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Abstract

In Chapter 1, after having introduced the two-dimensional world and its ex-
otic braiding statistical features, we discuss the arising of anyonic statistics,
Wilczek’s flux-tube model and the quantum mechanical features of an ideal
anyon system. In Chapter 2 the Abelian and non-Abelian quantum Chern-
Simons theory is presented through its deep relation with anyonic statis-
tics, and the Verlinde’s model of non-Abelian Chern-Simons particles and
its non-Abelian braiding statistics are widely discussed. Chapter 3 starts
with a mathematical foreword aimed to rub up the concept of homology
groups, protagonist of the results at the heart of the following pages. An
introduction to the field theory approach to the Abelian Chern-Simons the-
ory follows, after which several relations between the homological features of
closed worldlines of pure gauge-Abelian CS particles and their Wilson line
expectations (with respect to a pure CS field-theoretical action) are inves-
tigated in detail. We consider the link invariants defined by the quantum
Chern-Simons field theory with compact gauge group U(1) in a closed ori-
ented 3-manifold M. The relation of the abelian link invariants with the
homology group of the complement of the links is discussed. We prove that,
when M is a homology sphere or when a link -in a generic manifold M- is
homologically trivial, the associated observables coincide with the observ-
ables of the sphere S3. We show that the U(1) Reshetikhin-Turaev surgery
invariant of the manifold M is not a function of the homology group only,
nor a function of the homotopy type of M alone. In Chapter 4 we study the
thermodynamical properties of an ideal gas of non-Abelian Chern-Simons
particles of the Verlinde’s model, and we compute the second virial coeffi-
cient, considering the effect of general soft-core boundary conditions for the
two-body wavefunction at zero distance. The behaviour of the second virial
coefficient is studied as a function of the Chern-Simons coupling, the isospin
quantum number and the hard-core parameters. Expressions for the main
thermodynamical quantities at the lowest order of the virial expansion are
also obtained: we find that at this order the relation between the internal
energy and the pressure is the same found (exactly) for 2D Bose and Fermi
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ideal gases. A discussion of the comparison of obtained findings with avail-
able results in literature for systems of hard-core non-Abelian Chern-Simons
particles is also supplied. In Chapter 5 we determine and study the statisti-
cal interparticle potential of the same system of NACS particles, comparing
our results with the corresponding results of an ideal gas of Abelian anyons.
In the Abelian case, the statistical potential depends on the statistical pa-
rameter and it has a ”quasi-bosonic” behaviour for statistical parameter in
the range (0,1/2) (non-monotonic with a minimum) and a ” quasi-fermionic”
behaviour for statistical parameter in the range (1/2,1) (monotonically de-
creasing without a minimum). In the non-Abelian case the behavior of the
statistical potential depends on the Chern- Simons coupling and the isospin
quantum number: as a function of these two parameters, a phase diagram
with quasi-bosonic, quasi-fermionic and bosonic-like regions is obtained and
investigated. Finally, using the obtained expression for the statistical poten-
tial, we compute the second virial coefficient of the NACS gas, which correctly
reproduces the results available in literature. Chapters 3,4,5 present original
results appeared in [1, 2, 3]. After that, our findings are discussed in the
Conclusions, and some computations mentioned in the main text find place
in the Appendices.



Basics of Two-Dimensional
Statistics

This introduction is devoted to explain the arising of fractional braiding
statistics in two space dimensions, whereas three- and higher-dimensional sys-
tems can harbour only ordinary Bose and Fermi statistics [4, 5, 6, 7, 8, 9, 10].
We will first consider the fractionalization of the spin eigenvalues in units of
h, and then the fractionalization of the statistics. The reason for the latter
one lies in the fact that coincident points for two or more particles in two di-
mensions are singular points in the space of their configurations, so that they
must be excluded when considering its subset relevant to braiding statistics.
Hence the braid group will take the place of the ordinary permutation group
in all the issues in exam. We will present a dynamic model for anyons, in
which they behave as point particles pinned with a one-dimensional flux-tube
threading the 2D plane hosting the particles: anyons correspond in such a
way to point charged vortices. So let us start with a motivation for the frac-
tional spin. In (d+1) dimensions, d > 3, the angular momentum algebra is
a non-commutative one; by setting A = 1:

[Si, Sj] = 1€ Sk, (1)

€;1 being the completely antisymmetric tensor, while in (2+1) dimensions
the angular momentum algebra is commutative, being generated by the only
available generator S5 for the 1-parameter group of the rotations in the plane.
The absence of non-trivial commutation relations among the generators of
the rotations explains the absence of any quantization of the angular momen-
tum. Let us just observe that in (1+1) dimensions there is not any rotation
axis, so that there is not even a notion of spin in the one-dimensional case.
From relativistic quantum field theory we know that statistics of the particles
is constrained by their spin [11, 12, 13|, i.e. particles with half-integer spin
obey Fermi-Dirac statistics, particles with integer spin obey Bose-Einstein
statistics. This leads to the insight that in (241) dimensions the particles
may instead exhibit fractional statistics. Now we will see that this is in-

11
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deed the case, by making use of topological considerations. At this point a
conceptual remark is in order. The term quantum statistics has to do with
the phase factor acquired by the quantum wavefunction when two identical,
indistinguishable particles are adiabatically transported giving rise, at the
end of the process, to an exchange of their positions. We are ready to ex-
plore the arising of fractional statistics. We consider the configuration space
of a system of N identical particles, being denoted by X the single-particle
configuration space. The indistinguishability of all the particles implies the
coincidence between a configuration ¥ = (27,2, - ,2x5) € X and the
generic configuration 7 € XV obtained by any permutation p € Sy applied
to Z, because 7 and 2’ describe the same physical configuration. Hence the
true configuration space is represented by the quotient space XV /Sy, which
is a space locally isomorphic to X%, except at its singular points. Points in
XN /Sy which correspond to a coincidence of the positions of some parti-
cles, called coincident points, are singular points of X~ /Sy. This is one of
its differences with respect to the space X*: the coincident points must be
excluded in order to discuss the adiabatical exchange of particles and conse-
quently their statistics. This crucial point, maybe apparently elementary in
hindsight, was neglected during all the development of quantum mechanics
until the appearance of the seminal work by Leinaas and Myrheim [14]. This
consideration enables us to realize the deep difference between the configu-
ration space in two dimensions and in higher dimensionality. For instance an
analysis of the simple two-particle case shows how the removal of the coinci-
dent points makes the spaces multiply connected (in a denumerable way) in
the former case, while in the latter it is only double connected. As a conse-
quence, only in two dimensions we can physically distinguish any arbitrary
integer number of windings of particles around each other (let us say, of a
particle around the origin in a two-particle center of mass system), counting
the number with its orientation. Formally this distiction is represented by
a different first homotopy group 7y, defined as the group of “inequivalent”
paths (in a topological sense) passing through a given point in configura-
tion space, with the obvious definition of group multiplication and inverse
[15, 16, 17]. If the one-particle available coordinate space is the Euclidean
d—dimensional space R?, we write for instance the first homotopy groups for
N = 2 particles, corresponding to the two cases:

ri=2 = <—<R2 ;2{0} )> —m(RP) = 7, 2)

7823 = <<Rd;¥) =1 (RPy_,) = Z. (3)
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Similarly, for a system of N identical particles the configuration space is

(R)Y — A

xX¥ =
/SN SN )

(4)
where A is the set of coincident points

A={(r, - ,7n): 77 =7y for some I # J}, (5)
and its first homotopy group is [18, 19]

7Tilzz(XN/SN) = 7T1(RP1) = Bn; (6)
=2 (XN /SN) = S, (7)

where By denotes the braid group of N objects and Sy, the permutation
group of N objects, is one of its finite subgroups. As the permutation group
is the signature of the Bose and Fermi statistics, which are associated to
its only two one-dimensional representations (respectively the trivial and the
alternating ones), instead the braid group corresponds to an infinite family
of fractional statistics (anyonic statistics), in a one-to-one correspondence
with the continuous one-parameter family of possible one-dimensional group
representations.
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Chapter 1

Aspects of non-relativistic
anyons

1.1 Properties of anyons

e The one-dimensional representations of the braid group are labeled by
a continuous parameter 6 related to the phase factor gained by the global
wavefunction when two particles far from the others are exchanged, and
these representations are inequivalent up to a periodicity modulo 27 of this
parameter. The phase due to the braiding (= adiabatic exchange) of two
particles depends in principle on the position of all the other particles. Indeed
if an anyon is wrapped in a closed orbit around another, and its orbit includes
by chance another anyon (identical to the previous ones), then the resulting
phase factor is €*? instead of being .

e Anyons violate the symmetries of parity (P) (defined in two space di-
mensions by the transformation z — —z and y — y) and the time reversal
invariance (T) if 0 < o < 1, where statistical parameter o = 6/, € being
the multiplicative phase factor taken by the wavefunction under adiabatic
exchange of two anyons. In fact the effect of spatial reflection or time re-
versal corresponds to replace clockwise and counter-clockwise windings each
other. These opposite windings, as already pointed out, are equivalent in
three or higher space dimensions, but inequivalent in the two-dimensional
case for homotopical reasons, whence the lack of these symmetry for anyons.

e Anyonic statistics and parastatistics are two completely different gen-
eralizations of ordinary statistics. The former has to do with the continuous
family of the one-dimensional representations of the braid group, while the
latter is a statistics defined by means of the higher dimensional representation
of the permutation group. Consequently, anyons exist only in two dimensions,

15



16 CHAPTER 1. ASPECTS OF NON-RELATIVISTIC ANYONS

while parastatistics are defined for whatever dimension d > 2. Nevertheless,
one can imagine higher-dimension representations also for the braid group,
and the result of this generalization are the so-called non-Abelian anyons.
This conceptual framework is enlightened in Tab.1.1

In order to emphasize the genuine quantum nature of this model, we
present here in the full detail the arising of fractional statistics, which in
the previous discussion was referred to simply as an eligible eventuality. Let
us consider a particle of mass m and charge ¢ moving on a circular ring of
radius R. Perpendicularly to the plane, the ring is assumed to be threaded
by a point-like solenoid carrying flux . The dynamics of the particle will be
governed by the Lagrangian function:

q®

1 .
L =—-mR%)* + — 1.1
ST+ ¢ (1.1)

The associated canonical angular momentum is

. d .
ps = mR* + 124 (1.2)
2
and the Hamiltonian
1 q® 2
H = - — 1.3
2mR? <p 2%) (1.3)
Its eigenfunctions are A
VY, = €M, (1.4)
and its eigenvalues are
1 q® 2

By considering that the energies are proportional to the square of the kinetic
angular momentum (with proportionality constant naturally represented by
one half times the inverse of the moment of inertia), it is understood that
the interaction due to the magnetic flux produces allowed kinetic angular

1D repr. BOSE/FERMI statistics Abelian Anyons
Higher-dim repr. PARASTATISTICS NON-Abelian Anyons

Table 1.1: Classification of homotopically inequivalent paths of N strings in
2D and 3D
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momenta spaced by integers (in units of Planck’s constant), but subjected
to an uniform shift by ¢® /27 from integer values, so that we have built frac-
tionalization of the angular momentum. Let’s come to point out the crucial
difference from the corrisponding classical system. All the Lagrangians (1.1)
would produce the same classical equations of motion at varying the exter-
nal parameter ®, because the term by which they differ is a total derivative,
which cannot affect the classical variational principle. Instead we have seen
that they lead to different quantum theories, which can be understood from
the point of view of canonical quantization. The canonical quantization of
the theory also requires to impose commutation relations between the coor-
dinates and their conjugate momenta. So the content of the commutation
relations is changed if the definition of these momenta is changed, whether
or not the equations of motion are affected. In this quantization problem
we have therefore seen how just such a modification can affect the physical
consequences of a given classical Lagrangian.

1.1.1 Path-integral point of view

We have mentioned so far the point of view of canonical quantization. But
this system appears even more tantalizing from the point of view of path
integral quantization: in the latter quantization prescription, transition am-
plitudes are computed by adding the contributions of all possible paths, by
weighing each of them according to the exponential of the classical action
along the path; thus one would have the impression that the transition am-
plitudes should be determined by the classical action only. We will see that
the geometric phase plays a crucial role in this problem. Our point is that the
classically ignorable ¢ term is not ignorable in the quantum theory. Let us
discover the effect of this term, path by path. We limit ourselves to compare
paths that begin at a common position ¢; at time t; and end at the same
position ¢y at time 5, since these are the kinds of couples of terms which can
interfere. The effect of the ¢ term is to weight their relative contribution by

qP - ' _ qP
exp {Zﬂ (/path 1 o dt — /path ) 1) dt)] = exp [Zg&?} (1.6)

Since “path 1”7 and “path 2”7 must share their respective endpoints, d¢ must
be a mutiple of 27, by a factor given by the difference between the number
of windings of the first and the second path around the center. In different
terms, d¢/2m is the number of windings around the solenoid for the closed
path consisting in “path 1”7 from t; to ¢y followed by the inverse of the sec-
ond path back from ¢ to ;. The possible closed paths of this kind belong
to distinct, disconnected classes, labeled by (integer) winding numbers. The
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classical Lagrangian does not suggest any way of weighing the relative con-
tributions of disconnected classes of paths. In fact, the classical equations
of motion follow from a variational principle that involves only comparison
among infinitesimally nearby paths, and cannot account of global differencies
like those between disconnected classes of paths. An ambiguity in the path
integral quantization procedure follows as a consequence of that. We can say
that a single classical Lagrangian can lead to various quantum theories when-
ever the first homotopy group of the configuration space in non-trivial. The
exponential prescription for the weighing of the paths is in accordance with
the general rule of quantum mechanics for which the amplitude for the com-
position of two paths must be the product of the amplitude for each path
separately. By equipping the above mentioned set of disconnected classes
paths with the product structure represented by the composition of repre-
sentative paths, we just get the first homopoty group. If we are assigning
extra numerical factors a,; to the paths, we must demand that they obey the
rule

Ariomy = Oy * Ay, (17)

so these factors form a (one-dimensional) representation of the first homotopy
group. They can be considered geometric phases. The geometric phase
between nearby position eigenstates |¢) and |¢ + Ag) results to be

q®

exp {z’%Aqﬁ} (1.8)

This phase is locally but not globally integrable, because after an adiabatic
round of 27 there is an accumulation of a phase €“®. So the geometric phase
around an homotopically non-trivial path in configuration space parametrizes
the ambiguity in quantization.

A crucial consequence of that is the impossibility of defining the wave
function on ordinary configuration space: indeed the position eigenstates for
¢ and ¢ + 27 differ by a phase factor, so we should define the wave function
with ¢ running from —oo to oo, with the boundary condition

Yo+ 27m) = ' "P(¢) (1.9)

In general the wave function will live (if there are not internal degrees of
freedom) on the universal covering space of configuration space, and will
obey boundary conditions relating points that project to the same point in
configuration space.
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1.1.2 Flux-Tube Model

The fractional statistics of anyons can be represented through the dynamical
model called flux tube model, first proposed by Frank Wilczek in 1982 [20].
We start by considering the Lagrangian for two identical massive bosons
subjected to a statistical interaction term

de

m
L=—(+13) +a—,
(17 5) adt

5 (1.10)

where o = 0/7m = q®/27. Here « is the statistical parameter and ¢ is the rel-
ative angle between the identical particles. The total Lagrangian can either
be interpreted as the Lagrangian for two interacting bosons or as the La-
grangian for two non-iteracting anyons. This interpretation makes clear why
also the simplest problem of non-interacting anyon gas is nontrivial. Indeed
a non-interacting anyon gas problem is equivalent to an interacting Bose (or
Fermi) gas problem, which is in general quite difficult to solve. We will use
this equivalence to study the statistical mechanics of a non-interacting anyon
gas and we will see how just a few two-anyon problems have been solved ex-
actly, while for no multi-anyon (N > 2) problem a complete solution has
been produced. We separe the center of mass (written in uppercase) and the
relative (in lowercase) motions:

R=(ri+ry)/2— P=p,+p, (1.11)

r=(ri—r;) — p=(p—p,)/2 (1.12)

so that the Lagrangian takes the form L = Lg + L,, where
Lp=mR’ (1.13)
LF:%#+Q¢:%Rﬂ+r%%+a¢ (1.14)
The center of mass motion is free (Hg = P3/4m) and independent of the
statistical parameter a. The same would stand also for N anyons. Thus to

understand the anyon dynamics, it is enough to concentrate on the Hamil-
tonian for the relative motion, whose two-body Hamiltonian is

H ="+
m mr

@:ﬁi (1.15)

The Lagrangian for N non-interacting anyons generalization is

2: zﬂ% (1.16)

J#i
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where ¢;; = arctan|(y; — y;)/(x; — z;)]. In the sequel of this Subsection, the
arising of the statistical term in the Lagrangian (1.10) is justified by means
of the dynamical realization after which the flux tube model is named. One
should imagine to attach fictitious “electric” charge and a delta-function
“magnetic” flux to each particle. This flux tube corresponds to a fictitious

vector gauge potential
o €i5Tj

a;(7) =

By minimal prescription, the Hamiltonian for any one of the particles is

(1.17)

or r2

1
H = %(pi — ea;)? (1.18)
A dynamical effect of the point flux tube is the production of the following

kind of weight factors for the paths of the path integral prescription

exp (/ Lmtdt) = exp (iq/ﬁ- 6dt) = exp <2’q/5- df) (1.19)

due to the interaction of the particle with the gauge field. By replacing a
with its expression (1.17) for our case, we have the weight

gl @dT _ giastag (1.20)

which is nothing but the factor needed to implement the fractional statis-
tics, presented in (1.8). Hence, we have seen that the dynamical effect of
attaching the fictitious charge and delta-function flux to particles is a faith-
ful implementation of fractional statistics, and that q®/2 (or ¢®/2hc, if not
using natural units) can be identified with the anyon paramete 6 (the appar-
ent factor of two appears because each particle moves in the potential of the
other). The generalization to the N-particle case is needed for our purposes.
By observing that the gauge potential (1.17) can be rewritten as

a(r) = %V@ (1.21)

It follows that the N-particle generalization is

o o z x (r; —rj)
i(ri) = o— ity = —» —————%, 1.22
2;(r:) 2T ZV J 2772 lr; —r;|? ( )
J#i J#i
where 6,; = arctan[(y; — y;)/(z; — z;)] is the relative angle between the

particles ¢« and 7. We notice that the charge in each anyon sees the vector
potential due to the flux tubes in all the other anyons. The Hamiltonian
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for N noninteracting anyons is the sum of the N terms (p; — ea;)?/2m,

t=1,---, N, deriving from the minimal prescription, hence finally
N N N
1 Qa L.. o? i T
H=o > pl- . 3+ o vk (1.23)
m 4= m ATy m e T

where natural units have been used, a = 0/7 = ¢®/27, r;; = r; — r; and
L;ij = (r;—r;) X (p;—p;). So the statistical transmutation can be described by
stating that the N-anyons ideal system is equivalent to an interacting boson
(or fermion) system with a long range vector interaction. This Hamiltonian
has (only) two-body and three-body interaction terms. We are not aware
of a proof for the existence of the virial expansion for this system, because
of its long range interaction; notwithstanding, the virial expansion seems to
hold at least for a noninteracting gas. Some interacting two-body problems
(beyond the noninteracting itself) are exactly solvable, while no multianyonic
(N > 3) one has been exactly solved as yet, just because of the presence of
the three-body interaction term.

Pictorially, an anyon can therefore be seen as a point charged particle
with an infinitely long one-dimensional tube piercing the charge; the flux
can take any value and the anyon behaves as a point charged vortex. The
flux-tube model just described has an only formal identification with anyons,
in other words the invoked gauge fields are completely fictitious.

1.1.3 Gauge choice

The Hamiltonian (1.23) can indifferently act on the spaces of symmetric or
antisymmetric wave functions. The theories (B,a + 1) and (F,«), where
B, F denote the space of symmetric/antisymmetric functions and « is the
statistical parameter, are gauge equivalent theories, because of the simple
gauge transformation connecting the respective wavefunctions:

Vr(a) =Udpla+1) (1.24)

where
U=]]exp(ioy) (1.25)
i>j
This gauge choice is called the magnetic gauge (or boson gauge). An alter-
native possibility is represented by the anyon gauge, where the Hamiltonian
is that for free particles, i.e.

N 9

b;

Hy = E o (1.26)
i=1
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The anyon gauge entails a simpler presentation for the Hamiltonian, but the
wave functions are multi-valued in this gauge (for the truly fractional cases),
while those in the magnetic or bosonic gauge are single valued. The relation
between these two gauges reads

Ya(a) = U(a) (1.27)

where the wave function for boson/fermion-based anyons appears in the left-
hand side above, respectively for ¢(a) = ¥p(a), Yr(a).

1.2 Anyonic Quantum Mechanics

The simplicity in deriving properties of an ideal gas of bosons/fermions is
a result of the possibility of writing down the N-particle wave function as
the product of single particle wave functions, with appropriate symmetry or
amtisymmetry factor respectively. The situation is different for anyon gases.
Even in the two-anyon case, multi-particle wave functions cannot, in general,
be decomposed in terms of single particle wave functions. We start right by
considering the two-anyon case.

1.2.1 Two noninteracting anyons

We previously saw that the relative Hamiltonian, obtained by factoring out
the center of mass term from the full two-body Hamiltonian, is

_pr, (pg — ha)?
mr?

(1.28)

The corresponding Schrodinger equation reads in cylindrical coordinates:

GRS R AT PR
m \0r?2 ror mr? Zaqﬁ “

which is separable in r and ¢ by setting ¥ (r, ¢) = R(r)F;(¢).The angular
equation takes the form

U(r,¢) = Ed(r,¢)  (1.29)

) 2
<Za_¢ i a> Fi(6) = AF(6) (1.30)

Since we are working in the magnetic (= boson) gauge, the angular com-
ponent has to be periodic modulo 7, hence the solution of (1.30) consistent
with the bosonic boundary condition is

Fi(¢)=¢€" 1=0,42,44,---, A= (l—a)? (1.31)
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One can note that for bosonic (o« = 0) and fermionic (o« = 1) cases the
eigenvalue X is two-fold degenerate (except when [ = 0), while it is not
degenerate for any other value of a. By substituting the eigenvalue A we can
now explicit the radial equation
2 2 2
{—% (% + ;%) + % (I — 04)2} R(r) = E R(r), (1.32)
which deserves a few comments.

First of all, the effect ot the anyonic statistics is to replace the angular
momentum [ by [ — « in the radial equation for the relative motion. This
is true not only for the ideal case, but for any two-anyon problem. So in all
cases, but the case of bosons, particles experience a centrifugal barrier.

Equation (1.32) is nothing else than the Bessel equation, whose solution
nonsingular at the origin are

h2k?
R(r) = J|l_a\(k7“), FE =

(1.33)

m

and the spectrum is continuous. For » — 0, the nonsingular solution behaves
like
R(r — 0) ~ rl=e (1.34)

So it is clear that in the ground state (I = 0) the repulsion bewteen two anyons
monotonically increases by moving from a = 0 (bosons, which experience
no repulsion) to @ = 1 (fermions, which experience maximun repulsion).
In other words, anyons can be regarded as bosons/fermions with an extra
repulsive/attractive interaction.

Let us spend instead some words about the interacting case. From the
relative Hamiltonian (1.29) it is understood that consideration of a central
potential V' = V(r) cannot modify the solution (1.31) of the angular equa-
tion (which is unchanged), while in the radial equation one had simply to
add V(r). An interesting question consists in wondering about which pos-
sible forms of V(r) allows for an analytical solution of the corresponding
radial equation. Well, the only potentials for which the eigenvalues and the
eigenfunctions admit closed analytical form for all the partial waves [, are
the oscillator potential and the attractive Coulob potential. Moreover, for
the case of repulsive Colomb potential one can write down the partial shifts
for all the partial waves. Furthermore, in both the cases we are free to add
the potential A/r? without affecting the analytical solvability, because the
constant A can be reabsorbed in the quantum number /. The solutions for
ther cases, such as the case of anyons in a circular box with hard walls, or
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experiencing hard-disk repulsion, rely on the solution of trascendental equa-
tions. A system of two anyons embedded in a uniform magnetic field (with
or without the optional presence of an oscillator potential)can be reduced
to the oscillator case, so it is exactly solvable too. In general most of the
possible central potential are hard to deal with.



Chapter 2

Chern-Simons theory and
Anyons

2.1 Chern-Simons density

In this Chapter we will see non-relativistic quantum theories harbouring
anyonic statistics. This is possible thanks to the presence of the topological
Chern-Simons term in the action. So now we define the Chern-Simons term
in 2 + 1 dimensions and discuss its properties. A fundamental property of
the Chern-Simons term in 2 + 1 dimensions is that by adding it to a theory
containing the gauge kinetic energy term, it makes massive the gauge field,
by still preserving the gauge invariance of the action. After the Abelian
theory, we will present the non-Abelian (CS) gauge theories, in which the
coefficient of the Chern-Simons term has to be quantized to make them well
defined. A gauge theory with pure Chern-Simons action is an example of a
topological field theory, since this term has the same form in the flat and the
curved space-time, irrespectively of the metric tensor. In a wider context, the
Chern-Simons term has found many applications, for instance in condensed
matter physics (fractional quantum Hall effect), supergravity, string theory.
We will see in particular how the anyonic statistics can be formulated by
using the Chern-Simons term.

In order to understand this term, let us start with the Lagrangian density
for classical electrodynamics in 3 + 1 dimensions:

1 — .
L=~ FuF" + 7 (3D —m) (2.1)

where F),, = 0,4, — 0,A,, and D, = 0, — ieA,, is the covariant derivative.
A, denotes the gauge potential, 1 the fermionic field. The gauge invariance

25
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of the Lagrangian is expressed by the gauge transformation
@ZJ(JZ) N eiea(:}:) ’QZ)(JZ)

Au(w) = Ay(x) + Jua(z)

(2.2)

In the case of massless fermion a further symmetry (the axial symmetry)
is present in this Lagrangian, which is expressed by the invariance under the
transformation
h(z) — e 1p(z)
(2.3)
Ap(x) = Au(x)

where 3 € R and 75 = 1y9717273. Indeed for m = 0 the Lagrangian can be
written as

1 — —

Lomo = — g FarF" + 05 D" b+ 0y D b, (24)
where the chiral fields ¥ g(x), 1 (z) evidently do not couple each other. Con-
sequently the Lagrangian is seen to be invariant under a (global) chiral phase
change named U(1)g x U(1)L,

br(x) — e e ()

Ur(x) — e ryp(x)

(2.5)

with 0g, 0, real constant phases. Applying the Noether theorem, two con-
served currents are produced (i.e. 9,J; =0 and 9,Jj; = 0)

Jg = EL’Y’%L
B (2.6)
J}’-‘é = YrY'r

Now the axial symmetry comes in the following way; two conserved currents
can be obtained as linear combinations of the currents above:

V= Jp+J;

A= Tl T,

which are respectively a vector current

V=t
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and an axial-vector current

A = Py

Associated with this new symmetry group U(1)y x U(1)4, we have the two
transformations

Vig(r) — e (), Arip(a) — e A Ty(a) (2.7)

where 0y, 04 are (global) constants, the gauge potential field i (z) is let
invariant. The first of them is a particular case of the gauge invariance, the
global gauge invariance. The second one is just the desired axial symmetry
stated in (2.3).

These two symmetries, the gauge and the chiral symmetries, are valid (and
their respective currents j, = y*1) and jz = E’y,fyg,w are conserved) at
the classical level, but they are not conserved at the quantum level [21].
The problem in the quantum case resides in the fact that the fundamental
quantization condition for Dirac-Fermi fields

Uh(6,1) 0 (t,17) + P (t,17) 0] (£, 1) = 8,000° (r — 1) (2.8)

implies that the product of 1! and 1) at the same space-time point is necessar-
ily singular. [In the above (m,n) labels the components of ¢! and v]. Since
the charges and currents involve bilinears of the Dirac-Fermi fields at the
same space-time point, they are necessarily ill-defined in the quantum the-
ory. Hence regularization and renormalization are needed to render the cur-
rents well-defined. But it turns out that any regularization/renormalization
method in the presence of the vector field A violates the symmetries that are
present in the unquantized theory. It is possible to preserve one of the two
corrents (or a linear combination of the two) but not both. Since the preser-
vation of both symmetries is impossible, a choice must be made about which
one should be preserved. Since local gauge symmetries are frequently needed
for consistency reasons, they are the ones that are preserved, while global
axial gauge symmetries are abandoned: they become affected by ”anoma-
lies”. Indeed, when discovered, this phenomenon was baptized quantum chi-
ral anomaly, since unexpected, and it is a paradigmatic example of quantum
mechanical symmetry breaking. This breaking of the (classical) chiral sym-
metry is valid in any even dimension 2n, in both Abelian and non-Abelian
gauge theories. The symmetry breaking (”deviation from the conservation”,
or simply divergence) for the chiral current can be encoded in the Chern
-Pontryagin density P, in that even dimension 2n
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The Chern-Pontryagin density can be written as a total divergence:
Po, =0, 1", n=0,1,2,---,2n—1. (2.10)

The components of the contravariant vector I'* live in odd (2n — 1) dimen-
sions, and this vector is called the Chern-Simons density in (2n — 1) di-
mensions. So the Chern-Pontryagin density lives in an even space-time di-
mensionality, while the Chern-Simons density has odd dimensionality. In our
basic example represented by the classical electrodynamics in 3 + 1 dimen-
sions, the Chern-Simons density takes the form

e? e?
0"jp = = €una " FY = —0"(€une A"F), 2.11
']H 27_‘_6,“ A T (EN A ) ( )

whence the Abelian Chern-Simons term in 2 + 1 dimensions is expressed by

JCS = /ECS dSZ'O( /d3£L' GV)\UAVF)‘O. (2.12)

2.2 Gauge invariant mass term

Let’s take the pure electrodynamics in the presence of the Chern-Simons
term in 2 + 1 dimensions [22, 23]

1

L =—1FuF" + %N“FWAA (2.13)
where, as prescribed by dimensional analysis, p has the dimension of a mass
in 2 + 1 dimensions. The equation of motion following after this Lagrangian
is

0, F™ + ge”aﬁFaﬂ =0 (2.14)

which is invariant under the gauge transformation A, — A, + d,«. The
resulting Lagrangian density takes a total derivative as an addendum, and
the corresponding total action is gauge invariant. We deduce that the Chern-
Simons term (at least the non-Abelian one) has nontrivial topology and also
nontrivial dynamics. We can rewrite the equation of motion above in the
form

1
(g“” + —e“”“aa) “F, =0, (2.15)
7

where *F), is the dual field strength, which is a vector in 2 + 1 defined as
follows

1
“F, = 5.smﬁFaﬂ; F = €ua F* (2.16)
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Now the arising of mass for the gauge field will be explained. Let’s act with
the left operator (gg, — %Egng 9°) on Eq.(2.15), getting as a result

(O+ u?) Fz=0. (2.17)

From last equation it is clear that the gauge field excitations are massive,
and the mass p of the gauge field is just the coefficient of the Chern-Simons
term. Summarizing, when adding the Chern-Simons term to the Maxwell
kinetic energy term for the gauge field, we end up with a gauge invariant
mass term for the gauge field. This is a special property of the (241)-
dimensional case. Since we made a comment about the dynamics, it is the
occasion to point out here that a pure Chern-Simons action (considered
alone without a kinetic energy term) has no dynamics at all: its equation
of motion is F),, = 0. That means that, while the Chern-Simons gauge field
taken alone is a non-propagating field, its dynamics is completely inherited
from the fields to which it is eventually minimally coupled. Indeeed if one
considers the Lagrangian

L= %E/W)\F“VA)‘ + A, (2.18)

in which the first term is nothing but the pure Chern-Simons Lagrangian
while the second is the coupling of the Chern-Simons field with a current,
function of some other fields, the resulting equations of motion are

p=J"=uB (2.19)

J' = peE;. (2.20)

The first is a Gauss law constraint, implying a relation between the Noether
charge ) and the total flux ®:

Q= /pd23; — M/Bde = n®. (2.21)

A property of the pure Chern-Simons term is that the action corresponding to
it contains only up to the first order in the time derivative. So the components
Ay, As of the gauge field are canonically conjugate each other. In the next
Chapter we will come to consider the Abelian pure Chern-Simons theory,
with the purpose of discussing many relations between the observables of
the theory (which are expectation values of Wilson line operators) and the
homological properties of the particles’ closed worldlines.
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2.3 Non-Abelian case

Relations among quantities analogous to those in Sec. 2.1 can be written for
the non-Abelian case, leading to a modified expression for the Chern-Simons
Lagrangian density [24, 25]. The non-Abelian case is obtained by replacing
electrodynamics with a more general Yang-Mills theory. To this end, we
replace the function A, by a matrix-valued quantity A4, = >, A%T, living in
a Lie algebra, where T, are anti-Hermitian representation matrices satisfying
the Lie algebra commutators with structure constraints f$;:

[T.. ) = 5 T. (2.22)

and normalized by Tr 7,7, = —d4/2. For SU(2), T, = 0,/2i, o, Pauli
matrices. The singlet axial vector current J£' obeys the anomalous continuity
equation

0 e
a3 @) = T F(2) B (2))], (2.23)
where F),, is the non-Abelian field strength constructed from A, (Yang-Mills
curvature):

Frw = 0,4,(2) = 0,4, (x) + [A,(x), A, (x) (2.24)
and *F™ is its dual:

PR = PR (2.25)

N —

In analogy with the Abelian case, the term on the r.h.s. of the (2.23) is the
Pontryagin density P:

2
= — T F™ (2)F,,(2)], (2.26)
27
whose 4-dimensional integral measures the topological properties of the Yang-
Mills gauge potential A, (connections) and fields F),, (curvatures) that enter
in P. For the integral to converge, F),, must tend to zero at infinite argument.
This means that A, must tend to a pure gauge g, which is group valued,
LD
Ayle) = g7 (@) () (2.27)
and g is restricted to tend to the identity. Gauge functions g with this
restriction fall into the equivalence (homotopy) class labeled by integers, and
gauge functions in different classes cannot be deformed into each other. That
integer n is given by the Pontryagin number

n= /d4x P(x). (2.28)
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The Pontryagin density P is a gauge invariant object, and equal to the 4-
divergence P(z) = 52 K"(x) of the contravariant vector Chern-Simons den-
sity (living in 3 dimensions) K* | also called topological current

62

K*(z) = _%euaﬁv Tr %Aa(x) OsA, () + %Aa(x)Ag(:U)Aw(x) . (2.29)

where A, = T*Af. The 4-dimensional volume integral of *F*”(z)F,,(z) in
the integral formula for the Pontryagin number can be clearly written as an
integral of K* over the 3-dimensional surface (at infinity) bounding the 4-
dimensional volume. There the vector potentials in K* are replaced by their
asymptotic forms given by a pure gauge, and the resulting integration gives
the integer n that characterizes the winding number of g. The Pontryagin
number is a topological entity, indeed as just emphasized it is determined by
the asymptotic behavior of gauge functions, which belong to distinct classes
labeled by integers. From a different perspective, one can also argue that the
integral of the Potryagin density above addressed does not require to specify
the geometry of the integration 4-volume, because the metric tensor does not
appear in the formula. After having described the arising of the non-Abelian
Chern-Simons term, we can consider a non-Abelian gauge theory with the
Chern-Simons term as given by

1 v [ 2
Lo = 2—92Tr FMFE,, — 27 AT | F,, Ay — gAu(x)A,,(x)AW(a:) ., (2.30)

where now A, = ¢gT*Af, and F,, = gI“F},, consistently with Eq.(2.24).

This Lagrangian yields the following field equation
D, F" + ge”aﬂFaﬁ —0, (2.31)

where

D,=0,+[A]

is gauge covariant. As in the Abelian case, the Chern-Simons term induces a
gauge invariant gauge field mass p. By remembering the dual strength field
defined in the previous Section, the non-Abelian version of (2.17) is

(DD + %) *F\ = exon [ Fs, " F] (2.32)

Also in the non-Abelian case, the Chern-Simons Lagrangian density changes
by a total derivative under an infinitesimal local gauge transformation, so
that the corresponding action is invariant under such a gauge transformation;
but the action is instead not invariant under finite gauge transformations!: in
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fact, the gauge transformations not continuously deformable to the identity,
i.e. homotopically non-trivial, change the action as follows. Let

A, —»UTTAU+U'9U (2.33)

be the gauge transformation. In the case of gauge group SU(2), the variation
of the action under such ”large” gauge transformations will be

82
Sna — Sna + TMW(U% (234)
where
1 _ _ _
w(U) = 57 / dPx e Tr [(0,0)U 1 (9,U) U (0U) U] (2.35)

is the winding number of the gauge transformation U [26]. This is true for
any gauge group G of which SU(2) is a sub-group. For these groups, the
value of w(U) is an integer for any U, so the action transforms as

8 2
Sna = Sna + ——m, (2.36)
g

where m is an integer. To sum up, the action corresponding to the non-
Abelian gauge theory with the Chern-Simons term is not invariant under
large gauge transformations, but it rather changes by 87%um/g*. In the
path-integral formulation, the physical requirement is not the gauge invari-
ance of the action, while rather that of the quantity exp{iS,,}. So the theory
itself is meaningful if and only if the Chern-Simons mass p is quantized as
an integer multiple of g?/4w. A final remark concerning the Abelian as well
the non-Abelian case: the Chern-Simons action depends only on the anti-
symmetric tensor €,,, and not on the metric tensor, this meaning that it is
the same in the flat and the curved space. Hence it is a particular topological
field theory [27, 44, 28]. The topological field theories are a natural frame-
work for studying the Jones polynomials, arising in knot theory, by dealing
with three dimensional terms.

2.4 Non-Abelian Chern-Simons particles

The non-Abelian Chern-Simons particles (NACS particles) are point-like
sources carrying non-Abelian charges, and interacting via the non-Abelian
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Chern-Simons term. Their interaction produces the non-Abelian Aharonov-
Bohm effect, as well as the Aharonov-Bohm effect is experienced by Abelian
anyons due to their relative interaction. The NACS particles can occur in
various contexts, such as cosmic strings [29], gravitational scattering in (2+1)
dimensions [30], and potentially in the ambit of topological insulators [31].
These (quasi-)particle are non-Abelian generalizations of anyons. A differ-
ence is represented by a fractionalization of their statistis: while Abelian
anyons have fractional spins and satisfy anyon statistics, the NACS parti-
cles acquire fractional but rational spins and exhibit generalized braid non-
Abelian statistics. The NACS particles also appear in the vortices, in (2+1)
dimensions, formed when a gauge group is broken via Higgs mechanics to
a discrete non-Abelian subgroup [32]. Interactions among these vortices are
expressed in terms of holonomies, associated with the windings around them-
selves, so these interactions are a manifestation of the non-Abelian Aharonov-
Bohm effect.

We will present the definition of these particles by endowing point-like
sources, having non-Abelian isospin charges, with non-Abelian magnetic fluxes.
This will be obtained by introducing the NACS term and minimally coupling
the isospin charges with the Chern-Simons gauge fields. For simplicity the
internal symmetry group will be assumed to be SU(2). Let us define the
isospin degrees of freedom, on the reduced space phase S? for the SU(2)
internal symmetry group, as

QL = Jysinf,cos o, Q2 = Jysinfysing,, Q= J,cosf,, (2.37)
0,4, ¢o coordinates of the internal S? group, J, constant. We are going to

denote the spatial coordinates of the N particles by ¢, « = 1,,2,--- N in
the following classical Lagrangian:

1 . 9
L= Z(_§maq§ + JOé COS gagba) — KR / de 6“1/)\ TI“(AM&,A)\ + gAuAyA)\)

+ [ o S+ A5) Qo — ) (239

In this classical Lagrangian 47 is an integer, A, = A%T*, [T T%] = e**T*,
Tr(T°T%) = —16,, and the space-time signature is (+,—,—). The corre-
sponding Fuler-Lagrange equations are then

MaGai = _<Fil;‘ (Qa)qgu + E%(Qa)) QZ (239)

Qh = =€ (A (ga)d, + Aj(aa)) Qs (2.40)
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S () = =Y Qe — aa) (2:41)
K Fn() = = > Qadh 0@ — aa), (2.42)

«

where F% = 0;,A% — 0, A} + € A? AS. Within this set of four equations of
motion, the first two are the Wong’s equations [33], and the third one is the
Gauss’ law constraint, telling that the NACS particle of isospin charge Q%
carries the magnetic flux —Q% /k,

1 ’ 1
@m—i/eW%@m%——Eg, (2.43)

«@

where B, is a surface including the position (only) of the a-th particle.
Introducing the canonical momenta p,

] aL -1 at a
Po = 9.~ Matat A%(¢a) Qg (2.44)

the Lagrangian can be rewritten in a first-order form as we will use in the
following. At this point is useful recalling that A{ and A§ are canonically
conjugates to each other, so their quantization will have commutation rules:

(A} (), A3(y)] = ik~ 6% 6(z — y). (2.45)

We are going to summarize the steps of the coherent states quantization
(34, 35] of this Lagrangian. The commutation rules among the components
of the gauge field suggest to consider ”creation” and ”annihilation” operators

A = Jefa(A — i Ag), At = \JR2AS Ay (246)
A% (2), A (y)] = 65 (x — ) (2.47)

and to construct coherent states

|Az) = exp (\//1_/2 /d% AgA“T) 0) (2.48)
with their adjoints

(A,| = (0] exp (W_/z / d*x AgAa) . (2.49)

Hence

(A,]AL) = exp <g / d%A;A;) , (2.50)
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yielding the following decomposition for the identity
I= / DA, DA, exp (—g / d%A;Ag) ALV (A, (2.51)

The physical transition amplitude between gauge fields, Z = (Al ;| AL, ¢;),
can be expressed via the functional integral representation, and with the aid
of the identity representation written above, in the following form

= / Dp* Dg* Dp* Dg* Dcos D¢ DA, DA; DA,

X exp {—/ﬂ' / d*z(ALAS + A;A;)} exp {2 /dtL} : (2.52)

L= Z(piéa + P20+ Ju €OS0400)

where

- / d*z (g(AgAg — A2AY) + AS(I)“) —H, (2.53)
the Hamiltonian is

H = Zma Ph = A2 (20 Za) Q1) (P — A2(20, %) Q1) (2.54)

and ®%(z) = KF%L + ), Q%(2 — z,) = 0. Since the enlarging of the gauge
orbit space, due to the fact that A? and A? are treated as independent
variables within the frame of the coherent state quantization, we are free to
choose A¢ = 0 as a gauge fixing condition, that can be called ”holomorphic”
gauge condition. In this gauge the Gauss’ constraint takes the form

O (z2) = =k 0; AL + Z Q(z2 —2,) =0 (2.55)

explicitly solved by

Al(z,2) = AY( a 2.
") =0, A7) mz@ (256)

2= Zo

The legitimacy of the holomorphic gauge condition as a gauge fixing condi-
tion is guaranteed by the Fradkin and Vilkovisky theorem [36], stating the
equivalence of the path integral in the holomorphic gauge condition to those
in conventional gauge choices.
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In the coherent state quantization for the Chern-Simons gauge fields,
we are left [37] with the following path integral for the physical transition
amplitude

:/DpZDqZDpZDqZDcos@D¢DAZDAZ(5(A§)5( )exp{ /dt(K H)},

T(ATAT — AsAYy (2.57)

K= Z(Piéa + D270 + Jo €08 0000) + /dQZ >

A quantum mechanical description of the NACS particles can be obtained
by integrating out the field variables. The physical transition amplitude Z

can be expressed in terms of purely quantum mechanical variables, by using
the solution (2.56) of the holomorphic gauge condition:

= /Dpz Dq® Dp* Dg* D cos D¢ exp {Z /dt (K — H)} ,
K = Z(piz.a ‘1‘]925& + Ja COS Qaéa)y

2 z > a
H=), Do (Pa — AZ(20, Za)Q0) - (2.58)
It is equivalent to the following operatorial version
Z = (nglexp{=i H (t; = t:)}m:)

H Z_pa Do — A (Zaaza)QZ)7 (2.59)

where the gauge field Ag is the operator version of the solution field in (2.56),
and the quantum operator variables involved in the expression fulfill

Zan 2] =i (20,05 =i [Q%, QY] = i €™ QC bup (2.60)

The final expression governing the non-relativistic dynamics of the NACS
particles is the Hamiltonian

~ 1
H=-) —(Vs,V., +V.V:), (2.61)

Me
«

where

Ve, =0/070+ 5 ZQa@g
l#a
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V. =0/0%, .

This Hamiltonian has been applied to the non-Abelian Aharonov-Bohm effect
by Verlinde [38]. The term proportional to ="' in the covariant derivative de-
scribes mutual interactions among NACS particles, which are responsible for
the non-Abelian statistics. This fact can be proven by applying the follow-
ing singular non-unitary transformation U which connects the holomorphic
gauge with the anyon gauge (similarly to what previously illustrated in the
case of (Abelian) anyons):

‘I’h(Zb“' ,ZN) = U_l(Zl,"' 7ZN) \I’a(Zl,"' 72N)> (2-62)

and satisfies the Knizhnik-Zamolodchikov equation [39]

0 1 . 1 X
9. o . ° a - .« .. — . 2.
(aza * 2K %QaQﬁza — zﬁ) U™ (=, ,2n) =0 (2.63)

The same transformation applied to the Hamiltonian produces a free Hamil-
tonian in the anyon basis:

. 2
H, = — Z m—aagaam. (2.64)

The Knizhnik-Zamolodchikov equation satisfied by the U matrix is particu-
larly simple for the case of N = 2 particles, so that this monodromy can be
explicitly evaluated in this case:

Uz, 22) = exp [Q‘;@g ﬁ In(z — 22)} (2.65)

As a result, the exchange of the positions of two NACS along an oriented
path produces the following UNITARY wave function transformation in the
anyon gauge

Z.Q‘f@g

U, (21,22) = Vy(29,21) = e( e ) U, (21, 22) (2.66)

The unitary operator R,3 = exp <z Q‘f@g / 25) above is the braid operator,
satisfying the Yang-Baxter equation and qualifying the NACS particles as
an example of non-Abelian anyons. Naturally, the monodromy operator
Mo = (Rap)?, corresponding to the total winding of a particle around
another, produces the transformation

;etes

U, (21, 22) — e( " ) U, (21, 22) . (2.67)
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Chapter 3

Abelian link invariants and
homology

3.1 Introduction

Quantum field theories can be used not only to describe the physics of ele-
mentary particles but also to compute topological invariants. In this Chapter
we consider the link invariants that are defined by the abelian U(1) Chern-
Simons field theory formulated in a closed and oriented 3-manifold M, and
we show how these invariants are related with the homology group of the
complement of the links. To this end, we shall introduce a few definitions
—Ilike that of simplicial satellite or of equivalent knot— which are used to
connect the values of the U(1)-charges which are associated with the com-
ponents of the links with the numbers that classify the homology classes of
loops.

We demonstrate that the set of the abelian link invariants (or observables)
in any homology sphere coincides with the set of observables in the sphere
S3. We also prove that if a link in a generic manifold M is homologically
trivial then its associated observable coincides with an observable computed
in S3. We then consider the U(1) surgery invariant of Reshetikhin-Turaev,
we show that this invariant: (1) is trivial for homology spheres, (2) is not a
function of the homology group of the manifold only and (3) is not a function
of the homotopy type of the manifold only.

3.2 Introduction to the Singular Homology

This Section is devoted just to recall the mathematical setting required to
understand the rest of the Chapter, relevant to the connection between the

39
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first homology group and some invariants associated to the Abelian Chern-
Simons theory. I want to give a short account of the concept of homology, by
limiting myself to the approach of singular homology [40]. At last, we shall
specify the relation between the homology group and the fundamental group
(or first homotopy group).

Definition The standard simplex of dimension n, or n—simplez, is the
following subset of R™"*1 :

A, = {(xo,--- L Tn) € R inzl;xi >0,i=0,1,--- ,n}. (3.1)

1=0

The points v9 = (1,0,---,0),v; = (0,1,0,---,0), - ,v, = (0,0,---,0,1)
are called vertex of the simplex.

From this definition it follows that Aq is a single point, A; is a segment
of (straight) line, A, is a triangular region and Aj is a solid tetrahedron.

Definition A singular n-simplex in a topological space X is a continuous
function ¢ : A,, — X.

As a consequence, a singular 0—simplex is a point of X, while a singular
1—simplex is a path in X.

Definition A singular n-chain in X is a formal expression

> nio;
jeJ
where {¢;|j € J} is the family of all the singular n-simplex in X ( .J is a set
of indices), n; € Z, and the number of non-zero elements of {n;|j € J} is
finite.
The set S,(X) of the singular n—chains in X forms an Abelian group
with respect to the operation defined (in additive notation) by

anqu + Z”’%% = Z(nj + m;) ;.

jedJ jed jeJ

The neutral element is »  0¢; and the opposite of } . ;n;d; is 3= ;(—n;)¢;.
Such an operation is associative and the resulting group is Abelian.

The group S,,(X) contains a great deal of elements, that makes difficult its
study. Therefore to simplify the treatment we shall introduce the boundary
operator (in order to define an equivalence relation on the group S,(X)).

If ¢ is a singular n—simplex and ¢ € {0,1,--- ,n}, we define a singular
(n — 1)—simplex 0;¢ by posing

8i¢(l'0, L1,y ,l’n_1) = ¢($0, Ty, X451, 0, Lit1,° (L’n_1). (32)
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The extension of the definition of ”boundary” to S,(X) yields a group
homomorphism

Djes 0 o ey 00,
Definition The boundary operator 0 : S, (X) — S,—1(X) is defined as

i (3.3)

n

0=00— 01+ 0y — -+ (=1)"0p =Y _(~1)'0; (3.4)
i=0
The boundary operator allows us to define two remarkable subgroups of
Sn(X):
Definition

(a) A singular n—chain ¢ € S,,(X) is an n—cycle if dc = 0; the set of the
n—cycles of X is denoted Z,(X);

(b) a singular n—chain d € S,,(X) is an n—boundary if d = Je for same
e € S,(X); the set of the n—boundary is denoted B,,(X).

In other words:

Zn(X) =ker{0 : Sp,(X) — S,_1(X)},
Bn(X)=Im{0: S,:1(X) — Sp(X)},
so both Z,(X) and B,(X) are subgroups of S,,(X).
Notes:
1)Zo(X) = So(X);
2)all n—boundaries are n—cycles, as a consequence of the following

Theorem
00 = 0.

The proof is trivial, and consists just in a direct calculation to verify that 90
vanishes on whichever singular n—simplex ¢.:

90p = 0 (Z n(—l)if)igb) = 2_: > (-1)H9,00 = =0 (3.5)

i=0 7=0 =0

The former theorem implies that B, (X) is a subgroup of Z,(X), so it’s a
normal subgroup, since Z,,(X) is Abelian: so we are allowed to consider the
quotient group Z,(X)/B,(X).

Definition The n-th homology group is defined as

H,(X)=Z,(X)/B,(X). (3.6)
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The element of H, (X) are homology classes, that is equivalence classes with
respect to the equivalence relation

c~d <= c—d e B,(X),

where ¢, ¢ € Z,(X).
If ¢ ~ ¢ we say that ¢, ¢ are homologous cycles.
One can prove the following facts:

e If the topological space X is made up of only a point, Hy(X) = Z, and
H,(X) = {0} for each n > 0.

e If X is a non-empty connected by arcs then Hy = Z

e For each continuous map f : X — Y between two topological spaces
X.,Y, let us define
fi:Sn(X) = Sp(Y) (3.7)
by means of
() = S e 59
jeJ jeJ
f4 is a group homomorphism. It’s possible to shows that a group ho-

momorphism

fot Hy(X) — Ho(Y) (3.9)

exists, defined by

flel = [fi(e)] (3.10)
where ¢ is an n—cycle in X and [¢] its homology class. The homomor-
phism f, : H,(X) — H,(Y) is called the homomorphism induced by
f.

Now we can formulate the

e Theorem of homotopic invariance

Let f,g : X — Y be two continuous map. If f and g are homotopic
map, then f. = g. : Hy(X) — H,(Y) for each n > 0, with the just
introduced notation.

An important consequence of the theorem above is that spaces with
1somorphic homotopy groups have isomorphic homology groups.

The following theorem makes clear the relation between the homology
group and the fundamental group of a topological space.
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e Theorem

For any topological space Y there is an homomorphism
Y :m(Y,yo) — Hi(Y);

if Y is connected by arcs, v is a surjective homomorphism whose core
is the subgroup of the commutators of w(Y,yo); in other words, if Y is
connected by arcs, H1(Y') is the abelianization of (Y, yo).

Some simple facts about of first homology group:
o Hi(S")={0} Vn#1;

o Hi(SY)Y = Z;

o Hi((S")") =2

Y

e two surfaces S; and S, are homeomorphic if and only if H;(S!) =
H1(5%);

e if X is a topological space with the shape of an "eight”, we have
H(X)=2Zx Z;

e if S is a closed surface and S’ is the space obtained by removing an
open disc from S, then H;(S) = Hy(5');

e if 3, is the *standard orientable surface of genus g, its first homology
group is Hi(X,) = Z%.

*[Can be understood as the connected sum T24---#T? of g copies of

T2 = S' x §1).

3.3 Field theory approach

In order to make this Chapter self-contained, we add here a preliminary
section containing a description of the main developments in the field theory
computations of the link invariants together with a brief description of the
Reshetikhin-Turaev surgery rules.

The abelian Chern-Simons theory [27, 41, 42, 43] is a gauge theory defined
in terms of a U(1)-connection A in a closed oriented 3-manifold M. For each
oriented knot C' C M, the corresponding holonomy is given by the integral
Jo A which is invariant under U(1) gauge transformations acting on A.

In the standard field theory formulation of abelian gauge theories, the
(classical fields) configuration space locally coincides with the set of 1-forms
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modulo exact forms; A ~ A + dA. However, if one assumes [44, 45] that
a complete set of observables is given by the exponential of the holonomies
{exp[2mi [, A]} which are associated with oriented knots C' in M, the in-
variance group of the observables is actually larger than the standard gauge
group. In facts, the observables must be locally defined on the classes of
1-forms modulo forms A with integer periods, A ~ A + A e A=neZ
This means that the configuration space is defined in terms of the Deligne-
Beilinson cohomology classes [46, 47, 45]. So, we shall now consider the
Deligne-Beilinson (DB) formulation of the abelian U(1) Chern-Simons gauge
theory.

In order to simplify the notation, the classes belonging to the DB coho-
mology group of M of degree 1, H: (M), will be denoted by A. Let H3 (M)
be the space of the DB classes of degree 3. The pairing of the DB cohomology
groups, which is called the *-product, defines a natural mapping [48]

HE(M) ® Hy(M) — H3 (M) . (3.11)

The *-product of A with A just corresponds to the abelian Chern-Simons
lagrangian [45, 49
AxA— A NdA . (3.12)

Precisely like the integral of any element of H3 (M), the Chern-Simons action
S:/A*A—>/AAdA (3.13)
M M

is defined modulo integers; consequently, the path-integral phase factor

exp{2mikS} = exp {2m'k / A x A} (3.14)
M
is well defined when the coupling constant k takes integer values
keZ , k#0. (3.15)

A modification of the orientation of M is equivalent to the replacement k —
—k. Let us consider a framed, oriented and coloured link L C M with
N components {C,Cs,...,Cn}. The colour of each component C;, with

= 1,2,...,, N, is represented by an integer charge ¢; € Z. The classical
expression W (L) of the Wilson line is given by

= ﬂexp{%ﬂ% /CA} :eXp{QZ'?Tqu/C'A} . (3.16)

J=1
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Each link component which has colour ¢ = 0 can be eliminated, and a mod-
ification of the orientation of a link component C' is equivalent to a change
of the sign of the associated charge ¢q. The observables of the Chern-Simons
gauge theory in M are given by the expectation values

fM DA eQm'kS W(L)

)| - DA (3.17)

where the path integral should be defined on the DB classes which belong
to Hh(M). More precisely, the structure of the functional space admits a
natural description in terms of the homology groups of M, as indicated by
the following exact sequence [50, 51]

0— Q' (M)/Q (M) — H}, (M) — H*>(M) — 0, (3.18)

where Q!(M) is the space of 1-forms on M, Q} (M) is the space of closed 1-
forms with integer periods on M and HP(M) is the (p)** integral cohomology
group of M. Thus, H5(M) can be understood as an affine bundle over
H?(M), whose fibres have a typical underlying (infinite dimensional) vector
space structure given by Q(M)/QL(M).

The framing of the link components is used to fix the ambiguities, which
appear in the computation of the expectation values (3.17) of the compos-
ite Wilson line operators, in such a way to maintain the ambient isotopy
invariance of the expectation values [52, 53, 49].

Assuming that expression (3.17) is well defined, one can prove [49] the
most important properties of the expectation values: (i) the colour period-
icity, (ii) the ambient isopoty invariance and (iii) the validity of the satellite
relations. We shall briefly discuss these subjects in section 2.3. When ex-
pression (3.17) is well defined, the computation of the observables provides
the solution of the Chern-Simons field theory in the manifold M.

3.3.1 Fundamental link invariants

When the 3-manifold M coincides with the 3-sphere S®, one can compute
the expectation values (3.17) by means of (at least) two methods: standard
perturbation theory or a nonperturbative path integral computation. Both
methods give the same answer.

First method.

Since the topological properties of links in R*® and in S® coincide, let us
consider the abelian Chern-Simons theory formulated in R3. In this case, the
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Deligne-Beilinson approach is equal to the standard perturbative formulation
of the abelian gauge theories. The direct computation of the observables
(3.17) by means of standard perturbation theory [53] gives

(W(Lp| = W(L)

RS eXp{_(zm/ 4k) Z QiLiij} , (3.19)

where the off-diagonal elements of the linking matrix L;;, which is associated
with the link L, are given by the linking numbers between the different link
components

L;; = (k(C;,C;) = tk(C;,C;) ,  for i # j; (3.20)

whereas the diagonal elements of the matrix L;; correspond to the linking
numbers of the link components {C;} with their framings {C}s}

ij - gk(C], ij) — gk(ij, CJ) . (321)

Second method.

Sequence (3.18) implies that H},(S%) ~ Q'(S5?%)/QL(S%) because H?(S?) is
trivial. By using the property of translation invariance of the functional
measure, which can also be expressed in the form of a Cameron-Martin like
formula [56], one can introduce [49] a change of variables in the numerator
of (3.17) in such a way to factorize out the value of the partition function,
which cancels with the denominator. As a result, one can produce an explicit

nonperturbative path-integral computation of the observables (3.17) and one
finds [49]

(W(L))

s eXp{_(Zm/%) Z qz‘]Liqu} : (3.22)

which coincides with expression (3.19).

The observables (3.22), which are ambient isotopy invariants, are called
the abelian link invariants. They represent the fundamental invariants be-
cause, as we shall see, the value of any other topological invariant of the
abelian Chern-Simons theory in a generic 3-manifold M can be derived from
expression (3.22).

3.3.2 Observables computation

When the Chern-Simons field theory is defined in a nontrivial manifold
M, the explicit computation of the observables by means of the standard
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field theory formulation of gauge theories presents some technical difficul-
ties, which are related to the gauge-fixing procedure and the definition of the
fields propagator. For example, when M = S! x S?, the Feynman propaga-
tor for the A field does not exist because of the presence of a physical zero
mode; in facts, among the field configurations, a globally defined 1-form A
exists such that dAy = 0 but Ay is not the gauge transformed of something
else. One can presumably overcome these technical difficulties, and one can
imagine of computing the observables by means of perturbation theory. But,
as a matter of facts, an explicit path-integral computation of the link observ-
ables (3.17) by means of the standard gauge theory perturbative methods
has never been produced when the 3-manifold is not equal to R3.

For a nontrivial 3-manifold M, the expectation values (W(L))]| y can
be really computed —for certain manifolds— by using two methods: (i)
a nonperturbative path-integral formalism based on the Deligne-Beilinson
cohomology, (ii) the operator surgery method. In all the cases considered so
far, these two methods give exactly the same answer.

Nonperturbative path-integral computation.

Let us consider a class of torsion-free manifolds of the type S' x X, where
¥ denotes the 2-sphere S? or a closed Riemann surface of genus g > 1. In
this case, the first homology group H;(M) is not trivial and is given by the
product of free abelian group factors; standard perturbation theory cannot be
used since the Feynman propagator for the A field does not exist in S x X.
But one can use the nonperturbative method developed in [49], in which
the introduction of a gauge fixing and of the Feynman propagator is not
necessary. The structure of the bundle HL (M), which is determined by the
sequence (3.18), and of the resulting path-integral have been described in
[49]. One finds:

1. when L is not homologically trivial (mod 2k) in S* x ¥,

(W(L)) =0; (3.23)

S1xy

2. when L is homologically trivial (mod 2k) in S x 3,

W, = exp{—(2i7r/4k) > qi]Lijqj} , (3.24)

which formally coincides with expression (3.22). Note that, when L is homo-
logically trivial (mod 2k), expression (3.24) is well defined [49].
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By using nonperturbative path-integral arguments, the results shown in
equations (3.23) and (3.24) have been generalized by Thuillier [57] to the case
in which the 3-manifold is M = RP3. This example is interesting because
H(RP?) is not freely generated (in fact, H,(RP?) = Z,) and then RP? has
nontrivial torsion.

Operator surgery method.

By means of the quantum groups modular algebra, one can construct link
invariants of ambient isotopy; in order to compute these invariants in a non-
trivial manifold M, Reshetikhin and Turaev have introduced appropriate
surgery rules [58]. These rules —that have been also developed by Kohno
[59], by Lickorish [60] and by Morton and Strickland [61] in the mathematical
setting— have been adapted to the physical context in [44, 54, 55, 53]. We
shall now recall the main features of the operator surgery method, which can
be used to compute the abelian link invariants in a generic manifold M.

Every closed orientable connected 3-manifold M can be obtained by Dehn
surgery on S% and admits a surgery presentation [62] which is described by
a framed surgery link £ C S3. A so-called surgery coefficient a; is asso-
ciated with each component L; of £; when a; is an integer, we will put
a; = lk(L;, Lir). For each manifold M, the corresponding surgery link £ is
not unique; all the possible surgery links which describe —up to orientation-
preserving homeomorphisms— the same manifold are related by Kirby moves
[62]. Any oriented coloured framed link L C M can be described by a link
L’'=LUL in S in which:

e the surgery link £ describes the surgery instruction corresponding to a
presentation of M in terms of Dehn surgery on S3;

e the link L, which belongs to the complement of £ in S3, describes how
L is actually placed in M.

According to the rules [53] of the operator surgery method, the expectation
value of the Wilson line operator W(L) in M can be written as a ratio

, (3.25)

where to each component of the surgery link £ is associated a particular
colour state 1. Expression (3.22) implies that, for fixed integer k, the colour
space of each link component coincides with space of residue classes of in-
tegers mod 2k (see also section 2.3). Thus the colour space has a canonical
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ring R structure; let x; denote the residue class associated with the integer
j. Then, when the gauge group is U(1), the colour state ¢y € R is given by

Yo = Z Xj - (3.26)

This simply means that, in the computation of the observables (3.25), one
must sum over the values ¢ = 0,1,2,...,2k — 1 of the colours which are
associated with the components of the surgery link (see for instance equa-
tion (3.44)). The proof that the surgery rules (3.25) and (3.26) are well
defined and consistent —when the denominator of expression (3.25) is not
vanishing— is nontrivial and essentially consists in proving that expression
(3.25) is invariant under Kirby moves [63, 58, 53].
REMARK 2.1

The existence of surgery rules for the computation of the observables in quan-
tum field theory is quite remarkable. Let us summarize the reasons for the
existence of surgery rules in the Chern-Simons theory. Any 3-manifold M
can be obtained [62] by removing and gluing back —after the introduction of
appropriate homeomorphisms on their boundaries— solid tori embedded in
S3. The crucial point now is that the set of all possible surgeries is generated
by two elementary operations which in facts correspond to twist homeomor-
phisms [62]. The action of these two twist homeomorphism generators on
the observables can be found by analysing expression (3.22). This means
that the solution of the Chern-Simons field theory in S? determines [53] the
representation of the surgery on the set of observables. As a result, one can
then connect the values of the observables in any nontrivial 3-manifold M
with the values of the observables in S%. For this reason, the solution of the
topological Chern-Simons field theory in S? actually fixes the solution of the
same theory in any closed oriented 3-manifold M.

3.3.3 Main properties

We conclude this section by recalling a few properties of the observables that
will be useful for the following discussion. Since the linking numbers take
integer values, expression (3.22) is invariant under the replacement ¢; —
g; + 2k, where g; denotes the colour of a generic link component. Thus, for
fixed k, the colour space of each link component can be identified with Zsy,
which coincides with the space of the residue classes of integers mod 2k. This
property also holds [49] for the observables in a generic manifold M.

At the classical level, one link component C' with colour ¢ > 1 can be
interpreted as the g-fold covering of C'. At the quantum level, one needs to
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specify this correspondence a bit more precisely because of possible ambigu-
ities in the computation of the expectation values of the composite Wilson
lines operators. As we have already mentioned, all these ambiguities are
removed by means of the framing procedure.

Satellites.

A general discussion of the satellite properties of the observables of the Chern-
Simons theory can be found in Ref.[44, 58, 60, 61, 53]. Here we shall concen-
trate on the aspects which are relevant for the following exposition.

Let C; be the framing of the oriented link component C' C M which has
colour g with |g| > 1. One can imagine that C' and Cf define the boundary
of a band B C M; then, one can [53, 49] simply replace C' with |g| parallel
components {51, oo 5‘q|} on B where each component has colour ¢ =1 (in
order to agree with the sign of ¢, one possibly needs to modify the orienta-
tions of the link components). The framings {Ct, ..., Cjg¢} of the components

{Ch, ..., 5‘q|} also belong to the band B. One can easily verify that the ob-
servables (3.22) are invariant under this substitution. To sum up, as far as
the abelian link invariants are concerned, each link component C' with colour
lg| > 1 can always be interpreted as (and can be substituted with) the union
of |g| parallel copies of C' with unitary colours.

DEFINITION 2.2 For any coloured, oriented and framed link L C M,
one can introduce a new link L. C M which is a satellite of L and which
is obtained from L by replacing each link component of colour ¢ with |g|
parallel copies of the same component, each copy with unitary colour. We
call L the simplicial satellite of L.

The observables associated with any link L and the observables associated
with its simplicial satellite L are totally equivalent. In other words, the
observables of the abelian Chern-Simons theory in a generic manifold M
satisfy [49] the relation

(W(L)| =(W(L)| ,VLcM. (3.27)

The introduction of the simplicial satellites is useful because, in this way,
we can possibly do without the concept of colour space, which has not a
topological nature, and we can interpret the abelian link invariants entirely
in terms of homology groups. This issue will be discussed in the next section.



3.4. HOMOLOGY AND LINK COMPLEMENTS ol

3.4 Homology and link complements

In this section we show that, for any link L C S3 with simplicial satellite
L, the abelian link invariant (W(L))]| s 1s completely determined by the

homology group H;(S% — L) of the complement of the link L in S3. We also
prove that

e the sets of the abelian Chern-Simons observables in each homology
3-sphere and in S® coincide;

e if the simplicial satellite of a link in a generic 3-manifold is homologi-
cally trivial, the associated observable coincides with an observable in
S8,

3.4.1 Link complements

Let us firstly recall that the homology group H;(X) of a manifold X can be
interpreted as the abelianization of the fundamental group m(X) because,
given a presentation of m1(X) in terms of generators {71, 7, ...} and a set of
relations between them, by adding the new constraints [y,,7,] = 0 for all a
and b, one obtains a presentation of Hy(X). Thus, let C; be an oriented knot
in S3; the homology group of its complement X = S3—(] is freely generated,
H,(S®—C}) = Z, and one can represent the generator g; by means of a small
oriented circle Cy, in S* linked with Cy so that ¢k(C,,,C;) = 1. Consider
now a second oriented knot Cy C S3 — (1, the class [Cy] of Cy in Hy(S%—C})
is just determined by the linking number of C; and C5. Indeed, by using
additive notations, one has

[02] =nagq < f[f(Cg, 01) =n. (328)
Moreover, if Cy is a framing for Cs, one finds
Hl(Sg - Cl) = [CQf] - [CQ] 5 gk(CQ, Cl) = gk(CQf,Cl) . (329)

Let us now consider a framed, oriented and coloured link L with simplicial
satellite L C S3, the associated abelian link invariant is given by

WD) = W(D)|g = exp{~(2im/at) YLy} (3:30)

iij denotes the linking matrix of L which can be written as

Li; = tk(Cy, Cy) (3.31)
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where @ represents the j-th component of L and d-f is the framing of the
component C,c L. If g; denotes the j-th generator of H;(S® — Z) which
is associated with the component éj, the class [Cy] € H1(S® — L) of the
component @f can be written as

[6Zf] = Zék(éﬁf’ éj> gj . (332)

So, the class [Lg] € Hy(S* — L) of the link L, which is the union of the
framings

L= JCs . (3.33)

is just

[Le] = tk(Cir,Cy)g; =Y Lijg; - (3.34)

By comparing equations (3.30) and (3.34) one finds that the value of the
abelian link invariant (W(L))| g = W(E)M s is completely determined by
the homology class [Lg] of L¢ in H,(S® — L).

The abelian link invariant (3.30) also admits the following interpretation.
Let S7 be a Seifert surface associated with the link LcCS %; S is connected
oriented (bicollared) with boundary 053 = L. Let us denote by Lg N S the
sum —by taking into account the signs— of the intersections of the link Ly
with the surface S7. Then, as a consequence of a possible definition of the
linking number [62], one has

(W(L)) | o = (WD) |4 = exp{—(in/élk) Lin sz}. (3.35)

3.4.2 Sum of knots and cyclic covering

We now describe another possible interpretation of the abelian link invariants
which makes use of the coverings of the complement of the links. Let us first
introduce the concept of sum of knots.

DEFINITION 3.1. Let C'; and (5 be two oriented and framed components
of a link L, and let both components C; and C5 have the same colour q. By
joining C'; and C5 in the way shown in Figure 1, one obtains the knot C#C5,
that we call the sum of Cy and Cy. The framing (C1#C5)¢ of C1#Cy is defined
to be the sum of the framings Ci;#Cy so that

Ck((C14£Cy )¢, C1#C) = tk(Chy, Cy) + Ch(Chp, Co) + 2 Lk(Cy, Ca) . (3.36)
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C

=
C
Ci1#Co

Figure 3.1: Sum of knots C; and Cs.

REMARK 3.2. Note that, when C and C5 belong to disjoint balls, the
sum C#C5 coincides with the connected sum [62] of C} and Cs; in general,
C7 and C5 may be linked and tied together. Note also that the linking number
of C1#C5 with a generic component Cj of the link L, with j > 3, is just the
sum of the linking numbers

Now, the value of each observable (3.22) is invariant under the replace-
ment of C and Cy by their sum C;#C5. Indeed, as a consequence of the
substitution of C; and C5 with the sum C;#C5, the linking matrix gets mod-
ified; instead of the first two rows and the first two columns of L;; one has a
new single row and a new single columm. But the relations (3.36) and (3.37)
imply that the sum Zij ¢ilLijq; remains unchanged.

DEFINITION 3.3. For each coloured, oriented and framed link L in
53, consider its simplicial satellite L. All the components of L have the
same (unitary) colour; therefore, one can recursively take the sum of the
components of L so that, in the end, one obtains a single knot L¥ that we
call an equivalent knot of L.

By construction

(W(L))

L= veest (3.38)

Consider now an equivalent knot L# of the link L and let Lf be the
framing of L#. From equation (3.38) it follows

(W(L))| o = (W(IH))| g0 = exp{—(2i7r/4k) %(ﬁ,ﬁ)} . (3.39)

This equation shows that the expectation value (W(L))]| s 18 fixed by the
homology group H,;(S® — L#).

Finally, let S;# be a Seifert surface associated with L* C S3. Let 7 :
Y., — Y be the infinite cyclic cover of Y = S®— L and let 7 be the generator
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of covering translations which generates Aut(Yy). Y can be obtained [62]
by gluing —in a orientation preserving way— infinite copies of S® — S 4
along (the images of) the surface Sy . Consider L} as a loop in Y based
at, for example, the point yq € Lf . Let the path (L?E )oo in Yoo be the lifting
of Lf based at a chosen point (yp)ee € 7 *(yo) and let (y1)e € 7 *(yo) be
the terminal point of the path (L}éE )oo- There is a unique integer n such that
T"(Y0)oo = (Y1)oo; this integer precisely determines the value of the observable

(WL g = (W(LF)] g5 = exp{ ~(2im/4k) n | (3.40)

because, in agreement with equation (3.35), in going along Lfé , n simply
counts (by taking into account the signs) how many times one runs across
the Seifert surface S;«. Expression (3.40) is periodic in n with period 4k; so,
for fixed integer k, instead of the infinite cyclic cover Y, one can actually
consider the 4k-fold cyclic cover of Y = S3 — L#.

3.4.3 Homology spheres

In order to study the properties of the observables in homology spheres, we
need to recall the meaning of the surgery instruction which is described by
a framed surgery link £ C S3. Let {£;} (with i = 1,2,..., Nz) be the link
components of £ with framings {L;s}. The 3-manifold M, which corresponds
to L can be obtained by means of the following operations; for each link
component L;,

e remove from S? the interior YO/Z of a tubular neighbourhood V; of the
component L;;

e sew the solid torus V; on S® — ‘O/; by means of the boundaries identifi-
cation given by a homeomorphism h; : OV; — 9(S? — fﬁ) which sends
a meridian p; of V; into the framing Ly of L;, i.e. Ly = hi(p;) €
a(S — V).

One example of surgery is depicted in Figure 2; in this case, the surgery link
coincides with the trefoil knot with surgery coefficient 2.

Let g; be the generator of Hy(S® — L) which is associated with the link
component L£;, with ¢ = 1,2, ..., Nz, where an orientation has been intro-
duced for each £;. Since the meridians {y;} of the tubular neighbourhoods
{V;} are homologically trivial, their images L; = h;(1;) also must be homo-
logically trivial. So, the homology group H; (M) of the manifold M, admits
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Figure 3.2: One example of surgery over the trefoil 7" with surgery coefficient
+2; according to the homeomorphism h, the image of the meridian p of the
solid torus V' is a framing of 7" with linking number +2 with 7.

the following presentation —with N, generators and at most N, nontrivial
relations—

Hy(Mc) = (91,92, > 9ng | [Lag] =0, [Log] = 0,--+) (3.41)

with [Ly4] € H1(S? — L) for i = 1,2,...,Nz. If M, is a homology sphere,
H, (M) must be trivial. In this case, the set of relations

(Cie) = k(L L) g; =0 , fori=1,2,..,Ng (3.42)
J

must only admit the trivial solution g = g = --- = 0. This means that,
when —by means of Kirby moves— the linking matrix of the surgery link is
reduced in diagonal form, each diagonal matrix element must coincide with
+1 or —1. In fact, the following theorem has been proved [64].

THEOREM 3.4. FEach homology 3-sphere admits a surgery presenta-
tion in S3 described by a surgery link L which is algebraically split (i.e.
Ck(L;, L;) = 0Vi# j)and has surgery coefficients equal to £1 (i.e. Lk(Li, L;) =
+1Vi).

We can now demonstrate the following result.

THEOREM 3.5. The sets of the abelian Chern-Simons observables in S3

and in any homology 3-sphere My (Hy(My) = 0) coincide,

MO} - {<W(L)> 53} ' (3.43)

PROOF. Let My be a homology sphere and let £ C S?® be a surgery
link, which corresponds to a surgery presentation of M in S3, such that the
properties specified by Theorem 3.4 are satisfied (that is, £ is algebraically
split with surgery coefficients +1). Any link L in M, can be described by

{vwy
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a link, that we shall also denote by L, in the complement of £ in S3. In
order to compute the observable (W (L))| v, We shall use the surgery method
described in equation (3.25). The denominator of expression (3.25) contains
the expectation value

WL)| | = e 5P —(20m/40) Sy 4k (Lis, £5) 05} =

5 3.44
= Hz Zqi exp{—(Zm/élk;)qiz ék(ﬁifaci)} . ( )

Let us consider each term of the product entering equation (3.44); since
Ck(Ly, L;) = £1 one finds [65]

i exp{:i:(2i7r/4k)q2} = Ao (3.45)

q=0

and then (W(£)>’53 # 0. This means that equation (3.25) is well defined;
let us now consider the numerator of equation (3.25).

Let us denote by L,, with a = 1,2, ..., Ny, the a-th component of the
link L with colour ¢, and let

ti= qalk(Li, Ly) . (3.46)

Then, in the computation of the numerator (W (L)W (L))| g of the ratio
(3.25), the contribution of the generic component £; of the surgery link £ is
given by the multiplicative factor

2%—1
Z exp{—(2i7r/4k;) [(£4]) + 2qit;] } — POk eXp{—(Qi?T/4k>(:|:t?)} :

(3.47)

In the computation of ratio (3.25), the term e®7/4\/2k cancels with the
same factor appearing in the denominator, see equation (3.45). Whereas the
remaining term exp{—(2im/4k)(Ft?)} corresponds to the effect of a (F1)
twist homeomorphism of the link components of L which are linked with £;.
So, in the computation of (W (L)) ‘ Mo’ the global effect of the surgery link

L is just to introduce of certain number of twist homeomorphisms on the
link L whose expectation value has eventually to be computed in S®. This
means that, for each link L C M, one finds a suitable link L' C S® such
that (W (L))| My = (W(L"))| g3~ Consequently, the sets of expectation values

{(W(L)MMO} and {(W(LMS?,} coincide; this concludes the proof. [J
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REMARK 3.6. We would like to present now a different proof of Theo-
rem 3.5 which is not based on algebraic manipulations. The new proof makes
use of the properties of the Kirby moves and is entirely based on the fact
that the abelian link invariants only depend on the linking numbers between
the link components. The starting point is that a function of the abelian link
invariants, which provides a realization of the surgery rules, exists (equations
(3.25) and (3.26)). Let us consider a surgery presentation of the homology
sphere My in S3 which is described by a surgery link £; according to The-
orem 3.4.3, one can assume that L is algebraically split and has surgery
coefficients +1. Since all the linking numbers between the link components
of £ are vanishing, the components £; can be untied so that one obtains the
distant union of knots, each with surgery coefficient +1. By means of a finite
number of overcrossing/undercrossing exchanges, each knot can be unknot-
ted. Thus, for each surgery knot one can introduce [62] (by means of Kirby
moves) a finite number of new elementary surgery components —which are
given by unknots with surgery coefficients +1— which unknot the knot and
have vanishing linking number with the knot. One example of this move is
shown in Figure 3.

\\ =

Figure 3.3: One example of Kirby move: by means of the introduction of the
new surgery component, an undercrossing is replaced by an overcrossing.

Again, since all the linking numbers are vanishing, these new link compo-
nents also can be untied completely. As a result, the entire set of surgery
instructions is effectively described by the distant union of unknots with
surgery coefficients &=1. The action of this surgery on S? is trivial, it maps
S3 into S®, because it simply introduces a set of disjoint elementary (+1)
twist homemorphisms which possibly act on the links L C S3. This is pre-
cisely in agreement with the conclusions that have been obtained in the
previous algebraic version of the proof. So, the set of the abelian Chern-
Simons observables in a generic homology 3-sphere M, coincides with the set
of observables in the 3-sphere S3.
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3.4.4 Homologically trivial links

In this section we shall consider homologically trivial links in a generic mani-
fold M. Let us firstly introduce a general property of the expectation values.

PROPERTY 3.7. Suppose that the link L is the union of the link L and
of the unknot U in a generic manifold M, Ly = LUU C M. If the unknot U
belongs to a 3-ball which is disjoint from the link L and U has trivial framing
(i.e. its framing Uy satisfies (k(U, Ug) = 0), then, independently of the colour
q associated with U, one finds

WLe)| = wvww)| =mww| (3.15)

PROOF. When M = 53, equation (3.48) follows immediately from ex-
pression (3.22). In the case of a generic 3-manifold M, equation (3.48) is a
consequence of definition (3.25) and of the ambient isotopy invariance of the
observables. In facts, if U belongs to a 3-ball, U is ambient isotopic with an
unknot which belongs to a 3-ball which is disjoint from the surgery link £
entering equation (3.25) —and then this unknot is not linked with £. More-
over, since Ly is the distant union of U and L, the unknot U is not linked
with the components of the link L; finally, U has trivial framing and then
equality (3.48) follows. [

Let us now consider the observable (W (L))| o Which is associated with a
link L in a generic 3-manifold M.

THEOREM 3.8. Let M be a generic closed and oriented 3-manifold; if
the simplicial satellite L C M of the link L is homologically trivial and the
associated observable (3.25) is well defined, then there exists a link —that we
denote by L' — in S® such that

W(L)| =W (3.49)

M

53

PROOF. In agreement with the surgery recipe of equations (3.25) and
(3.26), one has

A0S L)

where L is the simplicial satellite of L and L is a surgery link —with com-
ponents {L£;}— which corresponds to M. We assume that expression (3.50)
is well defined. Let us consider the presentation (3.41) of the group H;(M).
If the link L is homologically trivial in M, the class [L] of L in Hy(S3 — L)
can be written in the form

H\(S*—L£)3[L] =) ni[Lys], withn; €Z. (3.51)
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where [Ly] € H,(S?—L). Indeed, each component L; is homologically trivial
in Hy(M) and, in the presentation (3.41), all the constraints are precisely
generated by the equations [Li] =0 for i = 1,2, ..., Ng.

Let us now consider the new link L' C M which, in the surgery presentation
of M, is described by the link L' C S® — £ given by

LI'=LUK UKyU---UK,, , (3.52)

where each knot K, with j = 1,2, ..., m, is an unknot with unitary colour and
m = >_;n;. More precisely, each of the first n; unknots of equation (3.52),
Ky, K, ..., K,,, is ambient isotopic with £y with reversed orientation; each
of the next ny unknots K, 11, Ky, 12, ..., K, 4ny, is ambient isotopic with Lo
with reversed orientation and so on. If K is ambient isotopic with L; with
reversed orientation, the framing K of K is chosen in such a way that
Ck(Kj, Kj¢) = Ck(L;, Lif). According to the surgery instructions described in
section 3.3, each component L; is homeomorphic with a meridian of a solid
torus and then L; is ambient isotopic with an unknot which belong to a
3-ball that is disjoint from all the remaining link components. Consequently,
each knot K is ambient isotopic with an unknot which belongs to a 3-ball in
M and, by construction, this unknot has trivial framing. So, in agreement
with the Property 3.7, one has

(3.53)

The class [L'] of L' in 5% — L follows from the definition (3.52) and equation
(3.51),

H\(S* = £) 3 [L] =) ni[L] + ) [K;]=0. (3.54)

This means that L' —or its equivalent knot L’ #_ is not linked with each of
the components of the surgery link £. Consequently, in the computation of
the ratio (3.53), the expectation value (W (L)) s factorizes in the numerator
and cancels out with the denominator, and finally one obtains

WL)| =W (3.55)

M

To sum up, if the simplicial satellite L C M of the link L is homologically
trivial, there exists a link L' C S3 such that equation (3.55) is satisfied, and
this concludes the proof. Finally, because of the colour periodicity property
of observables, for fixed integer £ Theorem 3.8 actually holds when L is
homologically trivial mod 2k. [J
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3.5 Three-manifold invariants

The surgery rules and the 3-manifold invariant of Reshetikhin and Turaev
[58] for the gauge group SU(2) can be generalized to the case in which the
gauge group is U(1). Let M = M, be the 3-manifold which is obtained by
means of the Dehn surgery which is described by the surgery link £ in S3;
the 3-manifold invariant [ (M) for the abelian U(1) gauge group takes the
form

L(M) = I(Me) = @R) NP e @] L (3.50)

where N, denotes the number of components of £ and o(L) represents the
so-called signature of the linking matrix associated with £, ie. o(L) =
ny — n_ where ny is the number of positive/negative eigenvalues of the
linking matrix which is defined by the framed link £. Expression (3.56) is
invariant under Kirby moves [58, 61, 53] and therefore is invariant under
orientation preserving homeomorphisms of the 3-manifold M. Note that the
orientation of M = M, is induced by the orientation of S® on which the
surgery acts. A modification of the orientation of M is equivalent to the
replacement of I, (M) by its complex conjugate Ir(M).

REMARK 4.1. The invariance under Kirby moves of expression (3.56)
can be used to understand the consistency of the surgery rules (3.25) for the
observables. In facts, if one multiplies the numerator and the denominator
of equation (3.25) by the same factor (2k) V¢/2 ¢m(£)/4 the numerator and
the denominator are separately invariant under Kirby moves.

Let us recall that, according to the prescription (3.26), in the computation
of the expectation value (W(L))]| g5 one must take the sum over the values
q=0,1,...,2k — 1 of the colour which is associated with each component of
the surgery link £. This just corresponds to the standard Reshetikhin-Turaev
prescription in the case of gauge group U(1). Actually, for fixed integer k,
the Reshetikhin-Turaev invariant (3.56) admits the following natural gener-
alization.

DEFINITION 4.2. As we have already mentioned, for fixed integer k the
colour space is isomorphic with Zgy. For each subgroup Z, of Zyy, one can
introduce the 3-manifold invariant I, (M) defined by

Ly (M) = Iy (M) = a2 W (L) 19 o (3.57)

where the positive real number a and the phase factor e?¥ are determined by

p_ZleXp{—(md/p) 62} =ae ", (3.58)
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in which d = 2k/p. (W (L)) s denotes the sum of the expectation values
when the colour of each link component takes the values ¢ = 0,d, 2d, ..., (p —
1)d One has ](Qk:,k)(M£> = ]k<M£)

The proof that I, ) (M) is invariant under Kirby moves is based precisely
on the same steps that enter the corresponding proof for I, (My).

A field theory interpretation of the Reshetikhin-Turaev invariant (3.56)
—as a ratio of Chern-Simons partition functions— has been proposed in [53]
and detailed discussions on the properties of the invariant (3.56) can be found
in [66, 67, 68].

PROPERTY 4.3. If the manifold My is a homology 3-sphere, then I;(My) =
1.

PROOF. By Theorem 3.4, M, admits a surgery presentation in S® in
which the surgery link £ is algebraically split with surgery coefficients +1.
Since the link components of £ are not linked, in agreement with equa-
tion (3.44) the expectation value (W (L)) gs 18 just the product of terms
shown in equation (3.45). These terms cancel with the normalization fac-
tor (2k)Ve/? ¢imo(£)/4 which is present in the definition of I;(Mp), and then
I(My) =1. O

Let us consider the lens spaces L,/ where the integers p and r are coprime
and satisfy 0 < 7 < p. The fundamental group of L, is Z, and one also
has Hy(Ly)) ~ Z,. When p # p/, the lens spaces Ly, and L, are not
homeomorphic. The manifolds L, and L,,,» are homeomorphic iff £ = rt
(mod p). The manifold L, admit a surgery presentation given by the unknot
with surgery coefficient equal to the integer p. Special cases are Ly ~ S? x S!,
Ly ~ S3; equation (3.56) gives

L(S%) =1 , I(S?x S =2k, (3.59)
By using the following reciprocity formula [69]

jel—1 lal 7!
D e = lefal TR 3 SO, (360)
n=0

which is valid for integers a, b and ¢ such that ac 7é 0 and ac+ b =even, one
gets (for integer p > 1)
1
Li(Ly) = — Y " 2mik/n) (3.61)
VP 2%
Let us compare expression (3.61) with the functional integral interpretation
[53] of the Reshetikhin-Turaev invariant

pr DA eQwikS

Ik(Lp) = fsS DA e2mikS

(3.62)
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In agreement with equation (3.18), the fields configuration space H} (L ) has
the structure of a bundle over H?(L,) = Z, with fibre Q'(L,)/Q}(L,). Let
the group H?(L,) be generated by the element h, with hp = 1. The path—
integral (3.62) over H},(L,) is formally given by a sum of p terms; the n-th
term corresponds to the path-integral over 1-forms modulo forms of integer
periods in the n-th sector of H},(L,) which is associated to the element h™ of
the second cohomology group of L,. The result (3.61) suggests the possibility
that the path-integral in the n-th sector of HJ,(L,) is saturated by a single
value S ‘ of the Chern-Simons action, with S | = n?/p modulo integers.

The manifold 3, x S, where X, denotes a closed oriented surface of genus
g, admits a surgery presentatlon that is described [70] by a surgery link which
contains 2g + 1 components (with vanishing surgery coefficients) and has
vanishing linking matrix. The first homology group is Hy (X, x S') = Z2*!
; one finds

I,(%, x SY) = (2k)Ge+V/ (3.63)

Since the abelian link invariants only depend on the homology of the
complement of the (simplicial satellites of) links in S®, one could suspect
that the invariant [;(M) only depends on the homology group H;(M) of
the closed oriented 3-manifold M. This guess is supported by Property 4.3
and by the result (3.63); moreover, it naturally fits the structure of the
configuration space on which the functional integral is based. However, a
few counter-examples demonstrate that this conjecture is false. In the non-
abelian case, this guess is not correct; in facts, explicit counter-examples for
the gauge groups SU(2) and SU(3) can be found in Ref.[71].

The lens space Ls,; admits a surgery presentation in S which is described
by the unknot with surgery coefficient 5; whereas a surgery link corresponding
to Ls/o is the Hopf link [62] in S® with surgery coefficients 2 and 3. From
equation(3.56) we obtain

IQ(L5/1) = —1 5 [2(L5/2> - 1 . (364)

The manifold Lg/; can be described by the unknot in S* with surgery coeffi-
cient 9 and Lg/, corresponds to the Hopf link with surgery coefficients 5 and
2. We get

Li(Lop) =iV3 Is(Loys) = —ivV/3 . (3.65)

Homotopy type

The manifolds Lg/; and Lg/, are of the same homotopy type [62]. Therefore,
equation (3.65) also shows that the Reshetikhin-Turaev invariant (3.56) is not
a function of the homotopy type of the manifold M only. In facts, Murakami,
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Ohtsuki and Okada have shown [66] that expression (3.56) is invariant under
orientation-preserving homotopies [72]. Since under a modification of the
orientation of the manifold M one gets I(M) — Ix(M), the result (3.65) is
in agreement with Murakami, Ohtsuki and Okada statement.

Let us consider the lens spaces with the orientation induced by the surgery
presentation; L,/ and L, are of the same homotopy type iff £rr’ = m?
(mod p) for some integer m. Hansen, Slingerland and Turner have shown [68]
that, when ' = —m? (mod p), one finds Iy(L,») = I;(L,); one example
of this kind is shown in equation (3.65). Whereas, when the product 77’
is equivalent to a quadratic residue, r' = m? (mod p), one has I(L,,.) =
Ii:(Ly,y), for istance

[3(L7/1> - —Z y [3(L7/2) = —7/ . (366)

The equivalence relation under orientation-preserving homotopy extends to
the manifolds which are connected sum of equivalent spaces [72]. However,
in the presence of orientation-reversing homotopy, this equivalence relation
in general does not survive the connected sum. For instance, the connected
sums Lo/ # L7/ and Lg o3 L7 2 have different Reshetikhin-Turaev invariants
which are not related by complex conjugation

Is(Lop#L71) = V3 ; I3(Loja# Lr2) = —V3. (3.67)
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Chapter 4

Thermodynamics of NACS
Particles

4.1 Introduction

Unlike ordinary three-dimensional systems, quantum two-dimensional sys-
tems of indistinguishable particles allow for generalized braiding statistics. A
celebrated generalization of the usual bosonic and fermionic quantum statis-
tics is provided in two dimensions by Abelian anyons, for which a phase factor
multiplying the scalar wavefunction is associated to elementary braiding op-
erations [10, 73, 74]

V(215 ey Ziy ooy 2y oy Zn) = €TOU(20, 0y 2y ooy Ziy ooy Zn) - (4.1)

Anyons, first studied in [14, 75, 76], were later associated to the physics of the
fractional quantum Hall effect [10]. Abelian anyon statistics of the simplest
QH states, at filling factors v = 1/(2p + 1) were derived from a microscopic
theory [77]: since then, the study of the properties of Abelian anyons and
the applications to the QHE have been in the following decades subject of
an intense and continuing interest [7, 78, 79, 80, 81].

A further generalization of the bosonic and fermionic statistics is repre-
sented by non-Abelian anyons, described by a multi-component wavefunction
Ya(z1,...,2,) (@ =1,2,...,¢g) which undergoes a linear unitary transforma-
tion under the effect of braiding o; which exchanges the particles at the
positions z; and z;4

Vo — [p(03)]ab Vs (4.2)

where p(o;) are g X g dimensional unitary matrices which do not commute
among themselves, [0(07)]as[0(05)]sc # [p(0)]ablp(07)]be [T4].

65
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Abelian and non-Abelian anyons respectively correspond to one-dimensional
and higher-dimensional representations of the braid group: with respect to
parastatistics, non-Abelian anyons represent the counterpart of the gener-
alization represented by Abelian anyons with respect to ordinary Bose and
Fermi statistics. Non-Abelian anyons naturally appear in the description of
a variety of physical phenomena, ranging from the fractional QHE [82, 74] to
the scattering of vortices in spontaneously broken gauge theories [83, 84, 85],
the (241)-dimensional gravity [30, 86, 87] and the alternation and inter-
change of e/4 and e/2 period interference oscillations in QH heterostructures
88].

The non-Abelian anyons studied in this work are non-Abelian Chern-
Simons (NACS) spinless particles. The NACS particles, which are pointlike
sources mutually interacting via a topological non-Abelian Aharonov-Bohm
effect [89], carry non-Abelian charges and non-Abelian magnetic fluxes, so
that they acquire fractional spins and obey braid statistics as non-Abelian
anyons. More specifically, our models are described by the Hamiltonian (4.15)
which involves the isovector operators Q% in a representation of isospin I,
where a« = 1,2,..., N refers to any of the N particles of the system. With
respect to the index o which labels the particles, these operators commute
one to the other. Correspondingly, the quantum dimension of our anyonic
systems is an integer number, contrary to what happens, for instance, in
the Fibonacci anyons used to implement topological quantum computation
[74], whose quantum dimension is instead an irrational number. Futhermore
the NACS systems studied in this Chapter are gapless in the thermodynamic
limit, contrary to the Fibonacci anyons or alike which have a gap in the bulk.

The study of equilibrium properties of two-dimensional anyonic systems is
in general a non trivial and highly interesting task: indeed, the anyonic statis-
tics incorporate the effects of interaction in microscopic bosonic or fermionic
systems (statistical transmutation) so that the determination of thermody-
namical properties of non-interacting anyons is at least as much as difficult
as similar computation in ordinary interacting gas. This is a reason for which
the investigation of equilibrium properties of a free gas of anyons called for
an huge amount of efforts and work [90], the other reason of course being
that the thermodynamics of a system of free anyons is the starting point -
paradigmatic for the simplicity of the model - for the understanding of the
thermodynamics of more complicated interacting anyon gas.

The two-dimensional gas of free Abelian anyons whose wavefunction ful-
fills hard-core wavefunction boundary conditions has been studied by Arovas,
Schrieffer, Wilczek, and Zee [91] in its low-density regime by taking its virial
expansion. In particular, they found the exact expression for the second
virial coefficient, that turns out to be periodic and non-analytic as a func-
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tion of the statistical parameter. Results for higher virial coefficients of the
free Abelian gas are also available in literature: different approaches have
been used, including the semiclassical approximation [92] and Monte Carlo
computations [93] (for more references see [73, 94]). Useful results can be
found by perturbative expansions in powers of the statistical parameter «:
exact expressions for the first three terms of the expansions in powers of «
are available for each of the first six virial coefficients [95, 96]. The second
virial coefficient is the only one presenting - in each of the Bose points -
cusps in the statistical parameter « [73], i.e. none of the higher virial coef-
ficients have terms at order « [97, 98]. Furthermore, a recursive algorithm
permits to compute the term in a? of all the cluster and virial coefficients
[97, 98, 99, 100].

The results for the virial coefficients of the free gas of Abelian anyons
quoted in the previous paragraph are obtained considering a many-body
anyonic wavefunction fulfilling hard-core boundary conditions, i.e. a wave
function which vanishes in correspondence of coincident points in the con-
figuration space of the set of anyons. The generalization obtained by re-
moving such an hard-core constraint has been studied for Abelian anyons
[101, 102, 103] and a family of anyon models can be associated to the differ-
ent boundary conditions of the same Hamiltonian. These models are obtained
within the frame of the quantum-mechanical method of the self-adjoint ex-
tensions of the Schrodinger anyonic Hamiltonian. In the following we will
refer to anyons without the constraint of hard-core conditions as ”soft-core”
or "colliding” anyons. The mathematical arguments underlying the possi-
bility of such a generalization were discussed in [101], and the second virial
coefficient of soft-core Abelian anyons was studied in [102, 103]. The cor-
responding self-adjoint extensions for the non-Abelian anyonic theory have
been thoroughly discussed [104, 105, 106]. We stress that it is not easy,
in general, to extract the parameters of emerging effective (eventually free)
anyonic models from the microscopic Hamiltonians, and then the introduc-
tion of soft-core conditions may provide useful parameters which have to be
fixed via the comparison between the results of the anyonic models and the
computations done in the underlying microscopic models.

For non-Abelian anyons, a study of the thermodynamical properties in
the lowest Landau level of a strong magnetic field has been performed [107],
showing that the virial coefficients are independent of the statistics. The the-
ory of non-relativistic matter with non-Abelian Chern-Simons gauge interac-
tion in (2 4+ 1) dimensions was studied adopting a mean field approximation
in the current-algebra formulation already applied to the Abelian anyons and
finding a superfluid phase [108].

In comparison with the Abelian case, the thermodynamics of a system
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of free non-Abelian anyons appears to be much harder to study and all the
available results are for hard-core boundary conditions [109, 110, 111, 112],
with - at the best of our knowledge - no results (even for the second virial
coefficient) for soft-core non-Abelian anyons.

The reason of this gap is at least twofold: from one side, for the difficulties,
both analytical and numerical, in obtaining the finite temperature equation
of state for non-Abelian anyons (see the discussion in [90]); from another
side, because most of the efforts have been focused in the last decade on the
study of two-dimensional systems which are gapped in the bulk and gapless
on the edges, as for the states commonly studied for the fractional quantum
Hall effect, while, on the contrary, the two-dimensional free gas of anyons is
gapless. However, there is by now a mounting interest in the study of three-
dimensional topological insulators, systems gapped in the bulk, but having
protected conducting gapless states on their edge or surface [31]: exotic states
can occur at the surface of a three-dimensional topological insulator due to
an induced energy gap, and a superconducting energy gap leads to a state
supporting Majorana fermions, providing new possibilities for the realiza-
tion of topological quantum computation. This surging of activity certainly
calls for an investigation of the finite temperature properties of general gap-
less topological states on the two-dimensional surface of three-dimensional
topological insulators and superconductors.

In this Chapter we focus on the study of the thermodynamics of an ideal
gas of a general class of NACS particles in presence of general soft-core bound-
ary conditions: explicit results are found for the second virial coefficient. Re-
sults for hard-core non-Abelian anyons, which is a limiting case of soft-core
conditions, are presented too. The Chapter is structured as follows: in Sec-
tion 4.2 we introduce the Verlinde’s NACS model and, as an introduction to
the subsequent discussion, in Section 4.2.1 we briefly recall the results for an
ideal gas of hard-core Abelian anyons and we present in detail the general
soft-core version of the Abelian anyonic model. The properties of the virial
expansion are also reviewed and the monotonic behaviour of the second virial
coefficient B, with respect to the statistical parameter is taken in exam as
the hard-core parameter changes: we observe, in particular, that for a narrow
range of the soft-core parameter By can be non-monotonic. In Section 4.2.2
we define more precisely the NACS model and we explicitly present the set
of soft-core parameters associated to the most general boundary conditions
of the wave-functions. In Section 4.3.1 the coefficient B, is evaluated for a
system of NACS particles with hard-core boundary conditions: we compare
our results with previous determination of this quantity and we make some
comments about limit cases. In Section 4.3.2 we study B for non-Abelian
anyons when soft-core wavefunction boundary conditions are allowed, with
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special attention to the case of isotropic boundary conditions. In Section
4.4 we summarize the virial expansions for the ideal gas of NACS particles
endowed with general boundary conditions of the wave functions.

4.2 The Model

In this Section we introduce the Abelian and non-Abelian models which
are object of the Chapter: in Section 4.2.1 we first briefly remind the well-
known results for the thermodynamics of the ideal gas of hard-core Abelian
anyons. The general soft-core version of the Abelian anyonic model is then
introduced, and the behaviour of the second virial coefficient is studied as a
function of the defined hard-core parameter. In Section 4.2.2 we define the
NACS model, whose second virial coefficient will be derived and studied in
the next Section.

4.2.1 Abelian Anyons

The thermodynamics for a system of identical Abelian anyons has been de-
veloped starting with the seminal paper [91], in which the exact quantum
expression for the second virial coefficient is derived:

1 1
By®(2) +0,T) = = A0+ 0107 — 50°A7 (43)

Eq. (4.3) holds for an ideal gas of anyons whose wavefunction fulfills hard-
core wavefunction boundary conditions. In (4.3) a = 2j + §, where « repre-
sents the statistical parameter of the anyons [73], j is an integer and [6| < 1.
We remind that @ = 0 and a = 1 corresponds respectively to free two-
dimensional spinless bosons and fermions [73]. Furthermore Az is the thermal

wavelength defined as
2rh2 \ '/
e ()" »

As discussed in statistical mechanics textbooks, the virial expansion is done
in powers of pA% (where p is the density and M is the mass of the particles)
and in the low-density, high-temperature regime, the second virial coefficient
gives the leading contribution to the deviation of the equation of state from
the non-interacting case, as a result of rewriting the grand canonical partition
function as a cluster expansion [113, 114].

The virial coefficient (4.3) turns out to be a simple, periodic (with period
2) but non-analytic function of the statistical parameter «, showing cusps
in correspondence of all its bosonic points @ = 27. This quantity has been
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evaluated by different methods: one of them consists in an hard-disk-type
regularization of the two-anyonic spectrum while another one is a based on
path-integral approach yielding the two-body partition function, carried on
by identifying the Lagrangian of the system with the one relative to the
Bohm-Aharonov effect [115]. Eq. (4.3) is also retrieved by heat kernel meth-
ods, i.e. discretizing the two-particle spectrum through the introduction of
a harmonic regulator potential and then directly considering the problem in
the continuum [116]. Finally, another method to get Eq. (4.3) is to use a
semi-classical method, which nevertheless produces the exact quantum result
(92, 90]. Exact results for higher virial coefficients are not known, but a fair
amount of information is available both for the third virial coefficient and for
higher virial coefficients [73].

The expression (4.3) is the exact quantum result for the hard-core case,
corresponding to impose the vanishing of the two-anyonic wavefunctions in
the coincident points (the limit configurations for which the coordinates of
two anyons coincide). However, any arbitrary boundary condition for the
wave-function is in principle admissible: it is the comparison with results
from the microscopic interacting Hamiltonian that should fix the relevant
boundary conditions to be imposed. The second virial coefficient for Abelian
anyons in this general case has been studied in [102, 117, 103].

By relaxing the regularity requirements, allowing wave-functions to di-
verge for vanishing relative distance r between the anyons according to the
method of self-adjoint extensions, it is possible to obtain a one-parameter
family of boundary conditions. The hard-core limit corresponds to scale-
invariance in a field theoretical approach [118, 119, 101, 120, 121], where the
scale can be precisely related to the hard-core parameter that will be defined
below. The study of B, shows that the results for hard-core case are rather
peculiar: for instance, the cusps at the bosonic points of the hard-core case
are a special feature of the scale-invariant limit, which is however absent
for all the soft-core cases. On the contrary, cusps are generated at all the
fermionic points for all the wavefunction boundary conditions, except just
for the hard-core case.

The relative two-body Hamiltonian for a free system of anyons with sta-
tistical parameter «, written in the bosonic description, is of the form [73]

Lo T2
Hrel = M(p - OéA) ) (45)
where A = (A, A?) and A’ = & (i = 1,2 and €7 is the completely antisym-
metric tensor). The corresponding single-particle partition function of the
relative dynamics is Z,¢ = Tre et where 8 = 1 /kgT. In order to proceed
with the choice of a given self-adjoint extension, one has to define the space
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over which the trace above is performed. If we consider the radial component
R, of the relative wave-function 1, the Schrédinger equation takes the form

1 [ 1d d  (n+a)? k2

— |———r—+ ———| R.(r) = ER,(r) = —R,(r) , 4.6

M| r drrdr + r2 (r) (r) M (r) (4.6)
with n even (choosing the bosonic description). Without any loss of gener-
ality, the statistical parameter can be chosen as a € [—1,1]. Eq. (4.6) is
the Bessel equation and its general solution is given in terms of the Bessel
functions

Rn(T) = AJ‘n+a|(/€7’) + BJ,MJFQ‘(]{?”) . (4.7)

For n # 0 the constant B must vanish in order to satisfy the normalization
of the relative wave-function, while for n = 0 (s-wave) arbitrary constants A,
B are allowed. This yields a one-parameter family of boundary conditions
for the s-wave solution:

2o
RO(T) = (const.) [J|a|(/€7“) +o0o (g) J|a(k‘7‘)] , (4.8)

where 0 = 1 and & is a scale introduced by the boundary condition.
We will refer to
B

M
as the hard-core parameter of the gas. For ¢ — oo with ¢ = +1 we retrieve
the hard-core case (1(0) = 0). If 0 = —1, in addition to the solution (4.8),
there is a bound state with energy Fp = —ckpT = —r*/M and wavefunction

€

(4.9)

Ry(r) = (const.) Kjq|(kr) . (4.10)

By proceeding as in [91], and observing that only the s-wave energy spectrum
is modified with respect to the hard-core case, one gets that the second virial
coefficient for a generic soft-core is given by

= % k3.
By“(T) = By“(T) — 2A7.4 e #20(—0) + lim > [e—ﬁM - e_ﬂM} ,
R—o00 =
(4.11)
where 6(x) is the Heaviside step function, ko R is the s-th zero of Jo(kR) =
0, ks R is the s-th zero of (4.8), and BJ“ is the hard-core result (4.3). It is
possible to rewrite Eq. (4.11) in an integral form [103] as

s.c. __ phec 2 c % . o0 dte—é‘tt\od—l
B3(T) = By “(T)—2\7 {e 0(—o) + = sm7ra/0 TR Py e B

(4.12)
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For € > 1 one gets

T 1
By¢(T) = Bye(T) — 2)\2 [°0(—0) + %% sinwla|+---]  (413)

while for e < 1
By®(T) = B (T) = 2X3|a| (1 =&l +---) . (4.14)

Near the bosonic point a = 0 one has for € # 0:

B (T) = — E + 2u(5)9(—0)] A+ 0(a?)

where v(g) is the Neumann function defined by

(@) / *  dtet
v(e) = —_— .
o L'(t+1)
From this expression one sees that B5“(7T) is a smooth function of the sta-

tistical parameter near a« = 0. On the contrary, near the fermionic point
|a] =1 one has

By(T) = |~ (1—lal?+ ‘2605] N+ fo(@)( = o)+

where f,(¢) (o = £1) are functions of £ [not reported here], so that in general
the soft-core case presents a cusp at |a| = 1.

The virial coefficient B3 is plotted in Fig.4.1 for some values of the hard-
core parameter €. The plot of the second virial coefficient clearly exhibits its
smoothing in the bosonic points and its sharpening in the fermionic ones, as
soon as the hard-core condition is relaxed. We observe that the restriction
of B5“ over the interval [0, 1] is not a monotonic function of « for each e.
This not-monotonicity happens around € ~ 1.4 in a narrow range of values
of € (1.344 < ¢ < 1.526), as emphasized in Fig.4.2.

4.2.2 Non-Abelian Anyons

The main part of the present Chapter deals with the study of the low-
density statistical mechanics properties of a two-dimensional gas of SU(2)
non-Abelian Chern-Simons (NACS) spinless particles. The NACS parti-
cles are pointlike sources mutually interacting via a topological non-Abelian
Aharonov-Bohm effect [89]. These particles carry non-Abelian charges and
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Figure 4.1: B, (in units of A%) vs. the statistical parameter « for different
values of the hard-core parameter ¢ for Abelian anyons. The 6 upper curves
are obtained for ¢ = 1: from top to the bottom ¢ takes the values oo (hard-
core), 10, 1.4, 1, 0.1 and 0. The curve below all those is obtained for o = —1
and € = 0.1 and it has a shifted value at the bosonic points (the dotted lines
just denote the x and y axes). We remind that B, is periodic in « with
period 2, so we plot it in the interval [—1, 1]. By is symmetric with respect to
all the integer value of a: we see from the figure the difference in the position
of the cusps of the patterns, between the hard-core and the soft-core cases.

non-Abelian magnetic fluxes, so that they acquire fractional spins and obey
braid statistics as non-Abelian anyons.

In order to proceed with the computation of the second virial coefficient of
a free gas of NACS particles, we first introduce the NACS quantum mechanics
(122, 38, 123, 124, 104] considering the general frame of soft-core NACS
particles [105, 106]. The Hamiltonian describing the dynamics of the N-
body system of free NACS particles can be derived by a Lagrangian with a
Chern-Simons term and a matter field coupled with the Chern-Simons gauge
term [104]: the resulting Hamiltonian reads

N

1
Hy = — ; YA (V2 Ve + V., Vz,) (4.15)
where M, is the mass of the a-th particles, V5, = ? and

VZaZa_Jm[;Q Qi
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In Eq. (4.15) a =1,..., N labels the particles, (Za,%a) = (2o + Zas —i(20 —
Zy))/2 are their spatial coordinates, and Q®’s are the isovector operators in
a representation of isospin [. The quantum number [ labels the irreducible
representations of the group of the rotations induced by the coupling of the
NACS particle matter field with the non-Abelian gauge field: as a conse-
quence, the values of [ are of course quantized and vary over all the integer
and the half-integer numbers, with [ = 1/2 being the smaller possible non-
trivial value (I = 0 corresponds to a system of free bosons). As usual, a basis
of isospin eigenstates can be labeled by [ and the magnetic quantum number
m (varying in the range —I, =+ 1,--- [ —1,1).

The virial coefficients then depend in general on the value of the isospin
quantum number [ and on the coupling £ (and of course on the temperature
T). The quantity ~ in (4.15) is a parameter of the theory. In order to enforce
the gauge covariance of the theory the condition 47x = integer has to be
satisfied. In the following we denote for simplicity the integer 47k by k:

Ak =k . (4.16)

The physical meaning of x in the NACS model can be understood removing
the interaction terms in Hy by a similarity transformation:

N

2
Hy — UHNU_IZHJf\‘}ee:_%:E

05,0,

where U(zy, .. ., zy) satisfies the Knizhnik-Zamolodchikov (KZ) equation [39]

0 1 A A 1
_—— cQ U =0 4.18
(aza Ire [; QaQﬁ 2o — Zg) (217 7ZN> ) ( )

and Wy (z,...,2zy) stands for the wavefunction of the N-body system of
the NACS particles in the holomorphic gauge. A comparison between the
last equation and the KZ equation satisfied by the Green’s function in the
conformal field theory shows that (4mk — 2) corresponds to the level of the
underlying SU(2) current algebra. In [123] it is shown how W4(zy,...,2xn)
obeys the braid statistics due to the transformation function U(zy, ..., zy),
while Wy (21, ..., zy) satisfies ordinary statistics: W4(z1,...,2y) can be then
referred to as the NACS particle wavefunction in the anyon gauge.

The statistical mechanics of the NACS particles can be studied by in-
troducing the grand partition function =, defined in terms of the N—body
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Hamiltonian Hy and the fugacity v as
== Z VN Tre PV (4.19)
N=0

In the low-density regime, a cluster expansion can be applied to = [113, 114]:

E:ema(VEZbMﬂ> , (4.20)

where V' is the volume of the gas (of course, for a two-dimensional gas V'
equals the area A) and b, is the n-th cluster integral, with

1 1 72
=7 = |z, - = 4.21
bl A 1 b2 A ( 2 2 ) ( )

and Zy = Tre PN being the N-particle partition function.
The virial expansion (i.e. the pressure expressed in powers of the density

p= %) is given as

P = pkpT [1 4 Bo(T)p+ Bs(T)p* +...] , (4.22)

where B, (T) is the n-th virial coefficient. The second virial coefficient By(7")
Is written as

By(T) = —2 — 4 (é - %) . (4.23)

We assume that the NACS particles belong to the same isospin multiplet
{|I,m >} with m = —I,...,l. The quantity Z; = Tre ##1 is then given by
Zy= 20+ 1)A/N; . (4.24)

The computation of Z, = Tre "2 is discussed in [110], where the results
for the hard-core case are presented. It is convenient to separate the center-
of-mass and relative coordinates: defining Z = (21 + 29)/2 and z = z; — 29
one can write

1 1
H2 = Hcm + Hrel = _ZaZaz - ;(VZVE + VEVZ) , (425)

where p = M/2 is the two-body reduced mass, V; = 0; and

Q
V.=0.+— .
z
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Figure 4.2: The narrow range of values of the hard-core parameter e
within which the second virial coefficient By (for Abelian anyons) is a non-
monotonous function of « in the interval [0, 1]. The parameters are o = +1
for all the curves and ¢ = 1.50, 1.45, 1.40, 1.35, 1.30 from top to bottom (B
is expressed in units of A\%).

Q) is a block-diagonal matrix given by

with w; = 2= [(j + 1) — 20(1 + 1)].
Z5 can be then written as

Ty = 24027 (4.26)

where Z} = Tr,e e P, The similarity transformation G(z, z) = exp {—2 In(22) },
acting as

Hrel E— H/elzG_IHrelG7

T

U(z,2) — V(z,2) =G 1VU(z,2) (4.27)

gives rise to an Hamiltonian H]; manifestly Hermitian and leaves invariant

Zy. The explicit expression for H is

A
rel —

1
— (VLTI (4.28)
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where V, = 0, + Q/2z and V. = 0; — Q/2z.

By rewriting H, in polar coordinates and projecting it onto the subspace
of total isospin j, its correspondence with the Hamiltonian for (Abelian)
anyons in the Coulomb gauge, having statistical parameter given by o = wj,
becomes evident:

1] 10 170 .\

The same analysis discussed in Section 4.2.1 shows that the radial factor
of the j,j.— component of the relative (2{ + 1)?—vector wavefunction ¢ =
e™ R, (r) obeys the Bessel equation

1 1d d (n+w))? i , K2
R, (U S— S J7 )z = FRIJ> = __ RJJI= 4.
M| rdr dr + r2 R () R (r) MR” (), (4:30)
whose general solution is
RET (1) = AM Jypsons (k1) + B2 J_ g (K) (4.31)

As already discussed in the previous Section 4.2.1, B7= can be nonzero only
in the case n = 0 (s—wave). Then the s—wave gives rise to a one-parameter
family of boundary conditions

. B 2l
R(J)Jz (r) = (const.) [ij(kﬂ”) +o0 <—> J_‘wj‘(kﬂ”) ,] , (4.32)
,{/jmjz
where 0 = £1, and k;;, is a momentum scale introduced by the boundary
condition.
We refer to the (21 + 1)? quantities

- BK3 .
Y
as hard-core parameters of the system. The hard-core limit corresponds to
€j,5. — oo for all 7, 7..
We conclude this Section by observing that, according to the regulariza-
tion used in [91, 116], the second virial coefficient is defined as

(4.33)

. 2)\2 .
B2<’€7 l7T> - BénZ) (lv T) == AT 2 Zé(’ﬁ lu T) - Z;(nz) (laT)] ) (434)

20+ 1)

where Bém')(l, T') is the virial coefficient for the system with particle isospin
[ and without interaction (k — o0), which will be expressed in terms of
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the virial coefficients BZ(T), B¥(T) of the free Bose and Fermi systems
with the considered general wavefunction boundary conditions. Furthermore,
Zh(k, 1, T) — Z;(m')(l, T) is the (convergent) variation of the divergent parti-
tion function for the two-body relative Hamiltonian, between the interacting
case in exam and the non-interacting limit (x — o).

4.3 Second Virial Coefficient

In this Section we present our results for the second virial coefficient of a free
gas of NACS particles: we will first study the hard-core case in Section 4.3.1,
comparing in detail our findings with results available in literature [109, 110,
111, 112]. We then study Bs for non-Abelian anyons when general soft-core
wavefunction boundary conditions, focusing the attention in particular to the
isotropic boundary conditions.

4.3.1 Hard-Core Case

The hard-core case is obtained in the limit ¢; ;, — oo for all j, j,. The second
virial coefficient has been discussed in literature, and different results for B,
have been presented [109, 110, 111]: the differences between such results
have been discussed, see in particular Ref. [110] and the comment [111]. Our
findings differ from results presented in [109, 110, 111]: in this Section, as
well as in Appendices 5.3.2-5.3.2, a detailed comparison with such available
results will be presented.

For hard-core boundary conditions of the relative two-anyonic vectorial
wavefunction, the quantity B{"™") entering Eq. (4.34) is found to be [110]

2 j+2
B (1, T) = ﬁ > (2j+1) {#Bf(:ﬁ) +

%WBf (T)| (4.35)

Using for the hard-core case the known values BS(T) = —BY(T) = —i)\%
[90], one then obtains

S '
To proceed further, we introduce a regularizing harmonic potential V =
Le*r? [91, 90], whose effect is to make discrete the spectrum of Hj. Using
the notations of [73] (see pg.48), the spectrum consists of the following two
classes: B! = e(2n+1+;) with degeneracy (n+1), and Bl = ¢(2n+1—7;)
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with degeneracy n, where n is a non-negative integer and v; = w; mod 2. It
follows that the regularized partition function reads

. 2 14 (—1)7+2
Zy(n,1.T) = 230 T) = 302 + Dlimd ——— {Zl(y,) = Z(0)} +
=0

—(—=1)i+2
+% {Z(v; + 1) mod 2] — Z;(l)}} : (4.37)

= _ , _ o 1 cosh [Be(; — 1)]
7~ = n+1)e Be(2n+1+7;) +ne Be(2nt+1—7;)] — = J .
()= [n+1) =5 >

The final result for the NACS gas in the hard-core limit is then the following:

h.c. /\% 1
32 (li,l,T) = —Im‘F

21

)\2 . 1+ -1 j+21
L o YIET] LA e N

M 1- (=1
2020+ 1)2 2

5 [(7;+1) mod 2—1]?
5=0
(4.38)
Eq. (4.38) is the main result of this Subsection: the dependence of By
on k for some fixed [’s, and vice versa on [ for some fixed k’s is represented
in Figs.4.3-4.4: one sees from Fig.4.3 a non-monotonic behavior of By as a
function of k. In Fig.4.4 one can see that the values of By vs. [ form two
different groups, depending on integer and half-integer values of [.
As a first check of Eq. (4.38), we observe that the value of BS"*)(I,T) of

the free case (corresponding to the limit 1/47k — 0) is correctly reproduced:
_l’_
indeed, for a given [ one has in this limit w; — 0%, v; — g* , %2 — 2y, —

07, [(v; + 1)mod2 — 1]* — 07, as it might. A more detailed discussion on
the limit 1/47rk — 0 is presented in Appendix 5.3.2.

To further compare with available results, we observe that in [110] and
[112] it was stated that the factors (—1)* should not appear in the expres-
sion of the two-particle partition function, or in the expression of the second
virial coefficient (I denoting the isospin quantum number of each particle).
However, as pointed out in [111] and as further motivated in the following,
such factors are needed. To clarify this issue it is convenient to make refer-
ence to the properties of the Clebsch-Gordan coefficients. The two (spinless)
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Figure 4.3: By vs. k = 47k for an hard-core NACS gas with [ = 1/2 (blue
open circles), [ = 1 (red stars), [ = 3/2 (green squares). In this and the
following figures B is in units of A% (furthermore the line is just a guide for
the eye, since k assumes only integer values). The values of By in the limit

Kk — 00 are given by —é, —%, —% and are correctly reproduced.

particles in exam have both isospin [ and total isospin j: the Clebsch-Gordan
coefficients express the change of basis, in the two-body isospin space, be-
tween the basis labeled by the individual magnetic isospin numbers my, mo
and the basis labeled by the total and magnetic isospin j,m;:

l l
ljmy) = Y Y (Imalma|jmy)|lmalms) |

mi=—Imo=-—I

where the Clebsch-Gordan coefficients fulfill the symmetry property
(lmllm2|jmj) = (—1)2l_j <lm2lm1|jm]) .

Notice that the real spin of the particles is not taken in account in this
consideration. With respect to the exchange of all the quantum numbers,
the isospin two-body wavefunction corresponding to a state of total isospin

j takes a factor (—1)%=7 = (—1)/*? (being j an integer), so that the factor
14(—1)7+2
2

evaluated in the bosonic basis, the factor

projects over the states for which the partition function can be

%W projects over those for
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which the partition function can be evaluated in the fermionic basis, from
which Eqs. (4.35), (4.36) and (4.38) can be obtained.

Our result (4.38) differs also from the results presented in [109], where a
method of computation of the second virial coefficient for hard-core NACS
gas based on the idea of averaging over all the isospin states is proposed. In
particular, in [109] the special cases [ = 1/2, | = 1, and the large-x limit
for two particles belonging to a representation [ with lim; . % =a <1
were considered. In the last limit the sum over all the resulting total isospins
r < 2l is approximated by an integral. The results are given by Eqs. (35),(36)
and (38) of [109]:

) 1 3 3
Bg”(k,l:1/2,T):>\%(—Z‘i‘E—@) s

1 20 8
Bhe(k1=1,T) =\ <_Z+9_k_@> Vk>1, (4.39)

lim B (k,1,T) = A2 —1+a—“—2
l—o0 2 B T 4 3 ’

while our corresponding results are

1 3 3
B (k1= 1/20) =3 (~g+ g ) W22

1 14 8
BIe(k,1=1,T) = )2 (_54_9_]6_@) Vk >4, (4.40)

2
lim BY* (k,1,T) = N (-% - §a2)
The limits [ — oo in (4.39) and (4.40) are taken together with lim; .., 1*/k =
a, where a is kept fixed and @ < 1 in (4.39) and a < 1/2 in (4.40). The
derivation from Eq. (4.38) of the three special cases above is reported in the
Appendix 5.3.2. We notice that the asymptotic value found for B, in the
third case is expected to vanish for a = 0, while on the contrary this does
not occur for the results of [109]: indeed, a = 0 corresponds to consider the

limit B (1,T) = %%, which vanishes in the large [-limit.
The difference between the results of Ref. [109] and ours stands in a
different averaging: while in [109] the virial coefficients are expressed as
averages of the virial coefficients over the (21 + 1)? two-body states of isospin,
in our case we take into account the effect of the isospin symmetry factor
(—1)7+2 characterizing the states of total isospin j.
Notice that Eq. (4.38) for the second virial coefficient can be recovered

using the approach presented in [111], as shown in Appendix 5.3.2. Indeed,
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Figure 4.4: By vs. [ for an hard-core NACS gas with £k = 1 (blue open
circles), k = 2 (red stars), k = 3 (green squares). [ varies over all the integer
and the half-integer numbers: in the upper (lower) part of the figure the
plotted values of By correspond to integer (half-integer) values of .

one can find from Eqs. (4.34)-(4.36)-(4.38)(see Appendix 5.3.2 for details)
that the following expression for B given in Eq. (2) of [111] holds:

21 , ,
1 ) 14 (—1)7+2 1—(—1)+%
h.c. _ Z B P
B2 (HJ»T) - (2[ + 1)2 j:0(2]+1) |: B2 (wj?T) + 9 B2 (wj>T) )
(4.41)
where By (w, T) is given by [91]
B(F) 1o [ —1+46—26° N even (odd)
By w, T) = 4)\T{ 1— 262, N odd (even) (4.42)

(w = N+ and N an integer such that 0 < § < 1). The computation
presented in Appendix 5.3.2 shows that Eq. (2) of [111] is a correct starting
point to study Bj-¢: however, notice that Eq. (3) of [111] should be replaced
with Eq. (5.51) given in Appendix 5.3.2.

We finally discuss in more detail the non-interacting limit 1/47x — 0 in
order to clarify the meaning of Eq. (4.36). In the limit £ — oo the covariant
derivatives in (4.15) trivialize and the isospin becomes just a symmetry of
the Hamiltonian, resulting in a pure (isospin) degeneration g = 21+ 1. Let =
be the grand partition function, € the generic single-particle energy level for
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an assigned spectral discretization, and using the upper/lower signs respec-
tively for the g-degenerate bosonic/fermionic single-particle states: notice
that any value of ¢ is allowed both in the bosonic and the fermionic case,
since the statistics is not constrained by isospin. The expressions for the
grand partition function, the pressure and the density are

E(z,A,T) = [ (1 F ze7)7

€

PA
T In=Z(z,A,T)=F ggln(l T ze %)
and
N:zgln:(z AT) = Z;
— az — ) ) _g - 2_1665:':]_ .
It follows
M — In(1 —Be P o0 n
or =T DT Py <3> By, (443)
(p/9) = 2o =it g =~ \y

where B? denotes the n-th virial coefficient for spinless boson(/spinless fermion)
without either isospin degeneration. Hence, denoting by B, the n-th virial
coefficient in presence of isospin freedom one has

o " 1 o
P=ksTY (pA3)" —=Bo =ksT Y p"B,
g~
n=0 n=0
and therefore )
0
gn—l Bn

B, =

therefore By = 515 BY, that is exactly what is written in Eq. (4.36). The
result (4.36) can be also understood by observing that all the virial coeffi-
cients for a system of NACS defined over a representation of isospin [ tend,
in the non-interacting limit x — oo, to (—1)? times those of an ideal gas of
identical [-spin ordinary quantum particles. In particular, the second virial
coefficient of an ideal system of quantum s-spin particles is indeed:
A2, (—1)25+1

By(s,T) = +IT% : (4.44)
in agreement with (4.36). The issue becomes much more complex for flux-
carrying particles (finite ) having a non-zero spin, as discussed in [125,
126, 127]: however, for the true ideal spinor case @« = 0 and s = 1/2 it is
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By(s =1/2,T) = $)A% [126], again in agreement with (4.44) and the related
(4.36).

We conclude this Section by observing that a semiclassical computation
of the second virial coefficient for a system of hard-core NACS particles
reproduces Eq. (4.38): we remind that for an Abelian hard-core gas the
semiclassical approximation [92, 73] yields the exact quantum result of [91]
for By. By extending such a computation to the hard-core NACS gas we
find exactly Eq. (4.38) (details are not reported here). We mention that
in literature it has been conjectured that the semiclassical approximation
could give the exact expressions for all the virial coefficients in presence of
hard-core boundary conditions [90]: the rationale for this conjecture is that
for hard-core boundary conditions there are no other length scale besides
Ar. Therefore, having established the extension to the non-Abelian hard-
core case of the semiclassical computation of By, one could in the future
obtain information about higher virial coefficients for the hard-core NACS
gas. However, we alert the reader that the presence of other relevant length
scales (other than A7) in general prevent the semiclassical approximation
from being exact: an explicit example is given in [90]. We conclude that
for the soft-core NACS (that we are going to treat in the next Section) the
semiclassical approximation is not expected to give the correct results.

4.3.2 General Soft-Core Case

If one removes the hard-core boundary condition for the relative (21 + 1)*-
component two-anyonic wavefunction and fixes an arbitrary external poten-
tial as a spectral regularizator, then the spectrum of each projected Hamil-
tonian operator H j’ can be represented as the union of the spectra of (254 1)
scalar Schrodinger operators, one for each j,-component, endowed with its
respective hard-core parameter ¢;;, (as shown in Appendix 5.3.2). As dis-
cussed in Section 4.2.2, one then ends up with a set of (21 + 1)? (in principle
independent) parameters ¢; ;. , which are needed to fix the boundary behav-
ior. They can be organized in a (20 + 1) x (2] + 1) matrix:

€0,0 €11 €22 - 21412041
€1,-1 €1,0 €21 &241,2

€2,-2 €2,-1 €20 v v . (445)

€2141,-21—-1 €2041,—21 " E21410
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Proceeding as in the previous Subsection 4.3.1, one has then for the general
soft-core NACS gas the following expression for the second virial coefficient:

S.cC. 1
By (k,1,T) = m Z —BzB(Wj;ﬂ €j.) + 5
7=0 7=

(4.46)
where B (w;,T,e;;.) is the soft-core expression entering Eq. (4.12):

——j

2l j . .
1+ (_1)J+2l 1 — (_1)j+2l
|: 2 —Bg(WJ7T, E:j’jz) 9

dte iz t#loil—1

B2B(Wj,T, €j7jz) = Bg'c'(éj, T)—QA% {ng’jz(g(—O') + 6]—0 (Sinﬂ'(sj')\/
Q 0

(4.47)
with 6; = (wj + 1)mod2 — 1, and B} (w;,T,e;,.) is the previous expression
evaluated for w; — w; + 1:

1+ 20 (cos d;) t19il 4 ¢21%]

BF T _ Bh.c. L. T 2)\2 €.z ) F]’O' . T o dte iz tt‘rj‘_l
2 (Wi Tgj5.) = By (L, T) =27 q e (=0) + — (sinnTy) o 1+ 20(cosmly) 051 2051

™

(4.48)
with I'; = wjmod2 — 1. Eq. (4.46) is the desired result for a NACS ideal
gas with general soft-core boundary conditions.

To perform explicit computations, we consider in the following the simple
case in which the isotropy of the hard-core parameter is assumed within each
shell with assigned isospin quantum number /. In other words, € ;, = €; and
the matrix (4.45) then reads

€o €1 cc E9141

_ €1 €1 s €204
= : (4.49)

Eal+1 €241 €241

When all the element of the matrix (4.49) are equal, we will use the notation
€, = €. In such a completely isotropic case, Eq. (4.46) takes the simplified

form
2l

By (k,1,T) = ﬁ Z(Qj +1)BJ (v, T,e) , (4.50)

1 -1 j+2l
v, = (wj - L) mod2 —1 . (4.51)

where

2

In Figs. 4.5-4.10 we show, for three values of the isotropic hard-core parameter
e, the dependence of B3 on k for some fixed [’s, and vice versa on [ for some
fixed k’s. Fig.4.7 evidences that for suitable values of ¢ the second virial

b
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0 10 20 Kk 20 20 50

Figure 4.5: By (k,l,T) vs. k for a soft-core NACS gas with [ = 1/2 (blue
open circles), | =1 (red stars) and | = 3/2 (green squares): in all ¢ = 0.1 (k
varies over the positive integers).

coefficient may change sign and have strong variations. From Eq. (4.50)
it is possible to see that the values of By (k,l,T) corresponding to semi-
integer [ and k = 1 are independent of [, depending only on ¢ and T (see
Figs.4.6,4.8,4.10). In fact Eq. (4.51) yields that for [ semi-integer (I =
1/2,3/2,---) and k = 1 one has v; = 5 and therefore

1 1
By (k: =1l=n+ §,T> =By (§,T, s) (4.52)
(with n = 0,1,2,--).

For [ = 1/2, i.e. the lowest possible value of [ for non-Abelian anyons, the
assumption of isotropy (g9,0 = ¢ and €3, = &1 with m = 1,0, —1) yields:

1 3 1
B;-C- <Ii,l = §,T) = ZB2B(W1,T, 51) + ZBQF(mea 50) : (453>

As example, let us consider the case | = 1/2, 4wk = 3:

y 1 3 1 1 1
B2(k‘:3,l:§,T> = ZBQB (QZE,T,El) _'_4_135 (&:—E,T,EE())

(4.54)
(similar results can be found for other values of k).
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Figure 4.6: By (k,l,T) vs. [ for k =1 (blue open circles), k = 2 (red stars)
and k = 3 (green squares), with ¢ = 0.1 (I varies over the integer and the
half-integer numbers).

For the isotropic soft-core system, special boundary conditions are those
limited to the s-channel (for which the p-wave is assumed to be hard-core,
g1 = 00) and to the p-channel (for which, vice versa, the s-wave is assumed
to be hard-core, &g = 00). In order to assure the physical soundness of the
virial expansion, kg T has to be much higher [102] than the energy of the
eventual bound state Ep associated to the wavefunction (4.10). Hence, for
both these channels the virial expansion is meaningful provided that we take
o =+11in Eq. (4.12), and the virial coefficients for these two channels are

1 by 24 [ et/
B¢ k=3,l== = Tl14+= dt——— 4.55
? ( 7 2) s—channel 24 { " m /0 1 +1 } ( )

and

1 )\2 4 00 —€1tt—5/6
I R Y Y S TS
2 p—channel 24 ™ Jo 1+ \/gtl/ﬁ + tl/S

(4.56)
The previous equation clearly shows that the depletion of By with respect to
the hard-core value —2—14/\2T is the result of the anyonic collisions allowed by
the soft-core conditions. If the four parameters of the whole matrix are taken
to be identical e = £1 = € ("complete isotropy” of the hard-core parameters
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Figure 4.7 B5“(k,1,T) vs. k for | = 1/2 (blue open circles), [ = 1 (red
stars) and [ = 3/2 (green squares), with ¢ = 1.4.

matrix), the expression for the virial coefficient reduces to

1 by 4 [ 6¢ /2 t=5/6
B (k=31=-T)=-2L014+= [ ate* +
2 24 T Jo 1+t 14+ /341/6 4 ¢1/3

(4.57)
The dependence of this quantity on € becomes more evident by representing
the € variable in logarithmic scale, as shown in Fig.4.11. The hard-core limit
value B¢ /)2 = —1/24 predicted by (4.38) is asymptotically approached,
although for extremely high e: e.g. for e = 10'7 it is Bi< /A% ~ —0.05,
which deviates from the asymptotic value by a =~ 20%. We conclude that
even an extremely small deviation from the hard-core conditions may have a
significant impact on B, and therefore on the thermodynamical properties.
At variance, for small values of €, the extension of the analysis presented in
[103] for soft-core Abelian anyons allows to compute the value of By for the
limit case ¢ = 0: for ¢ = 0 one gets By* (k=3,1=1,T) /A, = —13/24.
The monotonically increasing behaviour of By in ¢ is evident from (4.57),
and consistent with an approach towards an hard-core (hence more repulsive)
condition.

)}
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Figure 4.8: B5“(k,1,T) vs. | for k =1 (blue open circles), k = 2 (red stars)
and k = 3 (green squares), with ¢ = 1.4.

4.4 Other Thermodynamical Properties

In this Section we remind the virial expansions for the main thermodynamical
quantities of the system studied in this Chapter, namely the gas of NACS
particles endowed with general boundary conditions for the wavefunctions
and we discuss how these quantities read at the order pAZ of the virial co-
efficient, in order to highlight the role played by the second virial coefficient
By computed in the previous Section.

The thermodynamical quantities are associated to the virial coefficients
{B,(T)} of the equation of state (featuring the expansion of the pressure in
powers of the number density p). As discussed in statistical mechanics text-
books [113, 114, 128] one has the following virial expansions for the pressure
P, the Helmholtz free energy Apy, the Gibbs free energy G, the entropy S,
the internal energy E and the enthalpy H (A being the area) :

PA
Pressure : NioT =1+ Z B p*
k>1
Helmholtz free energy : An_ = log(pA3) — 1+ Z 1 B p*
NkgT ~k ’
G E+1
Gibbs free energy : N log(pA3.) + Z % B p"

k>1
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Figure 4.9: B5“(k,1,T) vs. k for | = 1/2 (blue open circles), [ = 1 (red

stars) and [ = 3/2 (green squares), with ¢ = 10.
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Using the previous expressions, stopping at the lowest order of the virial
coefficient p (i.e. pA%) and using the fact that for a general NACS ideal gas
one has By(T) oc T~!, one can obtain the thermodynamical quantities at the

lowest order of the virial expansion: in particular we find

PA
NEkgT

=1+ By ;

An
=log(pA;) — 14 Bap ;

= log(pA¥) + 2B p ;

NkgT
=1+ Bsp ;

NEgT
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Figure 4.10: By (k,l,T) vs. | for k = 1 (blue open circles), k = 2 (red stars)
and k = 3 (green squares), with ¢ = 10.

(at the lowest order of virial expansion, the entropy and the heat capacity
at constant volume do not depend on Bsy). Using the expression of By given
by Eq. (4.46) one can obtain the deviation of the various thermodynamical
quantities from their ideal gas value.
An important consequence of the previous results is that at the order pA2
one finds
E=PA: (4.58)

Eq. (4.58) is an exact identity for 2D Bose and Fermi ideal gases, valid at
all the orders of the virial expansion [73]. Similarly, for the soft-core NACS
ideal gas, at the order pA%, one has H = 2F, which is also exact at all orders
for 2D Bose and Fermi ideal gases [73]. Further investigations on the higher
virial coefficients are needed to ascertain if the equation of state (4.58) is
exact (at all orders) for a general soft-core NACS ideal gas.
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Figure 4.11: B5“ as a function of the hard-core parameter ¢ in logarithmic
scale, for k = 3 and [ = 1/2, in the completely isotropic case (g9 = €1.m = €,
form =1,0,-1).



Chapter 5

Statistical Potential for NACS
Particles

5.1 Introduction

A key property of the statistics of quantum systems in two space dimensions
is provided by the possibility to display intermediate fractional statistics
interpolating between bosons and fermions: the properties of anyons, the
two-dimensional identical particles obeying fractional braiding statistics and
carrying fractional charge, have been the subject of an intense and continuing
interest [14, 10, 7, 73, 74]. Both Abelian and non-Abelian anyons (associated
to respectively one-dimensional and irreducible higher-dimensional represen-
tations of the braid group) have been extensively studied both for their in-
trinsic interest and their connection with quantum Hall systems [74, 79, 81].
In particular there is an increasing interest in the investigation of the proper-
ties of non-Abelian anyons for their application to topologically fault-tolerant
quantum information processing [74].

The ideal gas of anyons is also interesting for the phenomenon of statisti-
cal transmutation [10, 7, 73], i.e. the fact that one can treat non-interacting
anyons as interacting bosons or fermions. The idea behind statistical trans-
mutation is that one can alternatively consider the system as made of inter-
acting particles with canonical statistics or of non-interacting particles, but
obeying non-canonical statistics. This makes in general difficult the study
of the equilibrium thermodynamical properties of the ideal anyon gases [73]
and therefore any result that gives even qualitative informations on such ideal
gases is valuable.

Dating back to the seminal work by Uhlenbeck and Gropper [129], a
standard way to characterize the effects of the quantum statistics on the

93
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properties of ideal gases is provided by the determination of the so-called
statistical potential. As detailed in textbooks [130, 114], one can show that
the partition function (PF) of a gas of particles approaches - for sufficiently
high temperatures - the PF of the classical gas (with the correct Boltzmann
counting). When this computation is done for an ideal quantum gas (under
the condition that the thermal wavelength is much smaller than the inter-
particle distance) one finds that the quantum PF becomes the PF of the
classical ideal gas. Evaluating the first quantum correction, one can appre-
ciate that the quantum PF can be formally written as the PF a classical gas
in which a fictitious two-body interaction term (the statistical potential) is
added [130, 114]. The statistical potential gives a simple characterization of
the effects of the quantum statistics of the ideal gases: the statistical potential
is “attractive” for bosons and “repulsive” for fermions, and it is respectively
monotonically increasing (decreasing) for bosons (fermions). Another impor-
tant result is that a suitable integral of the statistical interparticle potential
gives the second coefficient of the virial expansion [130, 114].

The statistical potential of a gas of ideal Abelian anyons has been studied
in [131, 132, 133] and it depends on the statistical parameter o (we remind
that o = 0 and o = 1 corresponds respectively to free two-dimensional spin-
less bosons and fermions, while @ = 1/2 corresponds to semions [73]). It is
found that for 1/2 < o < 1 the statistical potential v, (r) is monotonically
decreasing, while for 0 < o < 1/2 it has a a minimum at a finite value of r
and it is increasing for larger values of r (while for @ = 0 is monotonically in-
creasing). We can refer to these behaviours respectively as “quasi-fermionic”
(1/2 < a < 1) and “quasi-bosonic” (0 < a < 1/2). The purpose of the
present Chapter is to compute the statistical potential of the ideal gas of
non-Abelian anyons: we find that the behaviour of the statistical potential
depends on the Chern-Simons coupling and the isospin quantum number.
As a function of these two parameters, quasi-bosonic and quasi-fermionic re-
gions emerge, and they are part of a phase diagram which will be presented
below. Furthermore, a third behaviour (“bosonic-like”) appears in this phase
diagram, corresponding to a monotonically increasing statistical potential.

The plan of the Chapter is the following: in Section 2 we recall the steps
which lead to the computation of the statistics potential v, of an ideal gas of
Abelian anyons with statistical parameter . Since it is possible to show that
the statistical potential for the non-Abelian gas may be written in terms of
sums of Abelian statistical potentials (having different statistical parameters
depending on the projection of the isospin quantum number), we provide in
Section 2 a detailed study of v,: we present a compact and useful integral
representation for it, showing that it can be written in terms of bivariate
Lommel functions [134]. Furthermore, using the Sumudu transform of the
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statistical potential [135], we also give a closed expression of v, (r) in terms
of the inverse Laplace transform of an algebraic function of » and a. Using
this result we are able to give a simple expression for the statistical potential
of the ideal gas of semions, and we show that for a general value « it is
possible to retrieve the well-known result for the second virial coefficient of
an ideal anyon gas found in [91] (with an hard-core boundary condition for
the two-body wavefunction at zero distance). For the sake of comparison
with the non-Abelian case that follows, the limit behaviours both at small
and large distance of the statistics potentials are presented. In Section 3
we introduce the non-Abelian Chern-Simons (NACS) model studied in the
rest of the Chapter: we compute the statistics potential (within the hard-core
boundary condition frame) as a function of the Chern-Simons coupling x and
the isospin quantum number [ and we build a phase diagram summarizing the
behaviour of the statistical potential in terms of x and [. We then show that
the second virial coefficient, previously studied in [85, 110, 111, 2], is correctly
retrieved. The asymptotic expressions for the small and large distance of the
statistics potentials are also given.

5.2 Statistical Potential for Abelian Anyons

In this Section we introduce the model for an ideal gas of Abelian anyons, and
we then derive its statistical potential v,(r) as a function of the statistical
parameter «, obtaining the expression for v, (r) given in [131, 132, 133], and
also providing an explicit formula for the semions (half-integer values of «).
The results for v,(r) and the asymptotic expressions for small and large
distance will be used in the next Section, where the statistical inter-particle
potential of an ideal gas of non-Abelian anyons is derived and studied.

Abelian anyons admit a concrete representation by the flux-charge com-
posite model [73], and the statistics of these objects can be understood in
terms of Aharonov-Bohm type interference [115, 136]. The Hamiltonian for
the quantum dynamics of an ideal system of anyons reads [7, 73]

N
1 2
Hy =S — (7, —ad,)? , 5.1
v =3 5y (e 5.)
where p), is the momentum of the n-th particle (n = 1,--- | N). Similarly we
will denote the position of the n-th particle by 7, = (x},22). In Eq.(5.1) ais

the statistical parameter: notice that the physical quantities, e.g. the virial
coefficients, are periodic with period 2 [73]: the bosonic points are defined
by a = 25 and the fermionic ones by a = 25 + 1, j integer. For this reason
we will consider in the following « € [0, 2].
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In Eq.(5.1) @, is the vector potential carrying the flux attached to the
bosons: indeed, the Hamiltonian (5.1) is written in the so-called bosonic
representation, i.e. it is an Hamiltonian for identical bosons, and therefore
acting on the subspace of wavefunctions which are symmetric with respect
to the exchange of particles. The explicit expression for @, = (al,a?) is

n’ n
. .. xj—q;j
— Z —n__—m 5.2
al = he ERENE (5.2)

where € is the totally antisymmetric tensor (i,j = 1,2).

Let’s recall that this model of Abelian anyons also admits a field-theoretic
description: in fact (non-relativistic) anyons can be described by bosonic
Schrédinger fields ¢ and ¥ coupled to a Chern-Simons gauge field a,, living
in (2+1)-D [118, 119] (then p = 0,1,2). The Lagrangian density of such a
system reads

L= ge‘“’)‘ a,0yay + P (z D, + ﬁDﬁ P
where ¢ gives the measure of the interaction among particles mediated by
the U(1) gauge potential a,, with the covariant derivatives given by D; =
O +iqay, D=V- iqa, and the anyon statistical parameter « to be identified
as a = ¢*/(2mc).

In the study of a quantum-mechanical ideal gas, the effect of the sym-
metry properties of the wave function can be interpreted, from a classical
point of view, as the consequence of a fictitious classical potential intro-
duced by Uhlenbeck and Gropper [129], referred to as effective statistical
potential, which represents the first quantum correction for the classical PF
(130, 114]. For our purposes we have to consider the two-body case, which
is relevant for the subsequent computation of the statistical interparticle po-
tential [130, 114]. The statistical potential completely determines the second
virial coefficient, which gives the thermodynamical properties of the system
in the dilute (high-temperature) regime. For the two-anyon system, after
separating in (5.1) with N = 2 the center-of-mass dynamics (i.e. that of
a particle having mass 2M), one is left with the dynamics of the relative

wavefunction: ) )

= [¥—iaa®] v = Bu) (5.3)
where 7 = 7| — 7% is the relative coordinate, and a’(F) = €72 Therefore the
relative dynamics is equivalent to that of a single particle in presence of a

point vortex d(7) placed at the origin.
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An analysis of the statistical interparticle potential for an ideal gas of
Abelian anyons is presented in [131, 132]. The eigenfunctions of (5.3) read

U, = KR il0 Jj—a|(kr) = eERay | (5.4)

where the capital (italic) letters respectively refer to center-of-mass (relative)
coordinates. The bosonic description used in (5.1) imposes the condition [ =
even; furthermore J,,(z) denote the Bessel functions of the first kind [134]
(their definition is recalled in Appendix 5.3.2). Notice that the wavefunctions
(5.4) are the eigenfunctions of (5.3) provided that the hard-core boundary
conditions ¥, (0) = 0 are imposed.

The two-body PF is Z = Tre ##2 = 2A\-?Z' where Z' is the single-
particle PF in the relative coordinates, 3 = 1/kgT, Ap = (Bh?/2xM)"/? is
the thermal wavelength and A is the area of the system. The relative PF Z’

is given by
h2 Z /d2 /d2re B | 2 (5.5)

l=—0c0
(with p = hk). It is possible to conveniently rewrite Eq.(5.5) by using the
following integral property [137] of the Bessel functions:

[ @) 4 ewa de= L1 (2] e o)

where [, is the modified Bessel function of the first kind [134] (see also
Appendix 5.3.2). The relative PF then takes the form

Z/ dz e lign_o/(7) (5.7)

n=—oo

where A2 )
=— =" (5.8)

20R% A\t
The one-body PF for classical systems, used in [129] to define the concept of

effective statistical potential, is
1
AES 372 d*p e‘ﬁp2/M/d27“ e P (5.9)

therefore, comparing (5.7) and (5.9) produces as a result [131]

e Pvalr) = 9 =2 Z Tion—of(z (5.10)

n=—oo
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Figure 5.1: Plot of e=#%() vs. r/)\; for different values of the statistical
parameter: from top to the bottom it is o = 0,0.1,0.2,0.4,0.5,0.6,0.7, 1.

(see Appendix 5.3.2 for details). Eq.(5.10) is plotted in Fig.5.1.
For the considerations which follow, it is convenient to introduce the
function

Ma(z) = Y ITpnal(@) | (5.11)

so that the statistical potential can be written as
e e = 927" M, (z) . (5.12)

The inter-particle statistical potential admits a closed expression in terms of
the bivariate Lommel functions (alias, Lommel functions of two variables).
Indeed, as evident from Appendix 5.3.2, it is

M (z) =i Uy(iz,iz) —i% Uy_y (i, iz) | (5.13)

where U, denote the Lommel functions of two variables [134]. Notice that
the symmetry property v, (r) = vo_o(r) (Va € R ) holds for the statistical
potential.

In Appendix 5.3.2 we prove the following integral representation for v, (r),
which will result useful in Subsection 5.2.1 for discussing the large-distance
limit behaviour:

e Palr) — 1 4 e 2 cosam — 2

sin ar - /°° it sinh [(1 — a)t] o cosht
T 0 sinht

(5.14)
Other integral representations for e=%%2(") are presented in Appendix 5.3.2.
In the remaining parts of this Section we discuss the asymptotic behaviour of
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v, for small and large values of the dimensionless parameter x, and we give
a closed expression for the statistical potential v, (r) in terms of the inverse
Laplace transform of an algebraic function of » and a: this manipulation
allows us to straightforwardly regain the known expressions for v,(r) in the
bosonic/fermionic cases, to obtain its expression in the case of semions and
to finally recover the value of the second virial coefficient for a generic «
presented in [91].

5.2.1 Limit behaviours

In order to quantitatively understand the tendency of anyons to bunch to-
gether or vice versa to repel each other in different limit regimes of density,
let’s recall and further discuss the asymptotic behaviours of their effective
statistical potential, for small and large distances [132, 133].

For small r (that is < 1) we can approximate the summation term in
(5.10) as

- 1 2n+a 1 n42—a | ~
nz_:oo]”” al (¥ Z {P(Qn ot )Y e Tont3—a) /2 B
~ [D(a+ 1] z/2)* + (3 —a)] H(z/2)* . (5.15)
Since

Bu(r) = —In [2 DY bna(@] ~ =267 ([D(a+ 1)) 7 (2/2)° + 03 - o)) ' (2/2)*™)]

N (5.16)
it follows
—In[2 —27r?/Af] = —In2+ Z(r/Ar)*, a=0, 2
N —1n[2 (mr2 /2 M2)* /T (a + 1)], 0<a<l
Bua(r) = In [27r2 /2], a=1 (5.17)
—ln[2 (mr?/202)27%/T(3 — )], l<a<?2

We may summarize the small distance behaviour as follows: wv,(r) is
repulsive and logarithmically divergent to +oo for any a € (0,2), whereas
for « = 0,2 it is attractive, and quadratically increasing in r starting from
the finite value vo(r = 0) = — In 2. The small-r asymptotic function for v, (r)
is discontinuous in @ = 1, being twice than the limit asymptotic functions
for a — 1% (in fact two equal Bessel terms contribute to the asymptotic
behaviour for v = 1, whereas only one of them dominates when o« # 1).

To study the behaviour of the statistical potential for large distance r
(i.e. > 1) we employ the integral representation (5.14). The method of
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steepest descent allows to evaluate to an arbitrary order the last term of this
integral representation. At the first significant order, we get

9 sin o - /°° it sinh [(1 — a)t] o cosht 2(a — 1)sinar _,, ‘
T 0 sinh ¢ 2mz

(5.18)
Therefore the large distance behaviour of the statistical potential is given by

V2(1 — a)sinar =271 /A3
/A

Bug(r) =~ [— cos am + (5.19)

for any a € [0,2]. Let us notice that this result differs from the corresponding
one in [132], and that the asymptotic behaviours for o = 0, %, 1 (see formulas
(5.26), (5.27), (5.28) in the sequel) are correctly retrieved. The statistical
potential for large distance is vanishing for » — oo, and the interval « € [0, 1]
(as well as the interval « € [1,2], due to the symmetry property v, = vo_,) is
divided in two regions: for large distance, v,(r) is attractive for 0 < o < 1/2,
and repulsive for 1/2 < a < 1.

The large-distance and short-distance behaviours, considered together,
imply that v,(r) must admit a minimum point at finite distance, r..(«) for
any 0 < a < 1/2 (see Fig.5.2). We denote the corresponding dimensionless
quantity by z..(a) = 7r2.(a)/A2. The minimum point z..(«) tends to +oo
for a — %7, as shown in Fig.5.3.

Fig.5.2 clearly shows that Abelian anyons have, from the point of view of
the statistical potential, a “quasi-bosonic” behaviour for 0 < a < 1/2 (i.e.,
Uq(7) is non-monotonic with a minimum) and a “quasi-fermionic” behaviour
for 1/2 < o < 1 (v4(r) is monotonically decreasing without a minimum).
Obviously, for v = 0 there is a “bosonic-like” behaviour, and v, (r) is mono-
tonically increasing.

5.2.2 Laplace transform of the statistical potential and
the 2"-virial coefficient

In this Section we write an explicit formula for e=#%+(#) as the inverse Laplace
transform of a function of x and a. This result will allow us to write a simple
formula for the statistical potential for the semionic gas and to compute the
second virial coefficient, which of course coincides with the result reported
in the seminal reference [91].

Let’s start by writing down the Sumudu transform [135] of the function
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BV(r)
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Figure 5.2: Bu,(r) vs. r/Ar for different values of a: from top to bottom it
is « =1,0.7,0.5,0.3,0.2,0.1,0. The bosonic curve (« = 0) is monotonically
increasing while the fermionic curve (« = 1) is monotonically decreasing and
divergent for r — 0. All the curves for 0 < a < 1/2 diverge for r — 0 and
have a minimum point at finite r.

M., defined in Eq.(5.11). The Sumudu transform of M, is defined as

Mo ()]s = / =0 Mo (0)d — / M) / e M, (t)dE |
0 0 x 0
(5.20)
where s = %, whence

[Ma (1)} =T EMU). (5.21)

T

L being the ordinary (one-sided) Laplace transform. The function M, (x) is
given by

M (z) = Z Li2n—a)(z) = e /% Z(_l)nbn-&-v(ix)’{'e_mr/%Z(_l)nj%—&-a(ix)
n=—o0o n=0 n=0

(5.22)
where v = 2 — a. Substituting (5.22) in (5.20), one gets that the Sumudu
transform of M, becomes

Ma(z)]g = 6_772%2(_1)”/ e_tJ2n+~/<mt)dt+€_agiZ(_l)n/ e_tJ2n+a(i$t)dt~
n=0 0 n=0 0

The use of the integral properties of the Bessel functions of the first kind
[134] (see pg. 386) gives the following expression:

e & (—1)" V1—a?2 -1 2n+7+
V1—a? = ix

[Ma(x)]s =



102 CHAPTER 5. STATISTICAL POTENTIAL FOR NACS PARTICLES
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Figure 5.3: The dimensionless value of the minimum point z..(a)) of the

statistical potential v, of Abelian anyons as a function of the statistical
parameter o near o = 1/2.

R o 1)n(M-1)2"+“
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VI =22 x x

1— 22 T

B A Rl
1 — a2

By sending x — 1/z in (5.23), and applying (5.21), we obtain

Ma(g)szl( A )[(x_mw(x_m)“]

2\ 22 -1 xr2 —1
and

LM () = oV 1)2 (xj_(‘f)_ ver—1) (5.24)

Hence the inter-particle statistical potential admits the following form, for
many purposes easier to handle than (5.10), since it does not contain infinite
sums:

e‘ﬂ”a(T) — €_r£_1 (ZL‘ —Va? — 1)17& + (1’ — M)afl

2 —1

(5.25)
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The correct potentials for the bosonic and fermionic cases are straightfor-
wardly reproduced: using known results for the Laplace transforms [138], we
get

2
e Pra=o(r) — o~z p—1 [ 2 - 1] =e % 2coshr=1+¢2; (5.26)
22 _
2
¢~ Bra=i(r) _ o~z p-1 L;z — 1} — e 2sinhay =1 — e 2 . (5.27)

Eq.(5.25) gives a closed formula for the potential in the case of semions
(=1/2, or a = 3/2):

(z — Va2 - 1)1/2 + (z — Va2 — 1)_1/2

—Busem.(r) _ —zﬁ—l
e =€
2 —1

= erf(v/2z)
(5.28)

where erf is the error function [139].
Eq.(5.25) allows us to recover the second virial coefficient of a gas made
of identical Abelian a—anyons, which is given by [91]:

1
By(a,T) = ZAQT (=14 4o —20%) . (5.29)

The link between the 2"-virial coefficient and the statistical potential can
be expressed in the form

A2, [
By(a,T) = 7T / dr [l — e 7@ (5.30)
0

Using Eqgs.(5.26)-(5.27)-(5.28), for the three special cases o = 0, 1 and
1/2 (corresponding respectively to bosons, fermions and semions) one imme-
diately finds

Ao [ 1
Bo(a=0,T) = 77’/ dr[l—(1+e )] = —Z—l)\% ; (5.31)
0
A%“ > —2z 1 2
By(a=1,T) = > dr [l — (1 —e )] :+é_l)\T ; (5.32)
0

1 AL [ A 1o
Byla==,T)=2L | de[l—erf (V22)] =L | dyy[l —erfy] = A2
2 2 0 2 0 8

(5.33)
as it should be.
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Finally, the effective 2-body statistical potential written as in Eq. (5.25)
allows us to easily recover the expression of the 2™-virial coefficient even
for a general statistical parameter «. Indeed, by virtue of (5.25) and the
dominated convergence theorem, one has

By(a,T) 1 [ _
2\ =) = 1 — ¢ Pv(@)
A 2 /0 doll—e |

o l-a a—1
_ 1 lim dx [e” —(1+e)z (L 1 ﬁ) _ (z — Va2 —1)
2 =0 0 1 x2 —
1. (2 m) o= v
| e e e =

L. 1 (I4+e—V2e+e) '+ (1+e—+2 +e2)! 1

= — lim |- — = —(—1+4a—20%) ,

2 =0 | ¢ 2e + £2 4

(5.34)
that is just (5.29).
As a byproduct of Egs. (5.12), (5.13), (5.30), (5.34), we find an interesting
integral property relevant to the bivariate Lommel functions (new, at the best
of our knowledge):

/ dz {1 -2 [i7* Uy(iz,iz) — i® Us_o(iz,iz) | } = —% +2a —a” .
’ (5.35)

5.3 Statistical Potential For Non-Abelian Anyons

In this Section we discuss the statistical interparticle potential for a two-
dimensional system of SU(2) NACS spinless particles. The NACS particles
are pointlike sources mutually interacting via a non-Abelian gauge field at-
tached to them [89]. As a consequence of their interaction, equivalent to a
non-Abelian statistical interaction for a system of bosons, they are endowed
with fractional spins and obey braid statistics as non-Abelian anyons.

Let’s briefly introduce the NACS quantum mechanics [122, 38, 123, 104].
The Hamiltonian describing the dynamics of the N-body system of free
NACS particles can be derived by a Lagrangian with a Chern-Simons term
and a matter field coupled with the Chern-Simons gauge term [104]: the
resulting Hamiltonian reads

Hy=-Y —(V:V. +V.V:) (5.36)
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where M; is the mass of the i-th particles, Vz, = 5= and

V., =

— Qa a
i 7 :
821 27m Z 2 — 2;

In formula (4.15) i = 1,..., N labels the particles, (z;,v;) = (2 + Z;, —i(2; —
Z;))/2 are their spatial coordinates, and Qs are the isovector operators which
can be represented by some generators 7 in a representation of isospin [
[123]. The quantum number [ labels the irreducible representations of the
group of the rotations induced by the coupling of the NACS particle matter
field with the non-Abelian gauge field: as a consequence, the values of [ are of
course quantized and vary over all the integer and the half-integer numbers,
with [ = 1/2 being the smallest possible non-trivial value (I = 0 corresponds
to a system of free bosons). As usual, a basis of isospin eigenstates can be
labeled by [ and the magnetic quantum number m (varying in the range

141, 1= 1,0,

Hence the statistical potential depends in general on the value of the
isospin quantum number [ and on the coupling x (and of course on the
distance r and the temperature 7). The quantity « present in the covariant
derivative is a parameter of the theory. The condition 47k = integer has to
be satisfied for consistency reasons [44, 122]. In the following we denote for
simplicity by k the integer 47k.

For non-Abelian anyons, in analogy with (5.9), the effective statistical
potential can be related to the relative PF according to the following expres-
sion:

1

Z3(w, L T)=2," (L T) = 55

/d2p e_ﬁPQ/M/dQT [exp[—ﬁv(/ﬂz,l,r)] — exp[—ﬁv("'i')(l,r)]] ,
(5.37)

where v (I, 1) refers to the system of particles with isospin [ and with-

out statistical interaction (x — o). The potential v(™%*)(I,r) can be ex-

pressed in terms of the potentials v,—o(r) and v,—1(r) for the free Bose

and Fermi systems (endowed with the chosen wave-function boundary condi-

tions). Z(r,1,T)— Z5™") (1, T) is the (convergent) variation of the divergent

PF for the two-body relative Hamiltonian, between the interacting case in

exam and the non-interacting limit Kk — oc.

For hard-core boundary Conditions on the relative two-anyonic vectorial
wave-function, the quantity v (I, r) which enters Eq.(5.37) is given by the
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projection onto the bosonic/fermionic basis:

2l +21 j+2l
—poi) (1) _ 1_ 2741 L+ (_1)J —Bua=0(r) 1- (_1) —Bua=1(r)
e (2l+1)2]20(]+) 9 € + 5 € )
(5.38)
in analogy with the procedure shown in [111, 110, 2] for the computation
of the 2"-virial coefficient. By using the results e #ve=0() = 1 4 =2
e Pre=1(r) =1 — ¢=2% one then obtains
—2x
exp[—Bv™ (1 1)] =1 + — (5.39)

20+1

Notice that this non-interacting quantity exactly corresponds to (—1)% times
the statistical potential for a system of identical (2)-spin ordinary particles
(fulfilling the spin-statistics constraint) at the same temperature, similarly
to what argued in [2] about the 2"-virial coefficient for the same system.

In the interacting case (i.e. finite k), we can express the statistical po-
tential in terms of statistical potentials of Abelian anyons:

2 : ,
. 1 (=1 gny 1= (=12 g
/Bv(kvlﬂ") — 2 1 va-(r) /va-(T)
e (2l+1)2]20<j+>|: 9 — € J +—2 e J )
(5.40)
where w; = [j(j + 1) — 20(1 + 1)]/k, and vf (r), v[ (r) are the potentials for

the Abelian wj-anyon gases respectively in the bosonic and fermionic bases,
given by
—5”5(7’) _ —x
e Wit =2e " My, () (5.41)
and
) — 96T M 5.42
e Wit =2e wj+1(T) (5.42)
Both (5.41) and (5.42) are periodic quantities under the shift w; — w; + 2;
it follows

otk l 2e " , 14 (—1)7+% 1— (—1)7t2
e PolklrT) — 27 Z (2j+1) {#M%(m) + %M%H@)

(5.43)
Eq.(5.43) gives the statistical potential for a gas of NACS particles.

5.3.1 2"_virial coefficient

An useful application (and check, at the same time) of Eq.(5.43) consists in
computing the second virial coefficient. The analogous of (5.30) reads
2

By(k,1,T) = %T / dr [l — e PPIN] (5.44)
0
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Substituting in its integrand both Eq.(5.43) and the following decomposition
of the unity

21

1= m 22(23' +1) {1 LA (_21)]+ L1 (_;W : (5.45)

one obtains for By(k, [, T)

RN SR ) P

_TNT(2541 de |2 (1 —9e T M, S 1 —2et M,

s 17 2 ) [ e | (-2 M () S (- 2 M (o)
(5.46)

By virtue of (5.35) one has then

( 1)j+2l 1 1 )
By(k,1,T) Sl A (.
(., 2l+12Z { 2 FREEARE

PR G i O S
2 RS

where v; = w;mod2 and 1; = (w; + 1) mod2. This result matches with
previous results reported in literature [111, 2], see in particular Eqgs.(38) and

(41) of [2].

5.3.2 Minimum points

Using Eq.(5.43), we can study if the gas of NACS has a “bosonic-like”, “quasi-
bosonic” or “quasi-fermionic” behaviour, according to its characterization in
terms of the statistical potential. In correspondence with the analysis car-
ried out in Subsection 5.2.1, we can address the problem of determining:
which points of the discrete parameter space {k,[} are associated to the
presence of an (interior) minimum point 7. (k,{,T) for the statistical po-
tential v(k,l,r,T") (which will be referred to as “bosonic” ones), which points
correspond to a monotonically increasing v(k, [, r,T) (“bosonic-like” points)
and which ones instead correspond to a v(k, [, r,T") monotonically decreasing
in r (the “quasi-fermionic” ones). To this aim, let’s exploit the limit be-
haviours of exp[—pv(k,l,r,T)] for small distance (x < 1) and large distance
(x > 1), which straightforwardly arise from Egs.(5.15) and (5.18). Notice
that at £ = 0 one has
2l

= ﬁ D1 [ (177803500 (L= (<17 d(.1)]

(5.47)
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where ¢ denotes the Kronecker delta function and v; = w;mod 2. For large
distance it is

e~ % . . .
e—ﬂv(k,l,r>>)\T) ~ 1+ @Tlléws(]7 k, l), if S(], k, l) 7£ 0 (548>
L- mt(% k, l), otherwise.
where
2
s(j.k.0) = (25 + 1)(=1)7*% cos (w;m)
§=0
and

2l

(G kD) = 3 (2j+ 1) sin(m) [(1+ (~1)7%2) (g = 1) = (1= (1) (n; - 1)]]

Jj=0

with v; = w;mod 2, n; = (w; + 1) mod 2.

Our results can be summarized in the “phase diagram” shown in Fig.5.4,
in which we distinguish pairs of parameters (k,!) for which v(k,l,r,T) has a
minimum point at finite r (in black), pairs for which the statistical potential
is monotonically increasing in r (in magenta), and the remaining pairs (which
are left blank), for which it is monotonically decreasing. In this way the black
points denote a “quasi-bosonic” behaviour and the magenta ones denote a
“bosonic-like” behaviour, according to the classification operated in Section
IT to extract information from the statistical potential for Abelian anyons.
Bosonic-like behaviour occurs only for pairs (k,[) having one of the forms:
(k generic,l = 0), (k = 1,1 integer), or (k = 2, even). One sees that for non-
Abelian anyons there are mixed regions in which quasi-bosonic and quasi-
fermionic behaviour alternate, separated by regions dominated by a quasi-
bosonic behaviour.
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Figure 5.4: Phase diagram in the parameter space {k, [} for the family of non-
Abelian anyon models under consideration. Points (k, () in the black regions
correspond to the presence of an interior minimum point for the statistical
potential v(k,{,r,T) and are associated to quasi-bosonic behaviour. Points
in magenta correspond to a bosonic-like, monotonically increasing, behaviour
of the statistical potential. Finally, the remaining points are left blank and
correspond to quasi-fermionic behaviour.
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Conclusions

We have investigated some properties of Chern-Simons-based models, in
which the Chern-Simons gauge field is considered in two respects. Firstly
in its pure form of a Chern-Simons term, responsible alone for the whole
action: in this case we have studied the concern of the Abelian (CS) surgery
invariants with some homological features of the particles’ closed worldlines.
Secondly this gauge field is assumed being minimally coupled to a massive
matter field, and our focus is then the thermodynamical description, made
non-trivial because of the coupling itself.

About the first case (pure CS theory), by considering an even-dimensional
tensorial reduced algebra T, of gauge-invariant charge states in the Abelian
CS theory, we have studied the values of the link polynomial (associated to
a non-trivial unknotted component C') defined in lens spaces, in dependence
on the kind of lens spaces L(p,1), on the coupling constant k and on the
charge state I of the component C'. Expectations for distinct lens spaces
have been related each other thanks to a reciprocity lemma due to Cauchy
and Kronecker.

Furthermore we have employed a rather refined kind of surgery presen-
tation of homology spheres in order to prove a theorem of existence, whose
meaning lies in identifying the expectations of links defined in homologi-
cally trivial manifolds with those of corresponding friend links living in the
three-sphere. The Abelian specialization of the improved partition function
associated to the CS theory has been offered, and has been shown that it is
the unity for whatever homology sphere. A gauge-fixing procedure in (reg-
ular) three-manifolds is not available at the moment, so we cannot replace
the surgery rules in the cases in which they are not applicable (as in some
of the considered lens spaces). One could deepen the study of the Wilson
loops values by means of a more serious number-theoretical approach, and
make an attempt to cook a non-iterative algorithm for establishing when a
Gauss sum vanishes, in reference to the applicability of the surgery rules.
The discussion and the main theorem on the set of observables in homol-
ogy three-spheres (and other statements described in due course) strongly

111
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insinuate a deep connection between the homology of a manifold and the
behaviour of the Abelian CS theory in it defined beyond the cases of homo-
logically trivial manifolds. More precisely, the verified indistinguishability of
all three-homology spheres by the Abelian surgery invariant invites to study
how the homological nature of a three-manifold affects its Abelian surgery
invariant. A second application of the previously remembered reciprocity
lemma has indicated the possibility of identifying p homological sectors in
the space of the classes of fields defined on the manifold L(p, 1), in such a way
that the contribution of each sector (a fibre in the fiber bundle of the classes)
to the partition function corresponds to a monomial term in the deformation
parameter variable.

About the second model, in which the gauge field is coupled to matter,
we studied the thermodynamical properties of an ideal gas of non-Abelian
Chern-Simons particles considering the effect of general soft-core boundary
conditions for the two-body wavefunction at zero distance. In comparison
with the Abelian case, the thermodynamics of a system of free non-Abelian
anyons appears to be much harder to study and all the available results were
for hard-core boundary conditions, with - at the best of our knowledge - no re-
sults (even for the second virial coefficient) for soft-core non-Abelian anyons.
The reason of this gap is at least twofold: from one side, for the difficulties,
both analytical and numerical, in obtaining the finite temperature equation
of state for non-Abelian anyons; from another side, because most of the ef-
forts have been focused in the last decade on the study of two-dimensional
systems which are gapped in the bulk and gapless on the edges, as for the
states commonly studied for the fractional quantum Hall effect, while, on the
contrary, the two-dimensional free gas of anyons is gapless. However, there
is by now a mounting interest in the study of three-dimensional topologi-
cal insulators, systems gapped in the bulk, but having protected conducting
gapless states on their edge or surface: exotic states can occur at the sur-
face of a three-dimensional topological insulator due to an induced energy
gap, and a superconducting energy gap leads to a state supporting Majorana
fermions, providing new possibilities for the realization of topological quan-
tum computation. This surging of activity certainly calls for an investigation
of the finite temperature properties of general gapless topological states on
the two-dimensional surface of three-dimensional topological insulators and
superconductors.

We determined and studied the second virial coefficient as a function of
the coupling x and the (iso)spin [ for generic hard-core parameters. A discus-
sion of the comparison of obtained findings with available results in literature
for systems of non-Abelian hard-core Chern-Simons particles has been also
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supplied. We found that a semiclassical computation of the second virial co-
efficient for hard-core non-Abelian Chern-Simons particles gives the correct
result, extending in this way the corresponding result for Abelian hard-core
anyons. We have also written down the expressions for the thermodynamical
quantities at the lowest order of the virial expansion, finding that at this
order the relation between the internal energy and the pressure is the same
found (exactly) for 2D Bose and Fermi ideal gases. Further studies on the
higher virial coefficients are needed to establish the eventual validity of the
obtained relation between the pressure and the internal energy for a general
soft-core NACS ideal gas.

We have continued the investigation on this model by considering the
two-body effective statistical potential (which models, in the dilute regime,
the dominant term of the statistical interaction between the particles) of ideal
systems of Abelian and non-Abelian anyons, described within the picture of
ux-charge composites. In both cases we have derived closed expression for
the statistical potential (in terms of known special functions) and we have
studied its behavior. Asymptotic expansions have been provided, and the
second virial coeffcients of both systems have been found using a compact
expression of the statistical potential in terms of Laplace transforms. A
phase diagram for the non-Abelian gas as a function of the Chern-Simons
coupling and the isospin quantum number has been derived. In our study
we have considered hard-core boundary conditions for the relative anyonic
wave-functions: however, it would be interesting to use the results obtained
so far in order to analyze the statistical potential in the more general soft-core
conditions (both for the Abelian and non-Abelian ideal anyon gases).
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Appendices

Computation of virial coefficients in special cases

To perform the comparison with Ref. [109], we compute in the following the
virial coefficients for a NACS gas in the hard-core limit in the special cases
considered in [109]:

*x Case [ =1/2 (with k > 2):

M N

1
By (kil=2T)= ——T _
2 < 2’) 8  2(20+1)2

It is wg = —% and w; = ﬁ: since k is assumed to be > 2, it follows

Yo =2—2, (0+1)mod2 =1— 2, and therefore [(yo+1) mod2 —1]* = 25,

[(70+1) mod 2—1]24—3(712—271)] .

71 = 5, hence
1 A2 a2l g 1 1 A\ 3 3
Bh.c. kl=Z=.T __ T T _Z 3 — — — =T 1— - 75
2 ( > ) 3B [4k2+ (4k2 k)] 3 PRl

x Case [ =1 (with k > 4):

B (k1 =1,T) — mZ@j +1) [%Bi(w,ﬂ +

1— (_1)j+2l
2

1
Bg(wj,T)} =3 BE(wo, T) + 3BL (w1, T) 4+ 5BZ(w,, T)

Itiswy = —%, Wi = —%, Wy = % and the w;’s are such that |w;| < 1: therefore,

by using (5.29), one has
AT

By (k1 =1,T) = 3¢ [=1+4lwn] = 208 +3(1 = 26) + 5(~1 + dluwg| — 203)] =
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2 416 4 2 4
v U . I Y IS TP P |
6| 4 k2+3( k2)+5( T k?)]

1 14 8
—\2 ( __— -
_AT( 27 ok 3/<:2)

* Case of the large-k limit, with  lim % =a < %: we limit ourselves

l—00,k—00

to the case of even 2l (the opposite one is similar). We define j..; as the
maximum integer such that w; < 0, and z¢y = V2l: it can be verified that
lwj| < 1 for all j. We have

21 20-1
Bl (k1 T) = ﬁ[ > (2+)BP(w; T)+ Y (2j+1)B] (w;,T)

even=>0 j odd=1

N /4 2 , , 21 2
BRCEEE S @ADL+ - 20+ > 2+ 11— 2| =

| j even=0 J odd=1

)\2 4 i Jerit 2
_ /4 > @D (1w —2w) 4+ > (2541 (— 1w —2w3)

2
(2l + 1) | j even=0 J even=jcrit+1
20—1 Terit
, A2 /4|1 22 =202 (2% —20?)?
j odd=1 0

21 21
1 220 (22— 202)%\ 1 (22 — 22)2
+3 / dz (2z+1) (—1+4 s )+§/dx (2:z:+1)(1—2T ~
0

Zerit

Comparison with Ref.[111]

With the notation used in the main text, Eq. (2) of Ref. [111] for NACS
particles in the hard-core limit reads

2 . .
. 1 Z ) 1+ (—1)7+2 1— (—1)/+%
Jj=0

(5.49)
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where w; = = [j(j + 1) — 2I(1 +1)] and B2 (w,T) is given by [91]

1., { —1+46 — 26%, N even (odd) (5.50)

B(F) —
By (w, T) = 4)‘T 1 — 262, N odd (even)

with w = N + 6 and N an integer such that 0 < 0 < 1. Eq. (5.49) can
be derived as in the following: with the notation ; = w; mod2, using Egs.
(4.34)-(4.36)-(4.38) one has

202

By“(m 1. T) = B T) =

Z4(r0.7) = 2" (L T)| =

L)QZ(?J*D l1+(—21)a‘+2 Lo _2 (_1)1 .

(7 —2y) + ﬂi[(vj + 1) mod?2 — 1]2] —

1+ (—1)/+%

5 (—1+dvy; —297)+

+%W(1 —2[(y; + 1) mod 2 — 1]2)] =

2l

1 ) , T+ (=1)7*2 ( —1446; — 262, N, even
- s 2 1 - N 7 J 77 J
BVICTESNE ZO(‘H )

2 1-— 25]2, Nj odd
+1 — (=17 [ 1282, N; even B
2 _1_'_45]_25]2’ Nj odd o

2l

= ﬁ Z(zj +1) [%35(%@ +

1 — (_1)j+2l

that is nothing else than the (5.49) itself.
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Notice that Eq. (3) of [111] should be replaced with

2l 2l

(2 +1)2 Z@JH)F(—DJ”‘HW > (@216 [1(—1)7 5]

4 C
)\—233' (o, T) =
T = =

(5.51)
where the upper and lower signs refer to the cases of even and odd N;’s: Eq.
(5.51) is equivalent to our formula (4.38) and to Eq. (5.49).

We discuss now the limit @ = ﬁ — 0 : we observe that by a careful
inspection it is possible to conclude that Eq. (30) of [110] and Eq. (3) of [111]
do not tend in this limit to the correct value Bém')(l, T) given in Eq. (4.35).

However, the manipulation of the corrected version (5.51) above presented

2
reproduces (as expected) the value B¢ — —%ﬁ for « — 0. Indeed for

vanishing coupling constant «, using the same convention used above (upper
and lower choices referring to the cases of even and odd N, respectively), one
has

2l 2l

T 0 @ DRI g 1P )

o D GG =g (s D1 =
Sone(2i + D1

(20 +1)2 o241

as it might.

Spectrum in the soft-core non-Abelian case

In Subsection 4.3.2 we stated that the spectrum of the multi-component
projected Hamiltonian operator H; can be represented in general as the union
of the (25 + 1) spectra of the corresponding scalar Schrédinger operators.
That follows from the following remark: the non-Abelian generalization of
the soft-core expression (4.8) is Eq. (4.32). By denoting

1 1d d (n+a)?
A = — |- 2—r—+ ——— 2
(r) M rdrrdr + 72 ’
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the non-Abelian generalization of (4.6) is the (2] +1)?*—dimensional matricial
equation

Ar) 0 0 - Ry’ Ry’ Ry’

0 A(r) 0 .- By ' | | B | R R

0 0  A(r) .- Ry’ Ry’ M| Ry’
(5.52)

The hard-disk regularization R’(r = R) = 0 for all j,j, discretizes
the energy spectrum; let then Sp; ;. (R) be the (discretized) spectrum of the

component equation A(T)Rg’jz = ER}’* restricted over the domain in which
R{’* has hard-core parameter ¢; ;., and Sp(R) be the (Sligcretized) spectrum
of Eq. (5.52) in the domain in which any component R} 7 has the respective
assigned hard-core parameter € ;. If Ejy ;€ Spj ;i (R) for some (j',7),
then also £y j; € Sp(R), because

A(r) 0 0 0 0
0 A®r) .
0 0 A(r) - - R | =By | RIS |, (5.53)

and all the null components of the vector trivially fulfill whichever hard-core
conditions, in particular the assigned sequence {e;;.} € {[0,00)}**+1* In
conclusion, the spectrum in the non-Abelian case can be written as the above-
mentioned union of spectra, which will automatically include all the possible
relevant energy degenerations to be considered in the partition function for
the computation of the virial coefficients.

Definition of the used Bessel functions

In the main text we used the Bessel functions of the first kind J, and the
modified Bessel function of the first kind I,: their definition is respectively

given by
LSy
Jalz) = n;)m! L(m+a+1) (2)
and
o ] ° 1 T\ 2m+a
Lalw) = i Jaliz) = Y — N (5) . (5.54)

m=
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The Lommel functions of two variables are defined in Eq.(5) of pg. 537
of [134] and read

(w, 2) i ( >V+2m Jyrom(2)

m=0
Valw, 2) = cos [ Z 4 2 4 70) 4 Uy, 2)
w(w, z) = cos 5 T o 5 o (w, z) .

Properties of the statistical potential v,

In this Appendix we provide details and further informations on the statis-
tical potential v, for Abelian anyons.
We first give a derivation of Eq.(5.10): the relative PF (5.7) is given by

Z / dre™ Iy_y(x), == Mr?/26h (5.55)
l—fm>
and it can be rewritten as

2= [epeown [pr S gy g, (M0 5.56
2h2 Z € l—al 26R2 ) (5.56)

l=—00

as pointed out in [131]. That allows for its comparison with the PF (5.9)
for classical systems associated to a generic potential v(r), whence the result
(5.10).

We also observe that

e}

) 26 [ S i)+ 5]

n=0
(5.57)
The expression that follows here below is a possible closed form for the sta-
tistical potential, but at the cost of using an integral representation given in
formula (7), pg. 652 of [140]. It stands for any complex number p in the
vertical strip —1 < Repu < a:

e Pral) — 9= li_a Z(—l)nj2n+a(ix) +i07? Z(_1>nJ2n+2—a(iI)] =

n=0 n=0

e {i_a B /0 Joliz— ) dos (1) dt} Lo B /0 Tu(iz — 1) Ji—au(t) dt” -
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— {ra / Ju(ix — 1) Jao o (t) dt — i@ / Tu(ix — 1) Ji_a_u(t) dt
0 0

(5.58)
A simpler integral representation, valid for a € (0,2), can be produced by
using the following property ([134], pg. 540) of the bivariate Lommel function

! 1
— /0 Jy—1(zt) cos {§w(1 - t2)} t"dt, Re(r)>0

together with expressions (5.57), (5.13) and (5.54). The resulting integral
representation is

1
e Pl — 9 e® / cosh [g(l —t2)] (Lacr(@t) t* + L_o(at) *7) dt .
0

(5.59)

In the final part of this Appendix we provide the derivation of the integral

representation (5.14). To this end, we use the following representation [137]
for the modified Bessel function of the first kind:

1 ™ : oo
I, = —/ e* 5% cosvf df — smmr/ e Feoshi=vigr arg || < E, Rev > 0.
T Jo m 0 2
(5.60)
Then the summation term in (5.10) is
Z [\2n a\ Z[2n+2 a ) + Z[2n+a(z> =
n=—o0o n=0
1 " zcos ¢ = = 1 OO —zcosht
== do e Zcos(2n+a)¢+2(:os(2n—a)¢ —— dt e ft,a),
TJo n=0 n=1 T Jo
(5.61)
where
°° h[(1— )t
nz_% e~ gin (2n 4 o 7T+; ~(@n=gin (2n — a)7 = sin aﬂ% )
for t # 0 and

f(0,a) = th%i fit,a)=(1—a)sinar .

The first addend of the last integral representation is

i/oﬂ-d(b eZCOS(b [2005 (27’L+a)¢+nZlCOS (2n_a)¢] _ i/ﬂﬂd¢ echS(b [7;)008 (2n+a)¢+
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-1

™ too
+ Z cos (2n + a)¢p _717/ d¢ 259 Z cos (2n+ a)p =
0

1 [ e ‘
/ d¢ ezcosd) Re Z (eza¢621n¢) —
™Jo n=-—00
1 [7 . 0(2 620 — 2 1
= / dp €% Re [6W¢27r (2¢) + 2( ¢ W)] = §(€Z+€_Z cosar) .
™ Jo

(5.62)
As a result of (5.10), (5.61) and (5.62), one has then

e Pl — 1 4 722 cosamr — 2 sin.am e ? /00 dt M e~#cosht (5.63)
T 0 sinh ¢

By direct inspection this result, notwithstanding the hypothesis of validity for
(5.60), is valid also for a at the extremes of the interval [0, 2], so that the derivation
of (5.14) is completed.
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