically, since a detailed study leaves room for several analysis, we preferred to fix

the value of the final field and do not constraint the initial condition. From this perspective, there are

many reasons to choose the critical point.

1. There are evidences that the expectation values of some operators in the long time limit after

the quench to Γ = 1 are thermal with the temperature TEeff(Γ,Γ0), while the same does not

hold in the gapped phases. We will recall some of these results in the next Section. Then, it is

natural to investigate up to which extent the “thermalization” found for one-time quantities at

Γ = 1, carries over to two-time observables in the same stationary limit. The generalized FDRs

precisely provide the tools to accomplish this goal.

2. Among the motivations of the study of thermalization in quantum quenches there is the idea

that the correlations within the entire, infinite, system could work as a thermal bath mechanism

for a small subpart of the system itself, once the remaining degrees of freedom are traced out.

From this point of view, one can heuristically argue that the thermal bath mechanism may be

favored in the presence of a gapless spectrum, in the sense that energy exchanges at any scale

are facilitated by the absence of gaps.

3. Finally, since our study will be strongly based on a frequency analysis and eventually in its

ω → 0 limit, it is reasonable to start the investigation in the absence of an energy gap, where

we expect it to be well posed. Depending on the observable considered, the presence of the gap

may in fact introduce different frequency scales and more heterogeneous patterns within the

corresponding regimes. This issue definitely merits attention but it requires a dedicated study

which is the natural continuation of the investigation presented here for Γ = 1.

9.1.5 Review of the results in the literature

As we mentioned in Section 8.2.3, the study of the unitary non-equilibrium dynamics in the long time

limit following a quantum quench is receiving increasing attention. Basic questions as to whether a

stationary state is reached and how this can be characterized naturally arise. These questions have

been addressed in a number of simple models, including the one-dimensional systems reviewed in

Refs. [181, 165]. Early studies led to the following picture: non-integrable systems should eventually

reach a thermal stationary state characterized by a Gibbs distribution with a single temperature.

Integrable systems, instead, are not expected to thermalize but their asymptotic stationary state

should nonetheless be described by the so-called generalized Gibbs ensemble (GGE) with one effective

temperature for each conserved quantity [175, 176, 169, 182] (see Section 8.2.3).

Interestingly enough, depending on the specific quantity and the system’s parameters a Gibbs ensemble

turns out to capture anyhow some relevant features of the non-equilibrium dynamics of integrable

systems [163]. Very interestingly it was observed in [163, 180], based on the study of the transverse field

Ising chain, that observables that are non-local in the quasi-particles, σ̂x, display numerically the same

relaxation scales as in equilibrium with the temperature T ≃ TEeff , at least for small quenches [163, 182].

Local quantities such as σ̂z , instead do not, with possible exceptions for quenches at criticality where

the stationary expectation value after the quench 〈σ̂z〉Q is found equal to the thermal equilibrium

value 〈σ̂z〉T=TE
eff

.

Before presenting our results let us summarize with more details what is known, for the transverse

Ising chain, about Cz,x± for quenches towards the critical point Γ = 1. In equilibrium (Γ0 = Γ)

〈σ̂zi (t+ t0)σ̂
z
i (t0)〉 decays algebraically as |t|−3/2 at T = 0 and as |t|−1 at finite temperature [163]. Out



9.2. TRANSVERSE MAGNETIZATION 117

of equilibrium the stationary decay of Cz+ is |t|−2 [178]. For the special case of a fully polarized initial

condition (Γ0 =∞) Cz− follows the same |t|−2 decay, as can be inferred from the results in Ref. [181].

In the long time limit the expectation value 〈σ̂x〉Q decays to zero, for all Γ 6= Γ0, consistently with the

thermal behavior for T > 0. A generic exponential relaxation of
〈
σ̂xi (t0)σ̂

x
j (t0)

〉
was argued in [162]

using semi-classical methods and later shown to hold exactly [182]. Moreover, as anticipated above, an

exponential decay of | 〈σ̂xi (t+ t0)σ̂
x
i (t0)〉 | with numerically the same relaxation scales as in equilibrium

with the temperature T ≃ TEeff , at least for small quenches, was found in [163, 180]. This is in contrast

to the power-law decay of the T = 0 equilibrium order-parameter spatio-temporal correlations. As far

as we know, instead, Cx− has not been analyzed so far. In the following we complete this picture by

calculating Cx± and Cz± for generic Γ0. We also study CM± , where Â, B̂ = M̂ =
∑L
i=1 σ̂

z
i /L.

9.2 Transverse magnetization

We start the analysis considering first the stationary expectation value of 〈σ̂z(t)〉 after the quench:

〈σ̂z〉Q = lim
t→∞

〈σ̂z(t)〉Q = −
∫ π

0

dk

π
cos(2θΓk ) cos∆k(Γ,Γ0) , (9.18)

where here and in the following we took the thermodynamic limit 1/L
∑
k → 1/2π

∫ π
−π dk [180]. As

it was shown in [180] this value is in general different from the thermal one, at temperature T = TEeff .

However at the critical point it turns out that:

〈σ̂z〉Q = 〈σ̂z〉T=TE
eff

. (9.19)

This is due to the fact that for critical quenches in the stationary regime, as well as at thermal
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Figure 9.2: Comparison between the stationary expectation value 〈σ̂z〉Q after the quench and the

thermal equilibrium value as a function of TEeff , for different quenches. Solid lines correspond to the

equilibrium thermal value of 〈σ̂z〉 at temperature T = TEeff , for different values of Γ. Red, black

and green curves represent respectively Γ = 0.75, 1 and 1.25. Dashed (Γ0 < Γ) and dotted-dashed

(Γ0 > Γ) lines show the asymptotic value of 〈σ̂z〉Q after the quench as a function of TEeff(Γ,Γ0) for

different quenches, Γ = 0.75, 1 and 1.25. The convention for the colors is the same as before. For

critical quenches Γ = 1, the thermal value and the value after the quenched coincide.

equilibrium and Γ = 1, 〈σ̂z〉 =
〈
Ĥ
〉
/2. Thus the equality 〈σ̂z〉Q = 〈σ̂z〉T=TE

eff
follows from Eq. (9.12)
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by definition. In Fig. 9.2 we show the value of 〈σ̂z〉Q for different quenches as a function of TEeff
compared to the equilibrium thermal expectation values at T = TEeff , similarly to what was presented

in [180]. As we anticipated in the previous Section, this result motivates a further investigation in

order to understand up to which extent thermalization occurs at the critical point for σ̂z . The two-

time symmetric connected correlation and response for generic Γ and Γ0 are given by the following

expressions:

Cz+(t+ t0, t0) =
4

π2

∫ π

0

dk

∫ π

0

dl Re
[
vk(t+ t0) v

∗
k(t0)ul(t+ t0)u

∗
l (t0)

]
(9.20)

Rz(t+ t0, t0) = − 8

π2

∫ π

0

dk

∫ π

0

dl Im
[
vk(t+ t0) v

∗
k(t0)ul(t+ t0)u

∗
l (t0)

]
. (9.21)

In Eqs. (9.20), (9.21), and in the following, vk(t) = vΓ,Γ0

k (t) and uk(t) = uΓ,Γ0

k (t) are the matrix

elements defined in Eq. (9.11). For critical quenches the stationary correlation and response obtained

in the limit t0 →∞ read:

Cz+(t) =
[ 1

π

∫ π

0

dk cos(ǫkt)
]2
−
[ 1

π

∫ π

0

dk cos(ǫkt) cos ∆k sin k/2
]2

+
[ 1

π

∫ π

0

dk sin(ǫkt) sin k/2
]2
−
[ 1

π

∫ π

0

dk sin(ǫkt) cos∆k

]2
,

(9.22)

Rz(t) =
4

π2

[ ∫ π

0

dk sin(ǫkt) cos∆k

∫ π

0

dl cos(ǫlt)−
∫ π

0

dk sin(ǫkt) sin
k

2

∫ π

0

dl cos(ǫlt)(sin
l

2
cos∆l)

]
,

(9.23)

with ǫk = 4 sink/2. If Γ0 = 0 or Γ0 =∞ the expressions simplify to:

Cz+(t) = (J0(4t))
2 − 1

4
(J0(4t)− J2(4t))

2 (9.24)

Rz(t) = 2J1(4t)(J0(4t) + J2(4t)) , (9.25)

where Jα(x) are Bessel functions of order α. These results are consistent with those found in [181, 178].

The long time dynamics for generic Γ0 is

Cz+(t) = − 1

8πt2
cos 8t+O(t−3) , (9.26)

Rz(t) =
1

4πt2
[
Υ−1 − sin 8t

]
+O(t−3) , (9.27)

where Υ = [(1 + Γ0)/(1 − Γ0)]
2. Note that Υ, as well as all the stationary expectation values at the

critical point are invariant under the mapping Γ0 7→ Γ−1
0 (at least for all the observables that we

considered). This is because cos∆k(1,Γ0) = cos∆k(1,Γ
−1
0 ) is the sole quantity bringing about the

dependence on Γ0 in the stationary limit t0 →∞ of Cz±. Note in fact that for Γ = 1 one has:

cos∆k(Γ = 1,Γ0) =
(1 + Γ0) | sink/2|√
Γ2

0 − 2Γ0 cos k + 1
=

√
Υ | sin k/2|√

1 + (Υ − 1)(sin k/2)2
. (9.28)

The non-stationary transient, however, does not respect this symmetry. This is because ∆k(Γ =

1,Γ0) = −∆k(Γ = 1,Γ−1
0 ) and in the non-stationary correlations it also appears sin∆k. Let us

consider the frequency domain. From Eq. (9.22) and (9.23) it is clear that the Fourier transform

will concern real values of frequencies ω which coincide either with the sum ǫk + ǫl or with the

difference ǫk − ǫl of the energy of two quasiparticles, depending on the range of ω. This is due to

the quadratic form of σ̂z with respect to the fermionic excitations and will induce a finite cut-off
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Figure 9.3: Left panel: Correlation and response of σ̂z as a function of the frequency ω for Γ0 = 0.3

and Γ = 1. C̃z+(ω) and R̃z(ω) are shown respectively with a red and a blue line. Right panel: Effective

inverse temperatures βzeff(ω) found for Γ = 1 and different initial conditions Γ0. The red, green, blue

and yellow curves correspond, respectively, to Γ0 = 0, 0.3, 0.5, 0.8.

frequency ωmax = 2ǫk=π because of the upper bound to the dispersion relation ǫk(Γ). In Fig. 9.3 (left

panel) we present the result for C̃z+(ω) and R̃z(ω) for Γ0 = 0.3. Note that thanks to the symmetry

properties of C̃AB+ (ω) = C̃AB+ (−ω) and R̃AB(ω) = −R̃AB(−ω) with respect to the mapping ω → −ω
we discuss only the results for ω > 0. The complementary analysis in the frequency domain allows us

to define a frequency-dependent effective temperature T zeff(ω), or βzeff(ω), via the FDR in Eq. (9.15).

The function T zeff(ω) is shown in Fig. 9.4 for Γ0 = 0.3 as a (red) solid line and it has to be compared

with the constant value obtained from Eq. (9.12), as in Ref. [180], and shown with a black dashed

line. The asymptotic regime corresponds to the limit ω → 0, zoomed in the inset, in which

βzeff(ω → 0)→ −1/2(1− 1/Υ)/[1 + (Υ− 2) arctan(
√

Υ− 1)/
√

Υ− 1] lnω (9.29)

diverges logarithmically (green dashed line). We conclude that, although 〈σ̂zi 〉Q takes a thermal

value [180], the dynamics of σ̂zi is not compatible with an equilibrium thermal behavior that would

require all these temperatures to be equal within a Gibbs description. For different values of Γ0, T
z
eff

still vanishes at ω = 0 and ω = ωmax ≡ 8 but it takes a slightly more complex shape, not concave for

Γ0 & 0.35. For increasingly narrower quenches with Γ0 → 1, βzeff →∞ uniformly over all frequencies,

as expected to recover the equilibrium value T = 0 for Γ0 → Γ = 1. In Fig. 9.3 (right panel) we show

the values of βzeff for different Γ0.

9.3 Global transverse magnetization

We consider here the global transverse magnetization M̂ = 1/L
∑L
i=1 σ̂

z
i . The general expressions for

two-time connected correlation and response involving M̂(t) are the following:

CM+ (t+ t0, t0) =
8

π

∫ π

0

dk Re
[
v∗k(t0)vk(t+ t0)u

∗
k(t0)uk(t+ t0)

]
(9.30)

RM (t+ t0, t0) = −16

π

∫ π

0

dk Im
[
v∗k(t0)vk(t+ t0)u

∗
k(t0)uk(t+ t0)

]
, (9.31)

where we have rescaled the fluctuations of M̂ by a factor L before taking the thermodynamic limit, as

it is required for global observables whose fluctuations are otherwise suppressed. For critical quenches
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Figure 9.4: Comparison between the effective temperature Teff defined via the frequency-domain

FDR (see Eq. (9.15)) and the effective temperature TEeff defined through conservation of energy (see

Eq. (9.12)). All the curves refer to the case Γ0 = 0.3. T zeff(ω) for σ̂zi is shown in the left panel with

a solid red line. The inset highlights the logarithmic divergence of 1/T zeff(ω) for ω → 0. TMeff (ω) for

M̂ is shown in the right panel with a solid blue line. In both panels the black dashed horizontal line

represents the effective temperature defined from the energy.

the stationary correlation and the response read:

CM+ (t) =
2

π

∫ π

0

dk
[
(1 − cos∆2

k)
1

2
(1 − cos k) +

1

2
(1 + cos k)

1

2
(cos∆2

k + 1) cos(2ǫΓk t)
]
, (9.32)

RM (t) =
4

π

∫ π

0

dk
1

2
(1 + cos k) sin(2ǫΓkt) cos∆k , (9.33)

with ǫk = 4 sink/2. If Γ0 = 0 or Γ0 =∞ the expressions symplify:

CM+ (t) =
1

4
+

1

8

(
5J0(8t) + 4J2(8t)− J4(8t)

)
(9.34)

RM (t) = J1(8t) + J3(8t) . (9.35)

The long-time stationary decay of the global magnetization correlations are even slower than the one

of Cz±(t):

CM+ (t) =
1

8
√
πt3/2

sin(8t− π/4) +O(t−5/2), (9.36)

RM (t) = − 1

4
√
πt3/2

cos(8t− π/4) +O(t−5/2). (9.37)

Note that in Eq. (9.36) we neglected the constant term 2
π

∫ π
0

dk
[
(1 − cos∆2

k)
1
2 (1 − cos k)

]
which is

not important for the study of FDRs. The leading-order decay t−3/2 is the same as in equilibrium at

finite T . However, while the prefactor depends upon T in equilibrium [183], out of equilibrium the

dependence on Γ0 appears only at the next-to-leading order, i.e., the long-t limit of CM± (t) does not

retain memory of the initial condition. Let us focus on these observables in the frequency domain.

After Fourier transforming Eq. (9.32) and Eq. (9.33) each frequency ω selects a mode k such that

ω = 2ǫk. Moreover, it turns out that TMeff (ω) defined here from the FDR (9.15) coincides with the

temperature T keff of the GGE (9.14). This can be seen quite straightforwardly identifying cos∆k =
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Figure 9.5: Left panel: Correlation and response of M̂ as a function of the frequency for Γ0 = 0.3 and

Γ = 1. C̃M+ (ω) and R̃M (ω) are shown respectively as a red and a blue line. Right panel: Effective

inverse temperatures βMeff(ω) found for Γ = 1 and different initial conditions Γ0. The red, green, blue

and yellow curves correspond respectively to Γ0 = 0, 0.3, 0.5, 0.8.

tanh ǫk(Γ)

2Tk
eff

in Eq. (9.32) and Eq. (9.33) and applying a Fourier transform. In this way one ends up

with the ratio:
R̃M (ω)

C̃M+ (ω)
= tanh

( ω

2T keff

)
, (9.38)

where k corresponds to the one selected by the frequency, ω = 2ǫk. The Fourier Transform of Eq. (9.32)

and Eq. (9.33) can be calculated analytically. They yield:

C̃M+ (ω) =
1

(
√

Υ + 1)2
δ(ω) +

1

4

√
1−

(ω
8

)2 1 + (2Υ− 1)
(
ω
8

)2

1 + (Υ− 1)
(
ω
8

)2 (9.39)

R̃M (ω) =
ω

16

√
1−

(ω
8

)2√
Υ
[
1 + (Υ− 1)

(ω
8

)2 ]−1/2

. (9.40)

The blue line in the right panel of Fig. 9.4 is TMeff (ω) as obtained from the FDR (9.15), applied to C̃M± .

Analogously to what we did for T zeff(ω) we can study the value of TMeff (ω) for small ω:

TMeff = lim
ω→0

TMeff (ω) =
2√
Υ
. (9.41)

Then, differently from before, TMeff approaches a finite value at low frequencies, while it vanishes for

ω = ωmax. The resulting TMeff (ω) is shown for various values of Γ0 in Fig. 9.5 (right panel). Quite

naturally, one may expect to recover the value TMeff by treating the time-domain FDR in the long-t

limit as we said in Section 9.1.3. Replacing β by a constant effective value β∗
eff on the r.h.s. of

Eq. (9.16), the integral can be written as series of odd time derivatives of CM+ (t). Inserting Eqs. (9.36)

and (9.37) in the r.h.s. and l.h.s. of this expression, respectively, yields 1 = tanh(4β∗
eff) at the leading

order in t→∞ and therefore T ∗
eff = 0. The fact that TMeff (ω→0) 6= T ∗

eff indicates that βMeff(ω) cannot

be approximated by an average constant in the integral. Indeed, since only the derivatives of the

oscillating factor in (9.36) contribute to the leading order of Eq. (9.16), T ∗
eff can be interpreted as a

temperature associated to the oscillatory frequency ω = 8. Note that this oscillation occur at the

threshold value ω = ωmax and, for ω → ωmax, β
M
eff diverges as βMeff(ω) ≃ − ln(ωmax − ω)/4. The

independence from Γ0 in this divergence is consistent with the fact that the leading order of the long
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time limit of CM+ (t) and RM (t) is also independent of Γ0 and it is sensitive to the largest frequencies

(that, in turn, are associated to the largest energies). Such threshold ωmax results from the maximum

of the dispersion relation and the quadratic dependence of M̂ on the fermionic excitations, as noted

for σ̂z . It is therefore unclear how the same value as TMeff (ω → 0) can be recovered from the FDR in

the time domain.

9.4 Order parameter

As we anticipated a careful observation of the stationary correlations and responses presented in

Section 9.2 and 9.3 reveals that all these quantities are invariant under Γ0 7→ Γ−1
0 . We argued that

this is because cos∆k(1,Γ0) = cos∆k(1,Γ
−1
0 ) (see Eq. (9.28)) is the sole quantity bringing about the

dependence on Γ0 in the stationary limit t0 →∞ of CM,z
± . In the stationary regime and for Γ = 1 we

find numerically that this invariance also holds for Cx±.

9.4.1 Computation of the correlation functions

As it was already pointed out in [163, 162, 182] the stationary expectation value of 〈σ̂x(t)〉 decays to

zero for any Γ 6= Γ0. This is consistent with the equilibrium thermal scenario in which there is no long-

range order along the x-component, as soon as T > 0. Then we looked for the two-time correlations

Cx± that we computed with the methods employed in Refs. [163] that generalize the equilibrium case

discussed in [177]. For periodic boundary conditions the computation of Cx± is not trivial because

the operator σ̂xi (t0 + t) σ̂xi (t0) has non-zero matrix elements between states with different ĉ-fermionic

parity. For this computation, the assumption mentioned in Section 9.1.1 about the restriction to the

even sector is not justified. On the other hand, we do not have the tools to compute matrix elements

between the two sectors because they are diagonalized by imposing different rule of quantization over

momenta k. Then, following [180, 177] we consider a four-spin correlation function on a chain of

length L:

Cxx(t, t0;L) =
〈
σ̂xL+1(t0 + t) σ̂x1 (t0) σ̂

x
L
2 +1

(t0 + t) σ̂xL
2 +1

(t0)
〉
. (9.42)

The spin σ̂xL+1 is identified with the spin σ̂x1 after that the full string of Jordan-Wigner fermions, from

1 to L, has been inserted. By using the cluster property and taking the thermodynamic limit in fact,

from this quantity one can recover Cx±(t+ t0, t0):

[
Cx(t+ t0, t0)

]2
= lim

L→∞
Cxx(t, t0;L) , (9.43)

with Cx(t1, t2) = Cx+(t1, t2) + i Cx−(t1, t2). The advantage of this strategy is that the four-point

correlation function in Eq. (9.42) conserves the parity of the number of ĉ-fermions, and can therefore

be evaluated in the (antiperiodic) even sector [180, 177]. Following [180] we introduce the operators

Âj(t) ≡ ĉ†j(t) + ĉj(t) and B̂j(t) ≡ ĉ†j(t) − ĉj(t) in terms of Jordan-Wigner fermions. Note that

(1− 2ĉ†j ĉj) = ÂjB̂j = −B̂jÂj and {Âj , B̂l} = 0 ∀j, l. Then, recalling the transformation in Eq. (9.2)

we get:

Cxx(t, t0;L) =
〈
[B̂L

2 +1(t0 + t) · · · B̂L(t0 + t)][ÂL
2 +2(t0 + t) · · · ÂL+1(t0 + t)]

×[B̂1(t0) · · · B̂L
2
(t0)][Â2(t0) · · · ÂL

2 +1(t0)]
〉
.

(9.44)
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The next and final step is to write the Pfaffian Eq. (9.44) in terms of the determinant of a (2L−4r)×
(2L− 4r) matrix [177, 180]:

[
Cxx(t, t0;L)

]2
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈BB〉t0+t,t0+t
j1,l1

〈BA〉t0+t,t0+t
j1,l2

〈BB〉t0+t,t0
j1,l3

〈BA〉t0+t,t0
j1,l4

−〈BA〉t0+t,t0+t
l1,j2

〈AA〉t0+t,t0+tj2,l2
〈AB〉t0+t,t0j2,l3

〈AA〉t0+t,t0j2,l4

−〈BB〉t0+t,t0l1,j3
−〈AB〉t0+t,t0

l2,j3
〈BB〉t0,t0j3,l3

〈BA〉t0,t0j3,l4

−〈BA〉t0+t,t0
l1,j4

−〈AA〉t0+t,t0l2,j4
−〈BA〉t0,t0l3,j4

〈AA〉t0,t0j4,l4

∣∣∣∣∣∣∣∣∣∣∣∣∣

(9.45)

with 〈φφ〉t1,t2i,j =
〈
φ̂[i](t1)φ̂[j](t2)

〉
and φ ∈ {A,B}. In Eq. (9.45) the two indexes j, l have subscripts

which indicate their range: an index with label 1 runs from L
2 + 1 to L, with 2 runs from L

2 + 2 to

L + 1, with 3 runs from 1 to L
2 , with 4 runs from 2 to L

2 + 1. All the diagonal entries of the matrix

in (9.45) are zero, since they do not enter the contractions. The matrix elements take the form:





〈
Âj(t1)Âl(t2)

〉
=

1

L

∑

k

eik(j−l)
(
uk(t1) + vk(t1)

)(
u∗k(t2) + v∗k(t2)

)

〈
Âj(t1)B̂l(t2)

〉
=

1

L

∑

k

eik(j−l)
(
uk(t1) + vk(t1)

)(
u∗k(t2)− v∗k(t2)

)

〈
B̂j(t1)Âl(t2)

〉
=

1

L

∑

k

eik(j−l)
(
vk(t1)− uk(t1)

)(
u∗k(t2) + v∗k(t2)

)

〈
B̂j(t1)B̂l(t2)

〉
=

1

L

∑

k

eik(j−l)
(
uk(t1)− vk(t1)

)(
v∗k(t2)− u∗k(t2)

)
.

, (9.46)

and the k-sums are taken for fermion antiperiodic boundary conditions. Some care is in order when one

wants to extract the real and the imaginary part of Cx(t) numerically from the value of
[
Cxx(t, t0;L)

]2
.

9.4.2 Numerical results for the dynamics

Here we computed Cx± for a chain with L = 103 and we set t0 = 10. We estimated these values

to be large enough for accessing the thermodynamic and the stationary limit. We also checked for

some values of Γ0 that we obtain the same results as in the bulk of an open chain with free boundary

conditions [184, 179]. At fixed parameters in fact, Cx± computed in the two cases perfectly overlap,

at least up to times much shorter than the length of chain, after which finite-size effects are expected

to appear. Note that in the open chain the distinction between the even and the odd sectors as well

as translational invariance are absent. Therefore, the treatment of these two cases is quite different.

With this comparison we found confidence that, despite these differences, also out of equilibrium the

choice of the boundary conditions does not affect the bulk properties of the system, which is actually

expected. When the times become of the order of the length of the chain the correlations manifest

finite-size effects. This is because the excitations created by γ̂Γ
k travel at finite speed Vk = ∂kǫk(Γ).

Thus, after long enough times they scatter against the boundary of the open chain and go back, or

against particles that are moving coherently with them but in the opposite direction on the closed

chain. Moreover at the critical point all the low energy particles move with the same speed |Vk| = 1

approximately, as it is clear from Fig. 9.1 and this makes the dynamics particularly coherent. These

finite size effects have been thoroughly studied in [184, 179]. In Fig. 9.6 we show the qualitative

behavior displayed by Cx+(t) (left panel) and Rx(t) (right panel) for different initial conditions. Note

that here and in the following we focus only on quenches originated in the ferromagnet region Γ0 < 1

because of the symmetry under the change Γ0 → Γ−1
0 . Our numerical results are fitted very accurately,
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Figure 9.6: Cx+(t) (left panel) and Rx(t) (right panel) for different initial conditions. Red, green, blue

and yellow lines correspond respectively to Γ0 = 0, 0.3, 0.5, 0.8.

for t & 10, by

Cx+(t) ≃ e−
t
τ AC

[
1 +

aC
t1/2

sin(4t+ φ)
]
, (9.47)

Rx(t) ≃ e−
t
τ AR

[
1− aR

t1/2
cos(4t+ φ)

]
, (9.48)

with (numerically) the rate τ−1 given by

τ−1 = −
∫ π

0

dk

π

dǫk(Γ)

dk
ln cos∆k(1,Γ0) =

4 arctan(
√

Υ− 1)

π
√

Υ− 1
(9.49)

analytically proved [182] to characterize the exponential long-time decay of 〈σ̂xi (t)〉 and similarly the

one of the equal time correlation 〈σ̂xi (t)σ̂xj (t)〉. The expression for τ finds further support from the

fact that with the substitution cos∆k = tanh(βkeffǫk/2) → tanh(βǫk/2) one recovers the equilibrium

characteristic time τeq [185]. This substitution in fact allows one to turn all the statistical averages

considered up to now into the corresponding ones at thermal equilibrium with temperature β−1. The

substitution amounts to a GGE description of the stationary regime for the quantity under study,

where the dependence on the initial condition survives only at the level of the population of the

k-modes.

The non-equilibrium coherence time τ decreases upon increasing |1 − Γ0|, i.e. , the energy injected

into the system and τ ∼ |1 − Γ0|−1 for Γ0 → 1. In Fig. 9.7 we compare Cx+(t) and Rx(t) for a

particular choice of Γ0 = 0.3. In the upper inset we show with a zoom the long-time decay together

with its comparison with the leading exponential decay. The lower inset confirms the high quality

of the fit of the correction terms to the forms given in Eqs. (9.47) and (9.48) which are actually

indistinguishable from the data. Although several fitting parameters are involved in Eqs. (9.47) and

(9.48), we tested these expressions for several values of Γ0 ∈ {0, 0.1, 0.2, . . . , 0.9} and they turned out

to be always remarkably accurate. The exponential decay sets in very soon, usually already after the

first oscillation of Cx±. The next-to leading order oscillatory correction involving a power law decay

is more complex, but still we found a remarkable agreement quite soon. While the parameters AR,C

depend on Γ0, their ratio AC/AR = 1.210(5) does not within our numerical accuracy. In the left panel

of Fig. 9.8 we show the exponential decay of Cx+(t) for several initial conditions Γ0 and its comparison

with the rate in Eq. (9.49). The decay of Rx(t) is precisely the same. In the right panel we show the
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Figure 9.7: Decay of the order-parameter correlation Cx+ (blue line) and the linear response Rx (red
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exponential relaxation with the characteristic time τ defined in Eq. (9.49) (dashed green line). Lower

inset: (et/τCx+/AC − 1)/aC and (et/τRx/AR − 1)/ar vs. t; the green dashed line is the t−1/2 envelope

of the damped oscillations, in agreement with Eqs. (9.47) and (9.48).

damped oscillations displayed by Cx+(t) e
t
τ /AC and with a dashed line the envelop ∝ t−1/2. In the

inset of the same figure we took a zoom in time that shows the phase shift φ between the different

curves. Note that the curves almost overlap, despite little differences remain, as for instance in the

phase shift. We do not know whether these differences are a finite-size effects or they survive in the

thermodynamic and stationary limit. Of course, since the numerical computations are done for a

finite chain, there is also an upper bound in the long time limit to the expressions in (9.48). However

a detailed discussion of finite-size effects is beyond the scope of our study.

We conclude our numerical investigation with some selected results regarding two-time and two-point

functions:

Cx±(r, t0 + t, t0) =
1

2

〈[
σ̂xi+r(t0 + t), σ̂xi (t0)

]
±

〉
, (9.50)

which provide, from Kubo formula, Rx(r, t0 + t, t0) = 2iCx−(r, t0 + t, t0). The computation for this

quantity is still based on the same determinant equation (9.45) where an index with label 1 runs from
L
2 + 1 to L − r, with 2 runs from L

2 + 2 to L− r + 1, with 3 runs from 1 to L
2 − r, with 4 runs from

2 to L
2 − r + 1. We fixed the length of the chain L = 1000 and the waiting time t0 = 10 and we

studied the initial conditions with Γ0 ∈ {0, 0.1, 0.2, . . . , 0.9} exactly as before. Differently from the

case r = 0 shown in Fig. 9.7, correlations with r 6= 0 display a light-cone effect due to the finite speed

of the quasi-particles [162, 182, 179, 184]. In Fig. 9.9 and Fig. 9.10 the light-cone effect and the finite

speed of the quasiparticles is apparent, as both correlations and responses remain almost constant

up to times t ≃ r/2. This is evident in Fig. 9.9 where we show the qualitative behavior of Cx+(r, t)

(left panel) and Rx(r, t) (right panel) at fixed r = 10 and for different Γ0. In Fig. 9.10 we show the

exponential decay of Cx+(r, t) (left panel) and Rx(r, t) (right panel) at fixed Γ0 = 0.3 and for different

r = 5, 10, 20 together with the rate in Eq. (9.49). The spatial de-correlation decay for t = 0, i.e. for

〈σ̂xi+r(t0)σ̂xi (t0)〉, was determined in [182].
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Figure 9.8: Left panel: Solid lines show the exponential time decay of the correlation function Cx+(t)

for several initial conditions. Dashed lines show the corresponding rate decay obtained from Eq.

(9.49). Right panel: Oscillatory correction to the leading order of the correlation Cx+(t). With solid

lines we show Cx+(t)et/τ/AC (see Eq. (9.47)). The dashed line is the envelope 1± 0.23/
√
t that show

the damped amplitude of the oscillations. The inset is a zoom in the time interval t ∈ [24, 27] that

shows the slight phase shift among the different curves. In both panels red, green, blue and yellow

lines correspond respectively to Γ0 = 0, 0.3, 0.5, 0.8. For the sake of simplicity we do not show here

Rx(t), but we found the same characteristic time and an analogous oscillatory behavior.

9.4.3 Effective temperatures

In the following we present the study of the effective temperatures defined for σ̂x in time and in the

frequency domain in the limit of ω → 0. Let us start the discussion from the frequency analysis. Due

to the numerical calculation in time of Cx±(t) it is very hard to access the full frequency dependence

of C̃x±(ω). We are forced to consider finite time intervals and this makes the computation of large

frequencies unreliable. We studied the small frequency regime in a time interval t ∈ [0, tmax] for

different values of tmax and we found that it stabilizes rapidly with increasing tmax, tmax being an

increasing function of τ . Small frequencies capture the exponential decay and they are less sensitive

to other details. For these reasons, their extrapolation in a sufficiently large, but finite, time interval

is expected to provide reliable results. Luckily, the region of small ω is the one that interest us the

most because we aim to compare βxeff(ω → 0) with a long time determination of the β∗
eff obtained from

Eq. (9.16). The zero frequency limit of Eq. (9.15) yields:

βxeff(ω → 0) =

∫∞

0 dt tRx(t)∫∞

0
dt Cx+(t)

, (9.51)

that we take as our working definition for βxeff(ω → 0). Alternatively as discussed above, we can

enforce a constant value β∗
eff in the (generalized) FDT (9.16) in the time domain. This operation

allows to interpret the r.h.s. of the equation into a series of time derivatives of Cx+(t) which yields

~AR/(2AC) = tan(~βxeff/2τ) (9.52)

for t → ∞, i.e. when one neglects the oscillatory corrections in Eqs. (9.47) and (9.48). In this case

we found that the effective temperatures determined in frequency and time domain are equivalent.

For ~βxeff/2τ ≪ 1 in Eq. (9.52) one recovers the classical limit (9.17) βxeff ≃ −Rx(t)/[dCx(t)/dt] ≃
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Figure 9.9: Cx+(r = 10, t) (left panel) and Rx(r = 10, t) (right panel) for different initial conditions.

Red, green, blue and yellow lines correspond, respectively, to Γ0 = 0, 0.3, 0.5, 0.8.
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Figure 9.10: Cx+(r, t) (left panel) and Rx(r, t) (right panel) for Γ0 = 0.3 and different values of r. Red,

green, blue lines correspond, respectively, to r = 5, 10, 20. The dashed lines are the exponential decay

with rate given by Eq. (9.49).

τAR/AC . All three determinations of T xeff are shown in Fig. 9.11 as functions of Γ0 and they are

compared to TEeff (dashed line) from Eq. (9.12) [163]. In the same Figure we also show as a function

of Γ0 the zero-frequency effective temperature obtained from Eq. (9.51) applied to the two-point

functions Cx+(r, t) and Rx(r, t) with r = 10.

9.5 Discussion

Let us summarize the results that we have obtained. As a first observation let us note that indepen-

dently of the functional form of the correlations involved, the FDRs allow us to define various effective

temperatures. This is a great advantage which allows the investigation also of power-law decays, for

instance. Indeed, other strategies that base the comparison between the quench (out of equilibrium)

and the thermal (equilibrium) dynamics on the analysis of characteristic times or lengths are limited

to exponential decays. Moreover, the investigation of the equilibrium properties of the system in



128 9. CRITICAL QUENCHES IN THE TRANSVERSE FIELD ISING CHAIN

0 0.2 0.4 0.6 0.8 1Γ0
0

0.5

1

1.5

2

T
eff

T
eff

x
 t >> 1

T
eff

x
t >>1 FDT class

T
eff

x ω = 0 r = 0

T
eff

x ω = 0 r = 10

T
eff

E 

Figure 9.11: Γ0 dependence of the order parameter effective temperature T xeff compared to TEeff defined

from the energy [see Eq. (9.12)] (dashed line). The solid lines, from bottom to top, indicate the values

determined on the basis of the classical limit of the FDR in the time domain, of the limit ω → 0 of

the frequency-domain FDR, of Eq. (9.52), and of the limit ω → 0 of the frequency-domain FDR but

for spins separated by a distance r = 10. The dependence on Γ0 can be read from the one of τ and

from Eq. (9.52).

terms of FDRs provides the possibility to analyze the behavior of the system in different time (or

frequency) regimes, separately. It might be, in fact, that the characterization of the non-equilibrium

dynamics requires a separate treatment over different time scales. This is, for instance, the case of

slowly evolving systems such as glasses or coarsening systems. Here, we calculated the (self) FDR

for three observables that are local (σ̂x,zi ) or non-local (M̂) in space and local (σ̂zi , M̂) or non-local

(σ̂xi ) in the quasi-particles. By detecting a violation of the FDT we conclude that the dynamics of

σ̂zi is not compatible with Gibbs thermal equilibrium at any effective temperature, in spite of the fact

that thermal-like behavior is observed for the stationary expectation value 〈σ̂z〉Q = 〈σ̂z〉T=TE
eff

. The

frequency-domain FDR for M̂ yields a finite TMeff (Γ0) in the limit ω → 0 however we did not find

the way to recover this value in the time domain in the limit of long times. The dynamics of the

operator σ̂xi shows instead a very different behavior. Both Cx+(t) and Rx(t) decay exponentially with

a characteristic time given by Eq. (9.49) that decreases upon increasing the energy injected in the

system. Moreover, the determination of the effective temperature T xeff(Γ0) in the frequency and the

time-domain, leads to the same value. TMeff and T xeff have the same qualitative dependence on Γ0 but

they differ (and they also differ from TEeff). This excludes a single temperature effective Gibbs descrip-

tion (as the one discussed in Ref. [186]) of the full stationary dynamics of this model but the question

remains as to whether some of the temperatures which emerge can be attributed a thermodynamic

meaning.

We conclude with a remark about the different structure of correlations and responses displayed by

the quantities that we studied and their consequences on the effective temperatures found in time

and frequency space. We recall the fact that the effective temperature T ∗
eff of the long-time dynamics

of CM± (t) (and derivatives) is somehow controlled by the behavior at high frequencies, as discussed

in Section 9.3. This is, to us, very surprising and unexpected. However it is a natural consequence
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of the presence of oscillating terms at the leading order in CM± (t) with a frequency equal to ωmax.

This structure highlights that not only the slow power-law decay of CM,z
± (t) is important, but also

the oscillations are a constitutive ingredient. This structure, as well as the presence of the maximum

frequency ωmax, can not be resolved in a mere lattice effect. As we noted for σ̂z in fact, it is the

combination of a lattice cut-off that bounds the dispersion relation, but also of the particular quadratic

form of the observable with respect to the elementary excitations of the model. In other words, it may

be interpreted as a consequence of the locality of the operator in Hilbert space. Indeed as we saw in

Section 9.4 the order parameter σ̂x, which has a much more complex structure in terms of the quasi-

quarticles, does not display oscillations at the leading order of Cx±(t) but only a pure exponential

decay. This supports the intuition that for this observable oscillations are not so fundamental for

the dynamics, i.e., a simpler lattice effect, and the long time limit of the corresponding T ∗
eff could

be regularly recovered from a small frequency expansion, as it is actually the case (see Fig. 9.11).

The difference between Cx±(t) and Cz±(t) (or CM± (t)), though, that is manifested not only in the

different character of the long time the decay - power-law vs exponential - but also in the oscillatory

“correction”, resides not in the lattice but in the properties of the operators σ̂x,z.

In conclusion, going back to the issue of thermalization in quantum quenches that motivated our

study, we stress that a bona fide thermal behavior should be accompanied by the validity of suitable

FDRs also in this context.
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Conclusions and perspectives

We started this work with the aim of investigating the properties of quantum glasses. Along the way

we realized that it is very difficult to provide a unique definition of what a quantum glass is. This

turned out to be a source of continuous discovery and new questions, as quantum glasses may be

found in very different contexts and can be addressed from very different perspectives. We hope that

our results (summarized in Section I.4 of the Introduction) although limited to the study of some

particular models could contribute to the insight of the subject.

Below we outline relevant research directions which deserve further investigation. Following the struc-

ture of the thesis we divide them into three topics.

Quantum optimization problems

• In Chapters 1, 3 and 4 we argued that we do not expect that quantum adiabatic computation

will be able to solve hard optimization problems in general, because of their complex spectrum.

However we are confident that quantum computation in general, and thus also the quantum

annealing as an algorithm, if physically realizable, has very powerful tools at its disposal, i.e. the

possibility to operate simultaneously over superpositions of the classical computational basis. For

this reason, in our opinion it is important to continue the study of quantum random optimization

problems. However, we believe that the most effective approach consists in understanding in

more details the spectral properties and the thermodynamical behavior of these models in order

to design strategies that focus, for instance, on the possibility to get approximate solutions in

a well-controlled manner [67, 68]. Moreover, as we stressed several times, the understanding of

the properties of quantum random optimization problems is strictly connected to that of glassy

systems. At the moment, the most important study of quantum random optimization problems

that has not been considered yet, is the quantum k-SAT problem or the quantum q-coloring

problem, paradigmatic models of CSPs. Compared to the studies already presented in the

literature, these models have the peculiar feature that the ground state is extremely degenerate

and organized in a complex manner. On the one hand this makes their study particularly hard,

but on the other hand this aspect is very important to complete the picture of the physics of

quantum CSPs.

• Since quantum computers are not available, the study of quantum systems for the moment is

limited to the use of classical tools. In this direction much progress can be made. The develop-

ment of powerful algorithms or general techniques able to investigate the average properties of

131
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quantum systems is a broad and open problem. This is of practical and theoretical importance

also for the understanding of mean-field disordered/glassy systems. In particular, the combi-

nation of the knowledge and the techniques developed in the context of classical glasses (such

as BP, SP or the cavity method) could be combined with the experience and the algorithms

developed for many-body quantum systems, such as the density matrix renormalization group,

or similar approaches. The research in this direction already started and many techniques are by

now available. Indeed, the quantum cavity method has already been applied to several problems

(see the works [82, 83, 35, 24, 128], some of them discussed in Chapters 4 and 6). A differ-

ent, approximate but faster, version of the method has been proposed in [85, 86, 87]. Other

techniques, called “quantum belief propagation” [187, 188] have been developed on the basis of

similar ideas. It would be extremely interesting to find a common theoretical understanding of

all these methods and to develop strategies to improve their efficiency.

Quantum glasses

• The studies carried out on quantum mean-field glasses highlight important differences between

models that classically are believed to describe structural glasses and those that are spin-

glasses [13, 128, 24, 26]. Technically the former are described by the 1-RSB solution, while

the latter by the full-RSB solution of the cavity or replica method. The main difference consists

in the appearance of first-order vs. second-order quantum phase transitions, shown respectively,

by structural glasses and spin-glasses. Whether this result is “universal” is not obvious, since,

for instance, in [23] a model with a 1-RSB transition was shown to have a second order phase

transition to a superglass phase. Moreover a related problem is the study of the effect of the

statistics of the particles in the works [116, 117], where the results concerning the glass phase

are derived neglecting the exchange of the particles. We think that this point is particularly

important to get a consistent description of quantum glassy systems, at least at the mean-field

level and it is desirable to understand the properties of disordered systems at low temperature.

• On the basis of the results outlined in Chapter 6 we think it would be interesting to investigate

the Biroli-Mézard model in finite dimensions, by quantum Monte Carlo. This could help in

understanding the properties of the quantum system beyond the mean-field approximation that

we considered. It is important to determine the robustness of the first-order phase transition

against fluctuations. Moreover, to complete the analysis it would be very interesting to study

the real-time quantum dynamics of the system and to compare it with the results obtained for

the classical model.

Out-of-equilibrium quantum dynamics

• We aim to complete our results on the non-equilibrium dynamics following a quantum quench

of the transverse field Ising chain with a study of quenches towards the gapped phases, a topic

which was not discussed in Chapter 9. We expect that the gap could induce different frequency

or time scales, depending on the observable, which would enrich the dynamical behavior. More-

over we would like to investigate the role of the initial condition and, consequently, the degree

of universality which can be recognized in the asymptotic behavior of such non-equilibrium

dynamics, depending on the initial state.

• Beyond the model considered in Chapter 9 the most important development of the work, in our
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view, concerns the study of generalized FDRs in non-integrable systems. Very often in fact, it has

been found that non-integrable systems, in the long-time limit after a quantum quench, show,

at least at the level of some observables, a thermal behavior [165]. This seems reasonable as

most of the physical systems are not integrable and we expect that, under opportune conditions,

thermalization takes place. The study of FDRs in this context can thus provide insight into

the investigation of a thermal behavior for these models. Moreover it would be interesting to

understand how this is connected to the spectral properties of the system.
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Appendix A

Quantum cavity method for the

Biroli-Mézard model

In this Appendix we derive the cavity method for the Biroli-Mézard model that we used to derive

the properties of the model discussed in Chapter 6. We derive the self-consistent equations and we

explain how we solve them. This procedure is based on the results obtained in [83].

Derivation of the cavity equations

Rewriting the partition function as a simple factor graph

We use in this section the same notation as in [83] for the imaginary time copies of the occupation

variables. We consider a discrete number of Suzuki-Trotter slices labeled by α = 1, · · · , Ns. We

denote by nαi the occupancy of site i at Suzuki-Trotter time α, by ni = (n1
i , · · · , nNs

i ) the imaginary

time trajectory of site i, by nα = (nα1 , · · · , nαN ) the configuration at time α, by n = (n1, · · · , nNs) the

imaginary time trajectory of the full system.

We write the partition function

Z = Tr
[
e−βĤ

]
= lim

Ns→∞

∑

n1,··· ,nNs

exp

[
− β

Ns

Ns∑

α=1

N∑

i=1

v(nαi , {nαj∈∂i})
]
Ns∏

α=1

〈nα|e
β

Ns

P

〈i,j〉

J(â†i âj+â
†
j âi)

|nα+1〉

(A.1)

where

v(nαi , {nαj∈∂i}) = V nαi q
α
i θ(q

α
i )− µnαi

qαi =
∑

j∈∂i

nαj − ℓ (A.2)

and we write here and in the following θ(x) = 11(x ≥ 0) and 11(A) = 1 if the condition A is fulfilled, 0

otherwise (A.1). It is simple to show that [83]:

〈nα|e
β

Ns

P

〈i,j〉

J(â†i âj+â
†
j âi)

|nα+1〉 =
∑

y

∏

〈i,j〉



βJ
√
nα+1
j nαi

Ns



yα

i→j 

βJ
√
nα+1
i nαj

Ns



yα

j→i

N∏

i=1

11


nα+1

i = nαi +
∑

j∈∂i

[yαj→i − yαi→j ]


+O

(
1

Ns
2

)
. (A.3)
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where we introduced variables y with the following notations: we denote by yαi→j ∈ {0, 1} the variable

that indicates an hopping event from site i to j at time α; by yα〈i,j〉 = {yαi→j , y
α
j→i} the two hopping

variables on link 〈i, j〉; and as for occupation variables, we use bold notation to indicate the imaginary

time trajectory of a variable and an underline to indicate the full configuration of the y’s. Finally, we

take by convention xy=0 = 1 for any value of x (including zero).

Eq. (A.3) can be checked by inspecting the behavior of its left and right-hand-side order by order in

1/Ns. The leading term corresponds to nα = nα+1, and indeed all y’s must vanish at this order. We

note that the partition function has the following form:

Z = lim
Ns→∞

∑

n,y

∏

〈i,j〉

wh(y〈i,j〉)

N∏

i=1

ws(ni, {nj}j∈∂i, {y〈i,j〉}j∈∂i) (A.4)

with

wh(y〈i,j〉) =

Ns∏

α=1

(
βJ

Ns

)yα
i→j+y

α
j→i

, (A.5)

and

ws(ni, {nj}j∈∂i, {y〈i,j〉}j∈∂i) = exp

[
− β

Ns

Ns∑

α=1

v(nαi , {nαj∈∂i})
]

Ns∏

α=1



11


nα+1

i = nαi +
∑

j∈∂i

[yαj→i − yαi→j ]



(√

nα+1
i

) P

j∈∂i

yα
j→i (√

nαi

) P

j∈∂i

yα
i→j





= exp

[
− β

Ns

Ns∑

α=1

v(nαi , {nαj∈∂i})
]
w̃s(ni, {y〈i,j〉}j∈∂i) .

One can easily recognize that the graph of the interactions in the above representation has small loops,

so, at first glance, it may appear not suited for cavity calculations. In order to avoid these loops and

thus to set down an appropriate cavity treatment of the problem we adopt a trick which consists in

copying on each site the variables of the neighboring sites and the jumps across the edges connected

to the site. Let us introduce then:

ναi = {nαi , {niαj }j∈∂i} (A.6)

where {niαj }j∈∂i are the copies on site i of the occupation numbers of its neighbors at time α. In

addition, we copy each variable yαi→j on the two sites i, j, introducing yiαj→i = yjαj→i = yαj→i, and on

each site we store these variables in a variable Υα
i :

Υα
i = {yiα〈i,j〉}j∈∂i = {yiαi→j , y

iα
j→i}j∈∂i . (A.7)

Then we impose the consistency among neighboring sites’ jumps and occupation numbers through a

constraint

w̃l(νi,Υi; νj ,Υj) =

Ns∏

α=1

δnα
i ,n

jα
i
δnα

j ,n
iα
j
δyiα

i→j,y
jα
i→j

δyiα
j→i,y

jα
j→i

(A.8)

Putting together this constraint and the hopping weight wh(y〈i,j〉) (properly expressed in terms of

the new variables Υ) we obtain a total weight on each link:

wl(νi,Υi; νj ,Υj) = wh(Υi,Υj)w̃l(νi,Υi; νj ,Υj) (A.9)

The partition function now becomes:

Z = lim
Ns→∞

∑

ν,Υ

∏

〈i,j〉

wl(νi,Υi; νj ,Υj)

N∏

i=1

ws(νi,Υi) . (A.10)
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where we have defined Υ = {Υi} and the argument of ws has been expressed in terms of the copied

variables {νi,Υi}, living on site i.

The last form of Z is a standard form with local weights and link weights only, which is therefore defined

on the original graph and hence without short loops; it is therefore suitable for a cavity treatment and

the cavity equations as well as the Bethe free energy can be written straightforwardly. Introducing

η̃i→j(νi,Υi) = Zi→j(νi,Υi)/zi→j , which represents the marginal probability of the variables νi and

Υi defined on site i, in absence of site j, the cavity equations read [78]:

η̃i→j(νi,Υi) =
1

zi→j
ws(νi,Υi)

∏

k∈∂i\j

∑

νk,Υk

η̃k→i(νk,Υk)wl(νk,Υk; νi,Υi) . (A.11)

The Bethe free energy associated to the partition function, expressed in terms of the copied variables

as in Eq. (A.10), is:

F = − 1

β
lnZ = − 1

β

N∑

i=1

ln


∑

νi,Υi

ws(νi,Υi)
∏

j∈∂i

∑

νj ,Υj

η̃j→i(νj ,Υj)wl(νi,Υi; νj ,Υj)




+
1

β

∑

〈i,j〉

ln



∑

νi,Υi

νj ,Υj

wl(νi,Υi; νj ,Υj)η̃i→j(νi,Υi)η̃j→i(νj ,Υj)


 . (A.12)

This expression is exact whenever the underlying graph is a tree while it corresponds to the Bethe

approximation for a general graph.

Simplification of the cavity equation

The cavity equations written above are not very practical to handle, since there is a lot of redundancy

in the copied variables. We can eliminate much of this redundancy by using the delta functions in the

weights wl.

First we make explicit the dependence of the cavity field on the original variables in the following

form:

η̃i→j(νi,Υi) = η̃i→j(ni,n
i
j , {nik}k∈∂i\j ,yi〈i,j〉, {yi〈i,k〉}k∈∂i\j) . (A.13)

Next we introduce a new cavity field:

ηk→i(nk,n
k
i , {nkl }l∈∂k\i,yk〈i,k〉) = wh(y

k
〈i,k〉)

∑

{yk
〈k,l〉

}l∈∂k\i

η̃k→i(nk,n
k
i , {nkl }l∈∂k\i,yk〈i,k〉, {yk〈l,k〉}l∈∂k\i) ,

(A.14)

and we note that using the delta functions:

∑

νk,Υk

η̃k→i(νk,Υk)wl(νk,Υk; νi,Υi) =
∑

{nk
l
}l∈∂k\i

ηk→i(n
i
k,ni, {nkl }l∈∂k\i,yi〈i,k〉) . (A.15)

This allows to write closed equations for the new cavity fields as follows:

ηi→j(ni,n
i
j , {nik}k∈∂i\j ,yi〈i,j〉) =

1

zi→j
wh(y

i
〈i,j〉)

∑

{yi
〈i,k〉}k∈∂i\j

ws(ni,n
i
j , {nik}k∈∂i\j ,yi〈i,j〉, {yi〈i,k〉}k∈∂i\j)

∏

k∈∂i\j

∑

{nk
l
}l∈∂k\i

ηk→i(n
i
k,ni, {nkl }l∈∂k\i,yi〈i,k〉) . (A.16)
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We notice at this point that the upper indices of the variables in the equation above are redundant:

they can all be eliminated by renaming the variables. We obtain the following equation:

ηi→j(ni,nj , {nk}k∈∂i\j ,y〈i,j〉) =
1

zi→j
wh(y〈i,j〉)

∑

{y〈i,k〉}k∈∂i\j

ws(ni,nj , {nk}k∈∂i\j ,y〈i,j〉, {y〈i,k〉}k∈∂i\j)

∏

k∈∂i\j

∑

{nl}l∈∂k\i

ηk→i(nk,ni, {nl}l∈∂k\i,y〈i,k〉) . (A.17)

To further simplify the equations, we introduce a variable sαi→j which indicates if a site i at time α is

saturated by all its neighbors but j:

qαi→j =
∑

k∈∂i\j

nαk − ℓ , sαi→j = θ(qαi→j) , (A.18)

where we recall that we assume θ(0) = 1, then we consider:

ηi→j(ni,nj ,σi→j ,y〈i,j〉) =
∑

{nk}k∈∂i\j

ηi→j(ni,nj , {nk}k∈∂i\j ,y〈i,j〉) δσi→j ,θ(qi→j)
(A.19)

with δσi→j ,θ(qi→j)
=

Ns∏
α=1

δsα
i→j ,θ(q

α
i→j)

. Using the relation

qiθ(qi) = (qi→j + nj)θ(qi→j + nj) = (qi→j + nj)θ(qi→j) = (qi→j + nj)si→j , (A.20)

which can be checked by inspection of the cases qi→j ⋚ −1, Eq.(A.17) becomes:

ηi→j(ni,nj ,σi→j ,y〈i,j〉) =
1

zi→j
wh(y〈i,j〉)

∑

{y〈i,k〉}k∈∂i\j

w̃s(ni,y〈i,j〉, {y〈i,k〉}k∈∂i\j)

∑

{nk}k∈∂i\j

e−
β

Ns

PNs
α=1 n

α
i (V sα

i→j(n
α
j +qα

i→j)−µ)δσi→j,θ(qi→j)

∏

k∈∂i\j

∑

{σk→i}

ηk→i(nk,ni,σk→i,y〈i,k〉) .

(A.21)

Now we note that the function ηi→j(ni,nj ,σi→j ,y〈i,j〉) has a dependence on the variable nj of

the form ηi→j(ni,nj ,σi→j ,y〈i,j〉) = e−
β

Ns

PNs
α=1 V n

α
i s

α
i→jn

α
j η̂i→j(ni,σi→j ,y〈i,j〉), so, in terms of the

marginal η̂i→j(ni,σi→j ,y〈i,j〉) we finally obtain:

η̂i→j(ni,σi→j ,y〈i,j〉) =
wh(y〈i,j〉)

zi→j∑

{nk}k∈∂i\j

{σk→i}k∈∂i\j

{y〈i,k〉}k∈∂i\j

witer(ni,σi→j ,y〈i,j〉, {nk,σk→i,y〈i,k〉}k∈∂i\j)
∏

k∈∂i\j

η̂k→i(nk,σk→i,y〈i,k〉) (A.22)

where

witer(ni,σi→j ,y〈i,j〉, {nk,σk→i,y〈i,k〉}k∈∂i\j) = w̃s(ni,y〈i,j〉, {y〈i,k〉}k∈∂i\j) δσi→j ,θ(qi→j)

e−
β

Ns

PNs
α=1 n

α
i (V qα

i→js
α
i→j−µ)

∏

k∈∂i\j

e−
β

Ns

PNs
α=1 V n

α
i n

α
k s

α
k→i (A.23)

From Eq. (A.22) we see that sαi→j enters in the equation only through its product with nαi . This

means that in order to characterize the state of each site one has actually to consider the variables



139

{nαi , nαi sαi→j} and sum over sαi→j in case the site is empty. Roughly speaking, defining e = {0, 0},
u = {1, 0} and s = {1, 1} we can interpret η̂i→j(ni,σi→j ,y〈i,j〉) as the marginal probability over

trajectories of the kind [0, β] → {e, u, s} which describe the state of each “cavity site”. Finally one

can note that the variable σi→j is completely determined by the neighbors’ occupation numbers. This

ensures that, even if locally in order to write the cavity recursions one needs three possible states to

describe each site, globally the Hilbert space has size 2N .

In terms of the cavity marginal probabilities η̂i→j(ni,σi→j ,y〈i,j〉) the occupation site trajectory on

site i is then expressed as:

η(ni) =
1

zi

∑

{nj}j∈∂i

{y〈i,j〉}j∈∂i

ws(ni, {nj}j∈∂i, {y〈i,j〉})
∏

j∈∂i

∑

σj→i

η̂j→i(nj ,σj→i,y〈i,j〉)e
− β

Ns

PNs
α=1 V n

α
i n

α
j s

α
j→i ,

(A.24)

which allows to compute all the local observables. From (A.12) we can recover the free energy as a

function of the last defined messages:

F = − 1

β
lnZ = − 1

β

N∑

i=1

ln
( ∑

ni,{nj}j∈∂i

{y〈i,j〉}j∈∂i

ws(ni, {nj}, {y〈i,j〉})

∏

j∈∂i

∑

σj→i

η̂j→i(nj ,σj→i,y〈i,j〉)e
− βV

Ns

PNs
α=1 n

α
i n

α
j s

α
j→i

)

+
1

β

∑

〈i,j〉

ln




∑

ni,σi→j
nj ,σj→i

y〈i,j〉

e−
βV
Ns

PNs
α=1 n

α
i n

α
j (sα

i→j+s
α
j→i)

wh(y〈i,j〉)
η̂i→j(ni,σi→j ,y〈i,j〉)η̂j→i(nj ,σj→i,y〈i,j〉)


 .

In the case of a regular Bethe lattice where all sites have degree c, denoting ηcav the common value

of the distributions η̂i→j on all edges, we obtain for the RS free energy density:

f = − 1

βN
lnZ = − 1

β
ln
( ∑

n0

{nj ,y0j}j∈{1,...,c}

ws(n0, {nj,y0j})

∏

j∈{1,...,c}

∑

σj→0

ηcav(nj ,σj→0,y0j)e
− βV

Ns

PNs
α=1 n

α
0 n

α
j s

α
j→0

)

+
c

2β
ln




∑

n0,σ0→1
n1,σ1→0

y

e−
βV
Ns

PNs
α=1 n

α
0 n

α
1 (sα

0→1+s
α
1→0)

wh(y)
ηcav(n0,σ0→1,y)ηcav(n1,σ1→0,y)


 .

Resolution of the cavity equation for the random regular graph

In this section we explain the idea and the method used to solve the quantum cavity equation for a

random regular graph. This task is rather demanding since already at the RS level it consists in a

functional self-consistent equation. However, as it was shown in [82, 83], there is a representation of

the equation which allows for its numerical resolution.

Let us define hi = {ni,σi→j ,y〈i,j〉} the whole set of variables argument of the cavity marginals in

Eq. (A.22), which determine the “field” on the i site when j is absent. In the following we deal with a

random regular graph, so for simplicity, we will label with 0 the root site which is added in the cavity
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iteration when we merge k = c− 1 neighboring sites and their associated fields {hi}i∈{1,...,k}. Finally,

we label with an index k+1 the new site which is missing “downwards” with respect to the root. The

calculation is based on the observation [82, 83] that for a random regular graph Eq. (A.22) has the

form

η0
cav(h0) =

1

zcav

∑

h1···hk

Z(h1, . . . ,hk)P (h0|h1 · · ·hk)η1
cav(h1) · · · ηkcav(hk) , (A.25)

where P is a conditional probability, positive for all arguments and normalized and

Z(h1, . . . ,hk) =
∑

h0={n0,σ0→k+1,y〈0,k+1〉}

wh(y〈0,k+1〉)witer(n0,σ0→k+1,y〈0,k+1〉, {hj}j∈{1,...,k}) .

(A.26)

We note that at the RS level we look for the homogeneous solution so all ηicav = ηcav are equivalent,

however in equation (A.25) we keep the general form to allow the generalization to the 1RSB case.

As detailed in [82, 83], a strategy of resolution is based on the representation of η(h) as a weighted

sample of trajectories:

ηcav(h) =

Ntraj∑

i=1

gi δ(h− hi) , (A.27)

where the Ntraj weights of the trajectories are normalized according to

Ntraj∑

i=1

gi = 1 . (A.28)

One should not confuse this population of quantum trajectories (that represents the RS solution of

the quantum problem) with the population of cavity fields that we introduced in the classical case in

Eq. (2.17) to describe the 1RSB solution. The form (A.27) provides an approximate representation of

ηcav which becomes more and more accurate as Ntraj grows. Starting from an initial weighted sample

of ηcav in the form of (A.27) the procedure amounts to iterate the following three steps:

1. extract k trajectories hi = {ni,σi→j ,y〈i,j〉} in [1, . . . ,Ntraj] from (A.27) according to their

weight gi

2. draw the new trajectory from P (h0|h1 · · ·hk)

3. set h′
i = h0 and g′i = Z(h1, . . . ,hk)

where the second point amounts to a single site problem that will be further explained in the next

section. Once a new representation of ηcav in terms of h
′
i is available it can be substituted in the

r.h.s. of Eq. (A.25) and the procedure is iterated until the convergence, in the sense of the observable

expectation values, is reached.

Before entering into the description of the generation of the new trajectory given the k neighbors, we

anticipate that, as in the classical case, also the quantum model is characterized by a glass phase at

high enough densities, where the RS equations are no more correct (they have the same pathologies

as in the classical case, yielding for instance negative entropies). The 1RSB treatment is needed also

for the quantum problem and within this framework we have derived all the results concerning the

glass phase, presented in the following.

At this level however, the generalization of the classical 1RSB equation (6.6) is straightforward. The

only difference is that now the fields h = {ψe, ψu, ψs} of Eq. (6.6) are probability distributions over

paths, namely the “cavity fields” ηcav of the RS equations (A.25) and Ziter is the normalization
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constant zcav that appears in the same Eq.(A.25). Then, the 1-RSB cavity equation for the random

regular graph reads:

P [ηcav] ∝
∫
dP [η1

cav] . . . dP [ηkcav]δ
(
ηcav − f(η1

cav, . . . , η
k
cav)

)
zmcav , (A.29)

where f(η1
cav, . . . , η

k
cav) is the r.h.s. of Eq. (A.25), and a normalization constant has been hidden

in the notation ∝. The numerical resolution of the equation (A.29) necessarily goes through the

representation of P [ηcav] as a population of “fields” ηcav

P [ηcav] =
N∑

i=1

wi δ(ηcav − ηi) , (A.30)

where the weights derive from the cavity iteration w ∝ zmcav (analogously as in the classical case)

and each ηcav is itself a population of trajectories. This procedure is of course accompanied by a

demanding computational cost which is however still attainable and controllable.

Generation of a trajectory

In this section we will focus on the problem of the generation of trajectories for the thermodynamic

limit of a random regular graph of connectivity c. As we said before the strategy of resolution is based

on the representation of η(h) as a weighted sample of trajectories. Then one will pick k trajectories

h1 · · ·hk from the corresponding distributions, and use P (h0|h1 · · ·hk) to draw a new trajectory h0,

to which a weight Z(h1, . . . ,hk) is assigned.

In order to calculate Z and to generate a new path we need to take into account all events encoded

in the neighboring trajectories. In particular we can distinguish between three of them:

• a particle jump from or towards the neighboring sites, which is encoded in {ni}i∈{1,...,k}

• a change in the {σi→0}i∈{1,...,k} variables

• a jump from or towards the neighboring sites along the edge connecting the site under consid-

eration, described by {y〈i,0〉}i∈{1,...,k} variables.

The last class of events is a subset of the first one, but it is important to take it into account separately

because it induces constraints on the new occupation number trajectory. All the other events, instead,

will enter as shifts of the effective chemical potential induced on the added site. Moreover we stress

that in the continuous time limit (Ns →∞) the hopping trajectories h typically contain only a finite

number (with respect to Ns) of events. We can thus assume that they occur at different values of the

discrete time for the different trajectories. We call p the total number of hopping events occuring in

(h1, . . . ,hk). We also denote α1 < · · · < αp their discrete time of occurence.

We consider the Hilbert space of a single site, with a and a† the annihilation/creation operators. We

introduce the operator bj = a (resp. bj = a†) if at time αj there is a jump towards (resp. outside)

the site under consideration, while bj = 11 when there is an event which does not involve the new

vertex, but only the neighboring trajectories. The former case corresponds to the occurrence of an

event of the third kind, while the latter corresponds to an event of the first or second kind. Finally we

introduce cα = bj when α = αj , cα = 11 (the identity operator) otherwise. In terms of these operators



142 APPENDIX A. QUANTUM CAVITY METHOD FOR THE BIROLI-MÉZARD MODEL

we get the following expression for Z:

Z(h1, . . . ,hk) =
∑

h0

wh(h0)witer(h0, {hi}i∈{1,...,k})

=
∑

n0

Ns∏

α=1

〈nα0 |e
β

Ns
(µα({nα

i ,s
α
i→0}i∈{1,...,k})a†a+J(a+a†))cα|nα+1

0 〉
(A.31)

up to corrections of order Ns
−2, where we have introduced an effective chemical potential, which

depends on the state of the neighboring sites and is defined as follows:

µα({nαi , sαi\0}i∈∈{1,...,k}) = −V
(
qα0→k+1θ(q

α
0→k+1) +

k∑

i=1

nαi s
α
i→0

)
+ µ . (A.32)

To take the continuous time limit it is convenient to define τj = β
Ns
αj , which are the continuous times

of the hopping events in (h1, . . . ,hk), and to denote µi the common value of the µα for α ∈ [αi−1, αi].

We also introduce Ŵi(λ) = eλ(µia
†a+J(a+a†)), the propagator of an imaginary time evolution on an

interval of length λ for a single site Hamiltonian Hi = −µia†a− J(a+ a†). This propagator is a two

by two matrix and it easily allows to compute Z in the continuous limit according to the relation:

Z(h1, . . . ,hk) = Tr
(
Ŵ1(τ1)b1Ŵ2(τ2 − τ1)b2 . . . Ŵp(τp − τp−1)bpŴp+1(β − τp)

)
. (A.33)

We can now look at the process of the generation of a new trajectory h0 given the ones of the c − 1

other neighbors, which respects the following probability law

P (h0|h1, . . . ,hk) =
wh(h0)witer(h0, {hi}i∈{1,...,k})

Z(h1, . . . ,hk)
. (A.34)

The general scheme to determine h0 = {n0,σ0,y〈0,k+1〉} consists in first drawing the occupation

number trajectory n0 and then deduce y〈0,k+1〉 from its jumps not associated to the events in

(y〈0,1〉, . . . ,y〈0,k〉). Finally the trajectory of σ0 is completely determined by the neighboring ones

(n1, . . . ,nk) and does not have to be generated. We keep the notation τ1 < · · · < τp and b1, . . . , bp

for the continuous time of the events in (h1, . . . ,hk). Let us call n0 = n(τ = 0), ni (resp. n′
i) the

value of n(τ) at a time just after τi (resp. just before τi+1), with the conventions n′
p = n0. The joint

probability law of these occupation numbers which arises from the expressions of wh and witer given

in Eqs. (A.5) and (A.23) reads in the continuous time limit

P (n0, n
′
0, n1, n

′
1, . . . , np|h1, . . . ,hk) =

1

Z(h1, . . . ,hk)
〈n0|Ŵi(τ1)|n′

0〉×

×
p∏

i=1

{
〈n′
i−1|bi|ni〉〈ni|Ŵi+1(τi+1 − τi)|n′

i〉
}
, (A.35)

with τp+1 = β. This probability law is well normalized according to the above expression ofZ(h1, . . . ,hk).

It follows immediately from the above equation that whenever the operator bi is non trivial, i.e. when

there is a jump along the edge connecting the neighbors to the new site, the state of the site is uniquely

defined by the direction of the jump. This is a trivial consequence of the fact that we are dealing with

hard-core bosons. Then, we have to generate only those values in the sequence (n0, n
′
0, n1, n

′
1, . . . , np)

which are not already fixed. This is a task that can be done sequentially, starting from n0, quite easily.

Once all the intermediate occupation numbers are fixed, the generation of the rest of the path will

proceed independently for every interval {τi+1−τi}. Inside each of them, in fact, one has to generate a
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trajectory with fixed boundary conditions according to the path integral representation of an effective

Hamiltonian which depends on time interval Ĥi = −µiâ†â−J(â+ â†). From this point the procedure

is exactly equivalent to the one used for the Bose-Hubbard model, explained in [83]. At this level,

in fact, the task is completely equivalent to that of the Bose-Hubbard model, despite the different

interaction between neighboring sites, which is here hidden in effective single site Hamiltonians. For

the same reason it is also very similar to the procedure outlined in Section 2.2 for a spin system in a

transverse field. Thus, we remand to Chapter 2 and to [83] for further details.

The computation of the observables

Here we explain how one can compute the expectation value of generic observables, how we deal with

the symmetry breaking associated to 〈â〉 and the computation of the imaginary time correlations.

Below we report only the main steps, following [83], and for more details we remand to [83].

Let us focus first on the thermal average
〈
q(â†i âi)

〉
= 〈q(n̂i)〉 of an arbitrary single-site operator

function of the occupation number n̂. The expectation value can be read from the knowledge of

ηcav(h) and the expression:

〈
q(â†i âi)

〉
=

1

zsite

∑

h1,...,hc

ηcav(h1) . . . ηcav(hc)Tr
(
q(â†â)Ŵ ′

1(τ1)b1Ŵ
′
2(τ2 − τ1)b2 . . . bpŴ ′

p+1(β − τp)
)
,

(A.36)

where here we defined Ŵ ′
i (λ) = e−λµi(â

†â), the single-site propagator without its hopping term. In

fact, in this computation all the possible hopping events involving the considered site are fixed by

the c neighboring trajectories h1, . . . ,hc. Eq. (A.36) allows to compute at the RS level the density of

particles or the onsite potential.

Similarly, the order parameter 〈âi〉 is obtained by the insertion of an annihilation operator in the

effective single-site problem,

〈âi〉 =
1

zsite

∑

h1,...,hc

ηcav(h1) . . . ηcav(hc)Tr
(
âŴ ′

1(τ1)b1Ŵ
′
2(τ2 − τ1)b2 . . . bpŴ ′

p+1(β − τp)
)
. (A.37)

The other sites, different from i, are in fact unmodified, and hence, one can integrate over them and

obtain the same equation for ηcav. At this point the importance of a suitable initial condition on the

population, mentioned in Section 6.2, becomes more transparent. The problem is connected to the

symmetry associated to the conservation of the total number of particles. Indeed, Eq. (A.37) strictly

vanishes whenever all hopping trajectories in the support of ηcav have the same number of jumps in

the two directions of their edge. Moreover this symmetry is conserved by the iterative equation (A.22).

Then, in order to investigate possible phases with 〈â〉 6= 0 we have to allow for the breaking of the

corresponding symmetry. The strategy that we used is to initialize the population dynamics algorithm

including asymmetric hopping trajectories. In the “insulating” phase these trajectories disappear

during the iterations, while in the “superfluid” a finite fraction of them keeps the asymmetry, and

thus one finally obtains a non zero value of 〈â〉.
Also for the computation of the Green function we follow [83]. Again, from the definition Gi>(τ) =

Tr[e−(β−τ)Ĥ âie
−τĤ â†i ]/Z, one is back to a single site problem, once that ηcav is known. The insertion

of two creation/annihilation operators occurs on the same site but at different times. Similarly to



144 APPENDIX A. QUANTUM CAVITY METHOD FOR THE BIROLI-MÉZARD MODEL

Eq. (A.36), one obtains:

G>(τ) =
1

zsite

∑

h1,...,hc

ηcav(h1) . . . ηcav(hc)×

× Tr
(
âŴ ′

i (τ1)b1Ŵ
′
2(τ2 − τ1)b2 . . . biŴ ′

i (τ − τi)â†Ŵ ′
i+1(τi+1 − τ)bi+1 · · · bpŴ ′

p+1(β − τp)
)
,

(A.38)

where the index i is such that τi < τ < τi+1.



Appendix B

Numerical computation of Leggett’s

bound

In this Appendix we provide some details on the numerical procedure used to compute the Leggett’s

upper bound on the superfluid fraction of an amorphous solid, discussed in Chapter 7.

Leggett’s bound and its numerical solution

We define the Fourier transforms in the cubic box of side L and volume V = L3 as follows:

ρ~q =
1

V

∫

V

d~rρ(~r)ei~q·~r , ρ(~r) =
∑

~q

ρ~qe
−i~q·~r , (B.1)

where ~q = 2π
L (nx, ny, nz), and each of the integers ni ∈ Z, and similarly

δϕ~q =
1

V

∫

V

d~rδϕ(~r)ei~q·~r . (B.2)

Note that δϕ~0 is an irrelevant constant phase in the variational wavefunction so we set it to zero.

Finally,

~v~q =




~v0 ~q = ~0 ,

−i~qϕ~q ~q 6= ~0 .
(B.3)

which leads immediately to Eq. (7.12).

We performed the calculations for different values of the Lindemann parameter ℓ = ρ1/3A1/2, in-

creasing the number of vectors ~q according to the spherical constraint |~q| ≤ qmax, until a reasonable

convergence in the value of the bound (7.13) was achieved, at least for large values of A. From

Eq. (7.15) one sees that for large |~q| the corresponding component ρ~q is suppressed through the factor

e−Aq
2/2. Thus, one needs to truncate the sum over ~q at qmax ∼ 1/

√
A, as higher terms will not

contribute. Unfortunately, for small A, this cut-off is too heavy in terms of computational time and

we should use a lower one. Still, considering small configurations and sufficiently large values of A,

which nevertheless span the physical region of interest, we could reach a good convergence or keep

the error under control. Note additionally that by increasing the number of vectors ~q in (7.15), the

value found for the superfluid fraction monotonically decreases, as expected because of the variational

property already discussed. This permits to preserve the nature of upper bound for Eq. (7.13), despite

the cut-off approximation. Overall, we found that the better compromise was to set qmax = 20π/L.
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Figure B.1: Result for ρs/ρ as a function of the localization parameter ρ1/3A1/2, where ~Ri are N

random points in [0, L]3 with periodic boundary conditions.

In order to check the independence of the bound on the flow direction, we also compared the results

obtained with the velocity v0 along the (1, 0, 0) direction to those along (1, 1, 1) and we observed

a negligible difference which is expected to vanish in the thermodynamic limit, because amorphous

solids are statistically homogeneous on large scales.

We have also checked that the bound for the superfluid density almost does not fluctuate by considering

different amorphous configurations Rα, α = 1, · · · ,N , as it is expected since the superfluid density

is a macroscopic quantity. We computed the corresponding superfluid fraction ραs and the average

ρs =
∑
α ρ

α
s /N for 10 different configurations. The variance of ρs is very small. In this paper we

presented results averaged over 10 realizations of Rα, a larger statistics do not lead to appreciable

differences.

Finally, as a check of our codes, we repeated all the calculations on configurations of 20 particles occu-

pying uncorrelated uniformly random positions in the box, i.e. where ~Ri are uniform and independent

random variables in [0, L]3. In this case it is easy to show that g̃q = exp(−Aq2). Hence Eq. (7.27)

becomes
ρs
ρ

= 1− 2

3(2π)2ρ

∫ ∞

0

dq q2 e−Aq
2

= 1− 1

24π3/2 ρA3/2
. (B.4)

In this case the values of the bound were more sensitive to the particular realization, so we took

averages over 30 configurations. For every value of the localization parameter, the superfluid fractions

that we found were on average smaller, as reported in Figure B.1.

Large A expansion

For large A, we expect that the density becomes uniform. Hence, ρ~0 → ρ, and ρ~q → 0 for ~q 6= ~0. We

can use this to expand iδϕ~q systematically in powers of ρ~q. We rewrite Eq. (7.12) as

~q · ~v0ρ~q = q2ρiδϕ~q +
∑

~p6=~0,~q

(~q · ~p)ρ~q−~p iδϕ~p . (B.5)

We write δϕ~q = δϕ
(1)
~q + δϕ

(2)
~q + · · · where the different terms are of order (ρ~q)

k. At first order

iδϕ
(1)
~q =

~q · ~v0
q2ρ

ρ~q , (B.6)
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at second order

iδϕ
(2)
~q = − 1

q2ρ

∑

~p6=~0,~q

(~q · ~p)ρ~q−~p iδϕ(1)
~p

= −
∑

~p 6=~0,~q

(~q · ~p)(~p · ~v0)
p2q2ρ2

ρ~q−~pρ~p ,

(B.7)

at third order

iϕ
(3)
~q = − 1

~q2ρ

∑

~p 6=~0,~q

(~q · ~p)ρ~q−~piϕ(2)
~p

=
∑

~p6=~0,~q

∑

~p′ 6=~0,~p

(~q · ~p)(~p · ~p′)(~p′ · ~v0)
q2p2p′2ρ3

ρ~q−~pρ~p−~p′ρ~p′

(B.8)

from which we can guess the order k:

iϕ
(k)
~q = (−1)k−1

∑

~p1 6=~0,~q; ~p2 6=~0,~p1; ··· ~pk−1 6=~0,~pk−2

(~q · ~p1)(~p1 · ~p2) · · · (~pk−1 · ~v0)
q2p2

1 · · · p2
k−1ρ

k
ρ~q−~p1ρ~p1−~p2 · · · ρ~pk−2−~pk−1

ρ~pk−1

(B.9)

and so on. Plugging this in Eq. (7.13) we get

ρs
ρ

=1−
∑

~q 6=~0

(~v0 · ~q)2
ρ2v2

0q
2
ρ~qρ−~q +

∑

~q 6=~0

∑

~p6=~0,~q

(~v0 · ~q)(~q · ~p)(~p · ~v0)
q2p2v2

0ρ
3

ρ~q−~pρ~pρ−~q

−
∑

~q 6=~0

∑

~p6=~0,~q

∑

~p′ 6=~0,~p

(~v0 · ~q)(~q · ~p)(~p · ~p′)(~p′ · ~v0)
q2p2p′2v2

0ρ
4

ρ~q−~pρ~p−~p′ρ~p′ρ−~q + · · · .
(B.10)

While this expansion seems a simple strategy of solution of Eq. (7.12), it is very poorly convergent

and in practice it is not very helpful.



148 APPENDIX B. NUMERICAL COMPUTATION OF LEGGETT’S BOUND



Bibliography

[1] L. Berthier, G. Biroli. Rev. Mod. Phys., 83, 587 (2011).

[2] L. Berthier, G. Biroli, J. Bouchaud, L. Cipelletti, W. Van Saarloos. Dynamical heterogeneities

in glasses, colloids, and granular media. Oxford University Press (2011).

[3] S. Kirkpatrick, C. Gelatt, M. Vecchi. Science, 220, 671 (1983).
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[81] M. Mézard, G. Parisi. J. Stat. Phys., 111, 1 (2003).

[82] F. Krzakala, A. Rosso, G. Semerjian, F. Zamponi. Phys. Rev. B, 78, 134428 (2008).

[83] G. Semerjian, M. Tarzia, F. Zamponi. Phys. Rev. B, 80, 014524 (2009).

[84] C. Laumann, A. Scardicchio, S. L. Sondhi. Phys. Rev. B, 78, 134424 (2008).
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[166] G. Carleo, F. Becca, M. Schiró, M. Fabrizio. arXiv:1109:2516 (2011).

[167] A. Gambassi, P. Calabrese. Europhys. Lett., 95, 66007 (2011).

[168] B. Sciolla, G. Biroli. Phys. Rev. Lett., 105, 220401 (2010).

[169] D. Fioretto, G. Mussardo. New Journal of Physics, 12, 055015 (2010).
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